中国地质调查局 中国地质科学院主办
科学出版社出版

基于健康与恢复力的生态系统退化风险研究—以坝上高原察汗淖尔流域为例

陈鹏, 张冰, 马荣, 石建省, 司乐天, 吴俊, 赵乐凡. 2024. 基于健康与恢复力的生态系统退化风险研究—以坝上高原察汗淖尔流域为例[J]. 中国地质, 51(3): 1034-1045. doi: 10.12029/gc20220415002
引用本文: 陈鹏, 张冰, 马荣, 石建省, 司乐天, 吴俊, 赵乐凡. 2024. 基于健康与恢复力的生态系统退化风险研究—以坝上高原察汗淖尔流域为例[J]. 中国地质, 51(3): 1034-1045. doi: 10.12029/gc20220415002
CHEN Peng, ZHANG Bing, MA Rong, SHI Jiansheng, SI Letian, WU Jun, ZHAO Lefan. 2024. Ecosystem degradation risk based on health and resilience: A case study of Chahannur Lake basin on Bashang Plateau[J]. Geology in China, 51(3): 1034-1045. doi: 10.12029/gc20220415002
Citation: CHEN Peng, ZHANG Bing, MA Rong, SHI Jiansheng, SI Letian, WU Jun, ZHAO Lefan. 2024. Ecosystem degradation risk based on health and resilience: A case study of Chahannur Lake basin on Bashang Plateau[J]. Geology in China, 51(3): 1034-1045. doi: 10.12029/gc20220415002

基于健康与恢复力的生态系统退化风险研究—以坝上高原察汗淖尔流域为例

  • 基金项目: 中国地质调查局项目(DD20221773)和中国地质科学院基本科研业务费(SK202327)联合资助。
详细信息
    作者简介: 陈鹏,男,1994年生,博士,助理研究员,主要从事水资源调查与研究;E-mail:chenpeng789@foxmail.com
    通讯作者: 张冰,男,1983年生,硕士,工程师,主要从事水资源调查与研究;E-mail:zhangbing@mail.cgs.gov.cn
  • 中图分类号: P641.69; X820.4

Ecosystem degradation risk based on health and resilience: A case study of Chahannur Lake basin on Bashang Plateau

  • Fund Project: Supported by the project of China Geological Survey (No.DD20221773) and Chinese Academy of Geological Sciences Basic Research Fund (No.SK202327).
More Information
    Author Bio: CHEN Peng, male, born in 1994, Ph.D., assistant researcher, mainly engaged in water resources investigation and research; E–mail: chenpeng789@foxmail.com .
    Corresponding author: ZHANG Bing, male, born in 1983, master, engineer, mainly engaged in water resources investigation and research; E–mail: zhangbing@mail.cgs.gov.cn.
  • 研究目的

    基于生态系统的健康状况与恢复力,构建湖泊流域生态系统退化风险评估体系,从流域尺度为生态环境保护及可持续发展提供科学依据。

    研究方法

    以坝上高原察汗淖尔流域为例,创建生态系统健康与恢复力交互风险评估矩阵,建立生态退化风险评估体系,开展察汗淖尔流域生态系统退化风险评估。

    研究结果

    察汗淖尔流域内91.10%的区域生态健康状态处于良好,6.66%为优秀;流域22.76%的区域生态恢复力等级为1~2级,75.00%处于3~4级。交互评估结果表明流域27.51%的区域为低生态退化风险较状态,70.25%的区域处于中等状态。

    结论

    察汗淖尔流域生态系统总体较好,但局部地区由于恢复力较差,导致生态退化风险处于中等。本次研究所提出的评估方法可精准划分流域尺度生态退化风险等级,为科学制定精准生态保护与退化控制措施提供决策依据。

  • 加载中
  • 图 1  研究区地理位置(a)、高清遥感影像(b)及野外照片(c)

    Figure 1. 

    图 2  生态系统退化风险评估框架

    Figure 2. 

    图 3  察汗淖尔流域生态健康评估结果

    Figure 3. 

    图 4  生态恢复力指数

    Figure 4. 

    图 5  生态恢复力等级

    Figure 5. 

    图 6  察汗淖尔流域生态系统退化风险评估结果

    Figure 6. 

    图 7  察汗淖尔流域生态系统保护措施

    Figure 7. 

