Geochemistry of pyrrhotite in the Jiama deposit, Tibet and its relationship with gold enrichment and precipitation
-
摘要:
研究目的 甲玛矿床是西藏冈底斯成矿带最重要的斑岩成矿系统之一,具有斑岩、矽卡岩、角岩、脉状金矿四位一体矿体结构,形成了丰富的矿物种类和多样的金属矿化。其中,磁黄铁矿作为重要的金属矿物之一,其矿物地球化学特征以及与金矿化的耦合关系一直不明确。
研究方法 此次,以甲玛斑岩成矿系统外围和远端的不同产状的磁黄铁矿为研究对象,基于详细的野外地质调查和镜下鉴定,通过激光剥蚀电感耦合等离子质谱分析方法(LA-ICP-MS)对不同产状的磁黄铁矿开展测点分析和扫描分析,详细揭示其地球化学特征。
研究结果 结果显示,甲玛矿床磁黄铁矿主要富集Co、Ni、Cu、Zn、Ge、Se,弱富集Pb、Bi、Sb、Te、Ag、As,而Mo、Cd、In、Sn、Ba、W、Au、Tl、Th、U等元素含量较低。其中,矽卡岩中的磁黄铁矿具有较高的Co/Ni比值,能有效揭示其岩浆热液成因,而角岩中磁黄铁矿可能继承了一定的沉积特征。
结论 甲玛矿区磁黄铁矿的Cu、Zn、Pb含量变化特征与矿床空间矿化规律一致。矽卡岩中的块状磁黄铁矿与金矿化关系密切,金主要呈他形、不规则的独立金矿物产于磁黄铁矿的孔隙和粒间。同时,金的富集和沉淀可能与富铋的熔体有关。
Abstract:This paper is the result of mineral exploration engineering.
Objective As one of the most important porphyry metallogenic systems in Gangdese metallogenic belt in Tibet, Jiama has a four in one orebody structure of porphyry, skarn, hornfels, and vein gold ore-body, forming riched minerals and diverse metal mineralization. Pyrrhotite is one of the important metal minerals, and its mineral geochemistry and relationship with gold mineralization are still obscure.
Methods The mineralogy and geochemistry of pyrrhotite in different occurrences of the Jiama porphyry system are the main objects for this paper according to detailed field geological survey, petrography, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis.
Results The results show that pyrrhotite is obviously enriched in Co, Ni, Cu, Zn, Ge, and Se, and weakly enriched in Pb, Bi, Sb, Te, Ag, and As, and low content of Mo, Cd, In, Sn, Ba, W, Au, Tl, Th, U, relatively. Moreover, the pyrrhotite from skarn has a high ratio of Co/Ni, represent the its magmatic-hydrothermal genesis, while the pyrrhotite hosted in hornfels shows sedimentary characteristics.
Conclusions The variation of contents of Cu, Zn, and Pb in pyrrhotite are related to the spatial mineralization in the Jiama deposit. The massive pyrrhotite in skarn is closely related to gold mineralization and the gold is mainly anhedral or irregular free gold occurring in the cavity and boundary of pyrrhotite grains. The enrichment and precipitation of gold could be related to bismuth-rich melts in the ore-fluids.
-
Key words:
- LA-ICP-MS /
- trace elements /
- pyrrhotite /
- porphyry Cu deposit /
- gold mineralization /
- Jiama /
- Tibet
-
图 1 甲玛矿区地质简图(据林彬等,2019)
Figure 1.
图 2 甲玛矿床矿体结构剖面图(据邹兵等,2019修改)
Figure 2.
图 5 甲玛矿床磁黄铁矿Co-Ni协变图(据冷成彪, 2017;刘武生等, 2019)
Figure 5.
表 1 甲玛矿区磁黄铁矿微量元素分析结果(10-6)
Table 1. LA-ICP-MS data of trace element of Pyrrhotite in Jiama deposit(10-6)
-
Belousov I, Large R R, Meffre S, Danyushevsky L V, Steadman J, Beardsomre T. 2016. Pyrite compositions from vhms and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration[J]. Ore Geology Reviews, 79: 474-499. doi: 10.1016/j.oregeorev.2016.04.020
Blake A Tooth, Joël Brugger, Cristiana L. Ciobanu. 2009. Experimental observation of gold scavenging by bismuth melts coexisting with hydrothermal fluids[J]. Journal of Geochemical Exploration, 101(1): 104-104. doi: 10.1016/j.gexplo.2008.11.063
Bralia A, Sabatinig, Troja F. 1979. A revaluation of the Co/Ni ratioin pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353-374. http://www.sciencedirect.com/science/article/pii/S1053811905001527
Chen Guangyuan, Sun Daisheng, Yin Hui'an. 1987. Genetic Mineralogy and Prospecting Mineralogy[M]. Chongqing: Chongqing Publishing House(in Chinese).
Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M. 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development, consideration of matrix effects[J]. Geochemistry: Exploration, Environment, Analysis, 11(1): 51-60. doi: 10.1144/1467-7873/09-244
Guo Wenbo, Zheng Wenbao, Tang Juxing, Ying Lijuan, Wang Yiyun, Lin Bin. 2014. Geochemical constraints on the source of metallogenic fluids and materials in the Jiama polymetallic Cu deposit, Tibet[J]. Geology in China, 41(2): 510-528 (in Chinese with English abstract). http://www.researchgate.net/publication/287951819_Geochemical_constraints_on_the_source_of_metallogenic_fluids_and_materials_in_the_Jiama_polymetallic_Cu_deposit_Tibet
Lin Bin, Tang Juxing, Zhang Zhi, Zheng Wenbao, Leng Qiufeng, Zhong Wanting, Ying Lijuan. 2012. Preliminary study of fissure system in Jiama porphyry deposit of Tibet and its significance[J]. Mineral Deposits, 31(3): 579-589(in Chinese with English abstrct). http://www.researchgate.net/profile/Lin_Bin3/publication/299486836_Preliminary_study_of_fissure_system_in_Jiama_porphyry_deposit_of_Tibet_and_its_significance/links/56fb3a9408ae1b40b804dc2f.pdf
Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen Guoliang, Zhang Zhongkun. 2019. Polycentric complex mineralization model of porphyry system: A case study of Jiama superlarge deposit in Tibet[J]. Mineral Deposits, 38(6): 1204-1222(in Chinese with English abstract).
Lin Bin, Tang Juxing, Tang Pan, Zhou Aorigele, Sun Miao, Qi Jing, Chen Guoliang, Zheng Wenbao, Zhang Zhongkun, Zhang Zebin, Wu Chunneng, Tian Zhichao, Dai Jingjing, Yang Zhenkun, Yao Xiaofeng. 2021. Preliminary study of the first 3000 m scientific drilling in the Jiama porphyry metallogenic system, Tibet[J]. Mineral Deposits, 40(6): 1119-1134 (in Chinese with English abstract).
Lin Bin, Tang Juxing, Chen Yuchuan, Song Yang, Hall Greg, Wang Qin, Yang Chao, Fang Xiang, Duan Jilin, Yang Huanhuan, Liu Zhibo, Wang Yiyun, Feng Jun. 2017a. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes[J]. Resource Geology, 67: 1-21. doi: 10.1111/rge.12113
Lin Bin, Chen Yuchuan, Tang Juxing, Wang Qin, Song Yang, Yang Chao, Wang Wenlei, He Wen, Zhang Lejun. 2017b. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China: Implication for generation of super-large deposit[J]. Acta Geologica Sinca (English edition), 91: 602-616. doi: 10.1111/1755-6724.13120
Lin, Bin, Tang Juxing, Chen Yuchuan, Baker Micheal, Song Yang, Yang Huanhuan, Wang Qin, He Wen, Liu Zhibo. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet[J]. Gondwana Research, 66: 168-182. doi: 10.1016/j.gr.2018.07.009
Leng Qiufeng, Tang Juxing, Zheng Wenbao, Lin Bin, Wang Yiyun, Tang Pan, Lin Xin. 2015. A study of ore-controlling factors of thick and large skarn orebodies in Jiama porphyry metallogenic system, Tibet[J]. Mineral Deposits, 34(2): 273-288(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201502005.htm
Leng Chengbiao. 2017. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LA-ICPMS trace elements of pyrite and pyrrhotite[J]. Earth Science Frontiers, 24(6): 162-175(in Chinese with English abstract).