    表 1  流域生态系统健康评估指标体系

    Table 1.  Evaluation system of watershed ecosystem health index

    目标层 准则层 指标层 权重
    生态系统健康指数

    Watershed ecosystem
    Health Index
    (WHI)
    生态格局(0.3)林草覆盖率0.6
    景观完整度0.4
    生态功能(0.3)植被类型0.4
    土壤保持指数0.3
    透水面积比例0.3
    生态压力(0.4)人口0.5
    GDP0.5
    下载: 导出CSV

    表 2  生态系统健康指数分级

    Table 2.  Classification of watershed ecosystem health index

    健康状况 优秀 良好 一般 较差
    生态健康综合指数(WHI) WHI≥80 60≤WHI<80 40≤WHI<60 20≤WHI<40 WHI<20
    下载: 导出CSV

    表 3  生态系统恢复力评价指标

    Table 3.  Evaluation indicators of watershed ecosystem resilience

    因素指标指标含义
    地形条件坡度决定水土流失程度,影响生态系统在扰动后恢复的能力
    大气条件降水直接影响植被的生长
    蒸发决定区域水分循环能力的大小
    水文条件地下水埋深水文条件是半干旱地区生态系统的制约因素
    土壤含水量土壤水分条件对植被养分吸收具有显著影响
    植被条件NDVI决定区域维持水分存储和养分循环能力的大小
    下载: 导出CSV

    表 4  协方差特征值分析

    Table 4.  Analysis of covariance eigenvalue

    指标 特征值 方差百分比/% 累计/% 权重
    降水量 0.040 42.31 42.31 0.42
    坡度 0.017 18.03 60.34 0.18
    地下水埋深 0.015 16.12 76.46 0.16
    土壤含水率 0.010 10.82 87.28 0.11
    NDVI 0.008 8.14 95.42 0.08
    蒸发量 0.004 4.58 100.00 0.05
    下载: 导出CSV

    表 5  生态退化风险等级评估交互矩阵

    Table 5.  Interaction matrix for assessment of risk levels of ecological degradation

    生态系统
    健康状况
    生态系统恢复力等级
    1级 2级 3级 4级 5级
    优秀 较低 中等 较高
    良好 较低 中等 中等 较高
    一般 较低 中等 较高 较高
    较差 中等 中等 较高
    较高 较高
    下载: 导出CSV

    表 6  研究所用数据类型及来源

    Table 6.  Data types and sources used in research

    数据名称 数据类型 时间 数据来源
    DEM 栅格(30 m) 地理空间数据云(http://www.gscloud.cn/)
    NDVI 栅格(30 m) 2020 中国科学院资源环境与数据中心(http://www.resdc.cn)
    降水量 站点 2020 中国国家气象信息中心(http://data.cma.cn)
    蒸发量 栅格(500 m) 2020 陆地过程分布式活动档案中心(https://lpdaac.usgs.gov/)
    地下水埋深 点(6个/10 km2) 2020 野外调查
    土壤含水 栅格(30 m) 2020 地理空间数据云(http://www.gscloud.cn/)
    土地利用类型 栅格(30 m) 2020 中国科学院资源环境与数据中心(http://www.resdc.cn)
    人口 栅格(1000 m) 2010 全球变化科学研究数据出版系统(http://www.geodoi.ac.cn/
    生产总值 栅格(1000 m) 2010 全球变化科学研究数据出版系统(http://www.geodoi.ac.cn/
    下载: 导出CSV