Liu Wusheng, Zhao Ruyi, Zhang Xiong, Jiang Jinchang, Chen Yuchuan, Wang Denghong, Ying Lijuan, Liu Zhanqin. 2019. The EPMA and LA-ICP-MS In-situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu-polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 40(2): 291-306(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201902005.htm
Liu Yongsheng, Hu Zhaochu, Gao Shan, Detlef Günther, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
Large R R, Maslennikov V, Roboert F, Danyushevsky L V, Chang Z. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant sukhoi log deposit, Lena gold province, Russia[J]. Economic Geology, 102(7): 1233-1267. doi: 10.2113/gsecongeo.102.7.1233
Loftus-Hills G, Solomon M. 1967. Cobalt, Nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 2(3): 228-242. http://link.springer.com/content/pdf/10.1007%2FBF00201918.pdf
Liu Yinjun, Cao Liming. 1984. Element geochemistry[M]. Beijing: Science Press(in Chinese).
Qin Zhipeng. 2013. Genetic Model of Jiama Copper Polymetallic Deposit in Tibet[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstrct).
Tang Juxing, Wang Denghong, Wang Xiongwu, Zhong Kanghui, Ying Lijuan, Zheng Wenbao, Li Fengji, Guo Na, Qin Zhipeng, Yao Xiaofeng, Li Lei, Wang You and Tang Xiaoqian. 2010. Geological features and metaliogenic model of the Jiama copper-polymetallic deposit in Tibet[J]. Acta Geoscientia Sinica, 31(4): 495-506(in Chinese with English abstract). http://www.researchgate.net/publication/306218155_Geological_features_and_metallogenic_model_of_the_Jiama_copper-polymetallic_deposit_in_Tibet
Tang Juxing, Deng Shilin, Zheng Wenbao, Ying Lijuan, Wang Xiongwu, Zhong Kanghui, Qin Zhipeng, Ding Feng, Li Fengji, Tang Xiaoqian, Zhong Yufeng and Peng Huijuan. 2011. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet[J]. Mineral Deposits, 30(2): 179-196(in Chinese with English abstract). http://www.researchgate.net/publication/312661222_An_exploration_model_for_Jiama_copper_polymetallic_deposit_in_Maizhokunggar_County_Tibet
Tang Juxing, Zheng Wenbao, Chen Yuchuan, Wang Denghong, Ying Lijuan and Qin Zhipeng. 2013. Prospecting breakthrough of the deep porphyry ore body and its significance in Jiama copper polymetallic deposit, Tibet, China[J]. Journal of Jilin University (Earth Science Edition), 43(4): 1100-1110(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201304006.htm
Tang Juxing, Wang Qin. 2019. Advantages of copper resources and prospects for their exploitation and utilization in Tibet[J]. China Engineering Science, 21(1): 140-147(in Chinese with English abstrct). doi: 10.15302/J-SSCAE-2019.01.020
Wang Yiyun, Zheng Wenbao, Chen Yuchuan, Tang Juxing, Leng Qiufeng, Tang Pan, Ding Shuai and Zhou Yun. 2017. Discussion on the mechanism of seperation of copper and molybdenum in Jima porphyry deposit system, Tibet[J]. Acta Petrologica Sinica, 33(2) : 495-514(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201702012.htm
Wang Huan, Wang Liqiang, Ying Lijuan, Zheng Wenbao. 2011. Features and genesis of bornite in Jiama copper-polymetallic deposit of Tibet[J]. Mineral Deposits, 30(2): 305-517(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201102012.htm
Ye Tian, Li Nuo. 2015. The application of pyrite LA-ICP-MS trace element analysis to gold deposits[J]. Chinese Journal of Geology, 50(4): 1178-1199(in Chinese with English abstract). http://www.researchgate.net/publication/286856004_The_application_of_pyrite_LA-ICP-MS_trace_element_analysis_to_gold_deposits
Yang Yang, Tang Juxing, Wu Chunneng, Lin Bin, Tang Pan, Zhang Zhebing, He Liang, Qi Jing, Li Yixuan. 2020. Typomorphic mineralogical characteristics of pyrrhotite in Jiama Cu polymetallic deposit, Tibet, and its geological significance[J]. Mineral Deposits, 39(2): 337-350(in Chinese with English abstract).