    表 7  察汗淖尔流域生态系统各指标取值结果

    Table 7.  Value results of ecosystem indicators in the Chahannur Lake basin

    序号 乡镇 林草
    覆盖率
    景观
    完整度
    植被
    类型
    土壤保持
    功能指数
    透水面积
    比例/%
    人口
    指数
    GDP
    指数
    1 八道沟镇 50.01 54.04 57.56 100.00 93.98 98.23 95.54
    2 白音特拉乡 48.05 48.75 54.50 99.67 96.54 99.22 96.17
    3 玻璃忽镜乡 57.81 72.62 56.30 99.88 97.50 98.63 95.89
    4 朝阳镇 54.71 60.19 49.89 99.47 96.93 99.00 95.29
    5 处长地乡 28.36 53.68 63.65 99.98 95.87 98.74 96.79
    6 大黑沙土镇 47.80 46.78 56.48 99.22 97.00 99.18 97.22
    7 大库联乡 37.00 58.51 58.01 100.00 98.92 97.74 93.09
    8 大青沟镇 41.52 49.93 60.07 100.00 92.86 97.40 92.15
    9 大苏计乡 48.20 48.35 59.61 99.98 94.73 97.95 93.63
    10 大西湾乡 55.37 47.27 57.14 100.00 96.64 98.53 94.59
    11 大营盘乡 41.78 51.57 60.37 99.98 94.14 98.63 95.32
    12 德包图乡 52.67 57.49 51.83 99.43 96.87 98.95 94.93
    13 邓油坊镇 26.62 52.56 63.20 99.98 95.86 98.44 95.53
    14 二号卜乡 26.23 52.63 63.86 99.99 95.97 98.75 96.69
    15 公腊胡同乡 50.29 58.15 52.73 99.49 97.71 98.80 94.38
    16 李家地镇 29.91 43.93 61.65 99.99 96.07 98.50 96.38
    17 两面井乡 37.95 43.93 60.52 100.00 95.94 98.24 93.67
    18 卢家营乡 36.07 48.29 61.16 99.96 96.42 98.92 96.87
    19 满德堂乡 39.51 36.51 60.71 99.98 97.20 98.92 97.21
    20 满井镇 70.23 60.53 53.52 100.00 95.54 97.79 94.15
    21 七甲乡 36.72 55.93 60.45 100.00 92.87 97.88 93.81
    22 七台镇 40.00 55.25 60.77 99.48 91.29 97.95 95.72
    23 赛乌素镇 45.18 52.77 56.41 99.99 96.74 98.08 93.58
    24 三工地镇 50.10 52.32 58.36 100.00 94.78 98.34 95.20
    25 十八顷镇 58.19 43.65 55.39 98.89 96.44 98.92 96.61
    26 石井乡 55.87 52.74 56.58 100.00 93.52 97.43 91.85
    27 屯垦队镇 49.26 56.13 59.43 99.73 97.31 98.68 96.28
    28 五股泉乡 55.92 51.83 54.48 100.00 97.12 99.03 96.03
    29 小海子镇 38.99 58.10 58.18 98.90 96.23 98.81 96.44
    30 长顺镇 57.68 61.47 50.80 99.53 93.11 97.29 92.76
    31 忠义乡 29.88 55.33 62.12 99.98 94.63 98.45 96.31
    下载: 导出CSV

    表 8  生态恢复力指数分级

    Table 8.  Classification of ecological resilience index

    分级1级2级3级4级5级
    生态恢复力指数(RR≥0.640.58≤R<0.640.52≤R<0.580.46≤R<0.52R<0.46
    下载: 导出CSV
  • [1]

    Chen P, Ma R, Shi J, Si L. 2022a. Effects of groundwater depth and salt content on vegetation in dry lake basins: A case study of Chahan Lake, Northern China[J]. Geofluids, 2022: 1−14.

    [2]

    Chen X, Wang Y, Pei H, Guo Y, Zhang J, Shen Y. 2022b. Expansion of irrigation led to inland lake shrinking in semi−arid agro−pastoral region, China: A case study of Chahannur Lake[J]. Journal of Hydrology: Regional Studies, 41: 101086. doi: 10.1016/j.ejrh.2022.101086

    [3]

    Chen Xiaolu, Wang Yanfang, Zhang Hongmei, Liu Fenggui, Shen Yanjun. 2021. Study on extraction method of irrigated farmland based on ESTARFM NDVI in Chahanur Basin[J]. Chinese Journal of Eco−Agriculture, 29(6): 1105−1116 (in Chinese with English abstract).

    [4]

    Cheng X, Chen L, Sun R, Kong P. 2018. Land use changes and socio–economic development strongly deteriorate river ecosystem health in one of the largest basins in China[J]. Science of the Total Environment, 616–617: 376–385.

    [5]

    Das A, Basu T, 2020. Assessment of peri–urban wetland ecological degradation through importance–performance analysis (IPA): A study on Chatra Wetland, India[J]. Ecological Indicators, 114: 106274.

    [6]

    Dong Jiaqiu, Zhang Jun, Gu Xiaofan, GaoHaibo, Yang Bo, Yang Xiaodong, Zhao Chunguang, Zhang Tiegang, Yin Lihe, Wang Xiaoyong. 2023. Assessment of the degree of vegetation dependence on groundwater at basin scale in semi–arid region: A case study of Tuhe River Basin, Ordos Plateau [J/OL]. Geology in China: 1–19 http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1556.026.html.(in Chinese with English abstract).

    [7]

    Ebrahimi Khusfi Z, Khosroshahi M, Roustaei F, Mirakbari M. 2020. Spatial and seasonal variations of sand–dust events and their relation to atmospheric conditions and vegetation cover in semi–arid regions of central Iran[J]. Geoderma, 365: 114225. doi: 10.1016/j.geoderma.2020.114225

    [8]

    Fu Mengdi, Tang Wenjia, Liu Weiwei, He Yuejun, Zhu Yanpeng. 2021. Ecological risk assessment and spatial identification of ecological restoration based on the perspective of ecosystem services: A case study of the source region of the Yangtze River[J]. Acta Ecologica Sinica, 41(10): 3846−3855 (in Chinese with English abstract).

    [9]

    Fu Zhenghui, Yang Yang, Jiang Xia, Guo Yunyan, Wang Shuhang. 2021. Risk assessment of human activities on ecological health in watersheds: A case study of Hulun Lake Basin[J]. Environmental Science Research, 34(4): 785−791 (in Chinese with English abstract).

    [10]

    Guo Shanshan. 2022. Research on the Coupling and Coordination of Ecosystem Health and Urbanisation in the Yellow River Basin[D]. Beijing: China University of Mining and Technology, 1–227 (in Chinese with English abstract).

    [11]

    Guo Xiaodong, Wang Xiaoguang, Liu Qiang, Wang Changqi, Xiao Changlai, Cheng Xuxue. 2021. Groundwater resources and their ecological and environmental problems in the Songhua–Liaohe river basin[J]. Geology in China, 48(4): 1062−1074 (in Chinese with English abstract).

    [12]

    Han Shuangbao, Li Fucheng, Wang Sai, Li Haixue, Yu Lei, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Status of groundwater resources and its ecological and environmental problems in the Yellow River Basin[J]. Geology in China, 48(4): 1001−1019 (in Chinese with English abstract).

    [13]

    Huang Zhou. 2017. Ecological Health Assessment of Nanxi River Basin Based on GIS and RS[D]. Hangzhou: Zhejiang University, 1–84 (in Chinese with English abstract).

    [14]

    Huo H, Sun C. 2021. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector: A case study of the northwestern Yunnan Plateau, China[J]. Ecological Indicators, 130: 108005. doi: 10.1016/j.ecolind.2021.108005

    [15]

    Jaiswal D, Pandey J. 2021. River ecosystem resilience risk index: A tool to quantitatively characterize resilience and critical transitions in human–impacted large rivers[J]. Environmental Pollution, 268: 115771. doi: 10.1016/j.envpol.2020.115771

    [16]

    Jiang W, Lü J, Wang C, Chen Z, Liu Y. 2017. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China[J]. Ecological Indicators, 82: 316−326. doi: 10.1016/j.ecolind.2017.06.059

    [17]

    Jin K, Wang F, Zong Q, Qin P, Liu C. 2020. Impact of variations in vegetation on surface air temperature change over the Chinese Loess Plateau[J]. Science of the Total Environment, 716: 136967. doi: 10.1016/j.scitotenv.2020.136967

    [18]

    Kang P, Chen W, Hou Y, Li Y. 2018. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing–Tianjin–Hebei urban agglomeration[J]. Science of the Total Environment, 636: 1442−1454. doi: 10.1016/j.scitotenv.2018.04.427

    [19]

    Li Meina, Yin Ping, Duan Xiaoyong, Dong Chao, Cao Ke, Yang Lei, Chen Xuanbo. 2022. Study on land use change and ecological environment effect in the typical coastal zone of Yangtze River Delta in the past 20 years[J]. Geology in China, 49(4): 1114−1126 (in Chinese with English abstract).

    [20]

    Li Xinpeng, Wang Chaoping, Zou Songbing, Yue Wei, Luo Shan, Wang Wenshu, Qin Yihao, San Jun, Qian Jikun, Wang Chunmiao. 2022. Evaluation of ecosystem resilience in the upper Yellow River water–holding area based on hierarchical analysis—A case study of Gannan and Linxia Prefectures[J/OL]. Desert China, (6): 1–9 (in Chinese with English abstract).