Ying Lijuan, Wang Denghong, Tang Juxing, Chang Zhesheng, Qu Wenjun, Zheng Wenbao and Wang Huan. 2010. Re-Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 84(8): 1165-1174(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201008010&dbcode=CJFD&year=2010&dflag=pdfdown
Zheng Wenbao, Tang Juxing, Chang Zhesheng, Li Fengji, Yao Xiaofeng. 2010. Geological and geochemical characteristics and genesis of the Jiama polymetallic copper deposit in Tibet[J]. Geology and Exploration, 46(6): 985-994(in Chinese with English abstrct). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201006002.htm
Zheng Wenbao. 2012. The Study on Metallogenic Model and Prospecting Pattern for Jiama Polymetallic Copper Deposit, Tibet[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstrct).
Zheng Wenbao, Tang Juxing, Zhong Kanghui. 2016. Geology of the Jiama Porphyry copper-polymetallic system, Lhasa Region, China[J]. Ore Geology Reviews, 74: 151-169. doi: 10.1016/j.oregeorev.2015.11.024
Zhao Zhenhua. 1997. Principles of Trace Element Geochemistry[M]. Beijing: Science Press, 1-218(in Chinese).
Zhang Zhongkun, Lin Bin, Chen Guoliang, Zou Bing, Yang Zhongkun, Tang Pan, Gao Xin, Gao Futai, Jiao Haijun, Sun Jianjun, Li Yajun, Su Wei. 2020. The relationship of diagenesis, mineralization and structural of south-pit skarn thick ore-body in Jiama Cu-Mo super-large deposit, Tibet[J]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20200702.0858.002.html.
Zhong Kanghui, Li Lei, Zhou Huiwen, Bai Jinguo, Li Wei, Zhong Wanting, Zhang Yongqiang, Lin Jiqin, Zheng Fanshi, Huang Xiaoyu, Lu Biao, Lei Bo. 2012. Features of Jiama(Gyama)-Kajunguo thrust-gliding nappe tectonic systemin Tibet[J]. Acta Geoscientia Sinica, 33(4): 411-423(in Chinese with English abstract). http://www.oalib.com/paper/1559720
Zhou Haoyang, Sun Xiaoming, Nigel J. Cook, Lin Hai, Fu Yu, Richen Zhong and Joel Brugger. 2017. Nano-to micron-scale particulate gold hosted by magnetite: A product of gold scavenging by bismuth melts[J]. Economic Geology, 112: 993-1010. doi: 10.2113/econgeo.112.4.993
Zhou Yun. 2010. Characteristics and Evolution of Metallogenic Fluids in Jiama Copper Polymetallic Deposit, Mozhugongka County, Tibet[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstrct).
Zou Bin, Lin Bin, Zheng Wenbao, Song Yang, Tang Pan, Zhang Zebing, Gao Xin. 2019. The characteristics of alteration and mineralization and geochronology of ore-bearing porphyry in south pit of Jiama copperpolymetallic deposit, Tibet[J]. Acta Petrologica Sinica, 35(3): 953-967(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.20
陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社.
郭文铂, 郑文宝, 唐菊兴, 应立娟, 王艺云, 林彬. 2014. 西藏甲玛铜多金属矿床流体、成矿物质来源的地球化学约束[J]. 中国地质. 41(2): 510-528. doi: 10.3969/j.issn.1000-3657.2014.02.015 http://geochina.cgs.gov.cn/geochina/article/abstract/20140215?st=search
林彬, 唐菊兴, 张志, 郑文宝, 冷秋锋, 钟婉婷, 应立娟. 2012. 西藏甲玛斑岩矿床裂隙系统的初步研究及意义[J]. 矿床地质, 31(3): 579-589. doi: 10.3969/j.issn.0258-7106.2012.03.015
林彬, 唐菊兴, 唐攀, 郑文宝, GREG Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例[J]. 矿床地质, 38(6): 1204-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201906002.htm
林彬, 唐菊兴, 唐攀, 周敖日格勒, 孙渺, 祁婧, 陈国良, 张忠坤, 张泽斌, 吴纯能, 田志超, 代晶晶, 杨征坤, 姚晓峰. 2021. 青藏高原甲玛斑岩成矿系统首例3000 m科学深钻的初步认识[J]. 矿床地质, 40(6): 1119-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202106015.htm
冷秋锋, 唐菊兴, 郑文宝, 林彬, 王艺云, 唐攀, 林鑫. 2015. 西藏甲玛斑岩成矿系统中厚大矽卡岩矿体控矿因素研究[J]. 矿床地质. 34(2): 273-288. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201502005.htm
冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约[J]. 地学前缘, 24(6): 162-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm
刘武生, 赵如意, 张熊, 蒋金昌, 陈毓川, 王登红, 应立娟, 刘战庆. 2019. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA-ICP-MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 40(2): 291-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902005.htm
刘英俊, 曹励明. 1984. 元素地球化学[M]. 北京: 科学出版社.