    [21]

    Li Y, Xie Z, Qin Y, Zheng Z. 2019. Estimating relations of vegetation, climate change, and human activity: A case study in the 400 mm annual precipitation fluctuation zone, China[J]. Remote Sensing, 11(10): 1159. doi: 10.3390/rs11101159

    [22]

    Li Tuo, Jiang Weiguo, Wang Wenjie, Lü Jinxia, Chen Zheng. 2020. Wetland degradation risk assessment method and its application: A case study of Tianjin[J]. Journal of Environmental Engineering Technology, 10(1): 17−24 (in Chinese with English abstract).

    [23]

    Li T, Zhang Q, Singh V P, Zhao J, Song J. 2022. Identification of degradation areas of ecological environment and degradation intensity assessment in the Yellow River Basin[J]. Frontiers in Earth Science, 10: 922013. doi: 10.3389/feart.2022.922013

    [24]

    Liu Yaling, Xin Zhongbao, Li Zongshan, KeymuBaildang. 2020. Differences in radial growth response of poplar plantation forests to climate change in the Bashang area of Hebei in the last 40 years[J]. Journal of Ecology, 40(24): 9108−9119 (in Chinese with English abstract).

    [25]

    Liu Yanxu, Peng Jian, Wang An, Xie Pan, Han Yinan. 2015. Progress in ecosystem health research[J]. Journal of Ecology, 35(18): 5920−5930 (in Chinese with English abstract).

    [26]

    López D R, Brizuela M A, Willems P, Aguiar M R, Siffredi G, Bran D. 2013. Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia[J]. Ecological Indicators, 24: 1−11. doi: 10.1016/j.ecolind.2012.05.014

    [27]

    Mu Q, Zhao M, Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 115(8): 1781−1800. doi: 10.1016/j.rse.2011.02.019

    [28]

    Peng Y, Wang Q, Fan M. 2017. Identification of the key ecological factors influencing vegetation degradation in semi–arid agro–pastoral ecotone considering spatial scales[J]. Acta Oecologica, 85: 62−68. doi: 10.1016/j.actao.2017.09.011

    [29]

    Pei Hongwei, Liu Mengzhu, Li Yali, Zhang Hongjuan, Xiao Yuxiao, Yang Guoli. 2022. Study on the impacts of ecological restoration measures on ecosystem services in arid and semi–arid areas: A case study of the Bashang area in Hebei[J]. Research on Soil and Water Conservation, 29(2): 192−199, 205 (in Chinese with English abstract).

    [30]

    Shang Boxuan, Xiao Chunlei, Zhao Dan, Zhu Zhenzhou, Zhang Gaqiang. 2021. Distribution characteristics of lakes in China and proposals for ecological protection and restoration of typical watersheds[J]. China Geological Survey, 8(6): 114−125 (in Chinese with English abstract).

    [31]

    Shen Haoyong, Li Jia, Wang Zhiheng, Xie Hao, Liang Yongping, Xu Yongxin, Han Shuangbao, Ren Jianhui, Pan Yaoyun, Zhao Chunhong, Zhao Yi. 2022. Current status of water resources development and utilisation and ecological and environmental problems in the Fen River Basin, a tributary of the Yellow River[J]. Geology in China, 49(4): 1127−1138 (in Chinese with English abstract).

    [32]

    Song Bo, Zhang Fawang, Yang Huifeng, Liu Chunlei, Meng Ruifang, Nan Tian. 2021. Evaluation of water resources carrying capacity by source based on ecological priority and its application: A case study of Baoding Plain, Hebei[J]. Geology in China, 48(4): 1156−1165 (in Chinese with English abstract).

    [33]

    Sterk M, Gort G, Klimkowska A, Ruijven J, Teeffelen A J A, Wamelink G W W. 2013. Assess ecosystem resilience: Linking response and effect traits to environmental variability[J]. Ecological Indicators, 30: 21−27. doi: 10.1016/j.ecolind.2013.02.001

    [34]

    Tang D, Liu X, Zou X. 2018. An improved method for integrated ecosystem health assessments based on the structure and function of coastal ecosystems: A case study of the Jiangsu coastal area, China[J]. Ecological Indicators, 84: 82−95. doi: 10.1016/j.ecolind.2017.08.031

    [35]

    Wang Y, Shen Y, Guo Y, Li B, Chen X, Guo X, Yan H. 2022. Increasing shrinkage risk of endorheic lakes in the middle of farming–pastoral ecotone of Northern China[J]. Ecological Indicators, 135: 108523. doi: 10.1016/j.ecolind.2021.108523

    [36]

    Wang Y, Zhang Z, Chen X. 2021. Quantifying influences of natural and anthropogenic factors on vegetation changes based on geodetector: A case study in the Poyang Lake Basin, China[J]. Remote Sensing, 13(24): 5081. doi: 10.3390/rs13245081

    [37]

    Wang Yanfang, Pei Hongwei. 2018. Evaluation of ecological environment status and countermeasures in the dam area of Hebei from 1980 to 2015[J]. Ecological Economy, 34(1): 186−190, 236 (in Chinese with English abstract).

    [38]

    Wang Cuicui. 2015. Risk Assessment of Degradation of Marshy Wetlands in Ruoergai Plateau and its Evolution Analysis[D]. Beijing: China University of Geosciences (Beijing), 1–85 (in Chinese with English abstract).

    [39]

    Wang Jingbin, Wei Xiaofeng, Zhang Huijiong, Gan Fengwei. 2020. Ecological geological survey method based on geoconstruction: A case study of comprehensive geological survey in national ecological civilisation demonstration area of Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611−1624 (in Chinese with English abstract).

    [40]

    Wu Nan, Chen Hongfeng, Kuang Pidong, Feng Chaoyang, Jiang Hongqiang, Wu Wenjun, Li Daiqing, Zhao Yangduan. 2020. Risk assessment of disturbance and degradation in ecological protection red line areas: A case study in Anhui Province[J]. Journal of Ecology, 40(16): 5571−5578 (in Chinese with English abstract).

    [41]

    Wu Qinyu, Zhang Shaoliang, Yang Yongjun, Hou Huping, Chen Dongxing. 2021. Spatial assessment of ecosystem degradation risk in semi–arid mining areas based on resilience[J]. Journal of Coal, 46(5): 1587−1598 (in Chinese with English abstract).

    [42]

    Wu Aibin, Zhao Yanxia. 2017. Evolution of spatial and temporal pattern of ecological land use and analysis of ecosystem service value in the Bashang plateau[J]. Journal of Agricultural Engineering, 33(2): 283−290 (in Chinese with English abstract).

    [43]

    Xiong Fangyuan, Lu Ying, Liu Han, Cheng Lin, Wu Xinghua, Chen Yushun, Wang Dianchang. 2022. Progress of water ecosystem health research in the source area of the Yangtze River[J]. China Environmental Monitoring, 38(1): 14−26 (in Chinese with English abstract).

    [44]

    Yang Dan, Wang Wenjie, Wu Xiqin, Jiang Weiguo, Zhang Huan. 2021. Steady state transition of the wetland ecosystem and response to climate change in the lakes and wetlands of Angulinao, 1985–2016[J]. Environmental Science Research, 34(12): 2954−2961 (in Chinese with English abstract).

    [45]

    Yang Geng, Cao Yingui, Luo Gubai, Kuang Xinyu, Huang Yuhan, Wang Shufei. 2019. Progress in ecosystem resilience assessment[J]. Zhejiang Agricultural Science, 60(3): 508−513 (in Chinese with English abstract).

    [46]

    Yang Tao, Yan Xiaojuan, Zhao Hansen, Wang Peng, Zhu Tao, Cai Haojie, Zuo Xugang, Xi Rengang, Zhang Yulian, Wang Lishe, Wu Shuo. 2023. Conversion of land use types in the Weihe River Basin and its impact on ecological spatial pattern[J]. Geology in China, 50(5): 1460–1470 (in Chinese with English abstract).

    [47]

    Yu Haochen, Bian Zhengfu, Chen Fu, Mou Shouguo. 2020. Diagnosis of mine land ecosystem degradation and its regulation[J]. Coal Science and Technology, 48(12): 214−223 (in Chinese with English abstract).

    [48]

    Yu L, Wu Z, Du Z, Zhang H, Liu Y. 2021. Insights on the roles of climate and human activities to vegetation degradation and restoration in Beijing–Tianjin sandstorm source region[J]. Ecological Engineering, 159: 106105. doi: 10.1016/j.ecoleng.2020.106105

    [49]

    Zhan Jinyan, Yan Haiming, Deng Xiangzheng, Zhang Tao. 2012. Evaluation of forest ecosystem resilience: A case study of Lianhua County, Jiangxi Province[J]. Journal of Natural Resources, 27(8): 1304−1315 (in Chinese with English abstract).