秦志鹏. 2013. 西藏甲玛铜多金属矿床成因模式[D]. 成都: 成都理工大学.
唐菊兴, 王登红, 汪雄武, 钟康惠, 应立娟, 郑文宝, 黎枫佶, 郭娜, 秦志鹏, 姚晓峰, 李磊, 王友, 唐晓倩. 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J]. 地球学报, 31(4): 495-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004002.htm
唐菊兴, 邓世林, 郑文宝, 应立娟, 汪雄武, 钟康惠, 秦志鹏, 丁枫, 黎枫佶, 唐晓倩, 钟裕峰, 彭慧娟. 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002
唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义[J]. 吉林大学学报(地球科学版), 43(4): 1100-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201304006.htm
唐菊兴, 王勤. 2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学, 21(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201901021.htm
王艺云, 郑文宝, 陈毓川, 唐菊兴, 冷秋锋, 唐攀, 丁帅, 周云. 2017. 西藏甲玛斑岩成矿系统铜钼元素分离机制探讨[J]. 岩石学报, 33(2): 495-514. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702012.htm
王焕, 王立强, 应立娟, 郑文宝. 2011. 西藏甲玛铜多金属矿床斑铜矿特征及其成因意义[J]. 矿床地质, 30(2): 305-517. doi: 10.3969/j.issn.0258-7106.2011.02.011
叶甜, 李诺. 2015. 黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用[J]. 地质科学, 50(4): 1178-1199.
杨阳, 唐菊兴, 吴纯能, 林彬, 唐攀, 张泽斌, 何亮, 祁婧, 李怡萱. 2020. 西藏甲玛铜多金属矿床磁黄铁矿标型矿物学特征及其地质意义[J]. 矿床地质, 39(2): 337-350. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002008.htm
应立娟, 王登红, 唐菊兴, 畅哲生, 屈文俊, 郑文宝, 王焕. 2010. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J]. 地质学报. 84(8): 1165-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
郑文宝, 唐菊兴, 畅哲生, 黎枫佶, 姚晓峰. 2010. 西藏甲玛铜多金属矿床地质地球化学特征及成因浅析[J]. 地质与勘探, 46(6): 985-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201006002.htm
郑文宝, 唐菊兴, 汪雄武, 王焕, 应立娟, 钟裕锋, 钟婉婷. 2012. 西藏甲玛铜多金属矿床金矿地质特征及成矿作用[J]. 吉林大学学报(地球科学版), 42(S1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S1023.htm
郑文宝. 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型[D]. 成都: 成都理工大学.
赵振华. 1997. 微量元素地球化学原理[M]. 北京: 科学出版社, 1-218.
钟康惠, 李磊, 周慧文, 白景国, 李伟, 钟婉婷, 张勇强, 蔺吉庆, 郑凡石, 黄小雨, 陆彪, 雷波. 2012. 西藏甲玛—卡军果推-滑覆构造系特征[J]. 地球学报, 33(4): 411-423. doi: 10.3975/cagsb.2012.04.03
张忠坤, 林彬, 陈国良, 邹兵, 杨征坤, 唐攀, 高昕, 高福太, 焦海军, 孙建军, 李亚军, 苏伟, 2020. 西藏甲玛超大型Cu-Mo矿床南坑厚大矽卡岩矿体的成岩-成矿-构造耦合关系[J]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20200702.0858.002.html.
周云. 2010. 西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化[D]. 成都: 成都理工大学.
邹兵, 林彬, 郑文宝, 宋扬, 唐攀, 张泽斌, 高昕. 2019. 西藏甲玛矿床南坑矿段蚀变、矿化及含矿斑岩年代学[J]. 岩石学报, 35(3): 953-967. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903020.htm