    [50]

    Zhang Wenfa, Su Tao, Lei Bo, Wang Lei, Sun Haoran, Xu Yueyue. 2021. Analysis of actual evapotranspiration during crop fertility in Chahannur Basin, Inner Mongolia based on multi–source data[J]. Water Saving Irrigation, (10): 1−6 (in Chinese with English abstract).

    [51]

    Zhang Yingrui. 2017. Ecological Health Assessment of Xiaoqing River Basin[D]. Jinan: Shandong University, 1–78 (in Chinese with English abstract).

    [52]

    Zhang Q, Wang G, Yuan R, Singh V P, Wu W, Wang D. 2022. Dynamic responses of ecological vulnerability to land cover shifts over the Yellow river Basin, China[J]. Ecological Indicators, 144: 109554. doi: 10.1016/j.ecolind.2022.109554

    [53]

    Zheng Yiwen, Li Fojie, Liu Xiaohuang, Chang Ming, Zhao Honghui, Lai Ming, Zhang Zifan. 2022. Spatial and temporal changes of natural resources and their ecological and environmental effects in Northeast China over the past 30 years under the background of industrialisation[J]. Geology in China, 49(5): 1361−1373 (in Chinese with English abstract).

    [54]

    Zhu L, Ke Y, Hong J, Zhang Y, Pan Y. 2022. Assessing degradation of lake wetlands in Bashang Plateau, China based on long–term time series Landsat images using wetland degradation index[J]. Ecological Indicators, 139: 108903. doi: 10.1016/j.ecolind.2022.108903

    [55]

    Zhu L J, Meng J, Zhu L K. 2020. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin[J]. Ecological Indicators, 117: 106545. doi: 10.1016/j.ecolind.2020.106545

    [56]

    Zhuo Zhaojun, Ke Yinghai, Hong Jianming, Zhu Lijuan, Zhang Yuhu. 2022. The value of ecosystem services and its changes in the Zhangjiakou Bashang Plateau since 2000[J]. Wetland Science, 20(2): 162−175 (in Chinese with English abstract).

    [57]

    陈晓璐, 王彦芳, 张红梅, 刘峰贵, 沈彦俊. 2021. 基于ESTARFM NDVI的察汗淖尔流域灌溉耕地提取方法研究[J]. 中国生态农业学报(中英文), 29(6): 1105−1116.

    [58]

    董佳秋, 张俊, 顾小凡, 高海波, 杨波, 杨晓东, 赵春光, 张铁钢, 尹立河, 王晓勇. 2023. 半干旱区流域尺度植被依赖地下水程度评价: 以鄂尔多斯高原海流兔河流域为例[J/OL]. 中国地质: 1–19. http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1556.026.html.

    [59]

    付梦娣, 唐文家, 刘伟玮, 何跃君, 朱彦鹏. 2021. 基于生态系统服务视角的生态风险评估及生态修复空间辨识—以长江源区为例[J]. 生态学报, 41(10): 3846−3855.

    [60]

    付正辉, 张扬, 姜霞, 郭云艳, 王书航. 2021. 人类活动对流域生态健康影响风险评估方法研究: 以呼伦湖流域为例[J]. 环境科学研究, 34(4): 785−791.

    [61]

    郭珊珊. 2022. 黄河流域生态系统健康与城镇化耦合协调研究[D]. 北京: 中国矿业大学: 1–227.

    [62]

    郭晓东, 王晓光, 刘强, 王长琪, 肖长来, 程旭学. 2021. 松花江—辽河流域地下水资源及其生态环境问题[J]. 中国地质, 48(4): 1062−1074.

    [63]

    韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001−1019. doi: 10.12029/gc20210402

    [64]

    黄舟. 2017. 基于GIS与RS的楠溪江流域生态健康评估[D]. 杭州: 浙江大学: 1–84.

    [65]

    李梅娜, 印萍, 段晓勇, 董超, 曹珂, 杨磊, 陈选博. 2022. 近20年来长江三角洲海岸带典型区土地利用变化与生态环境效应研究[J]. 中国地质, 49(4): 1114−1126. doi: 10.12029/gc20220406

    [66]

    李鑫鹏, 王朝平, 邹松兵, 岳玮, 罗珊, 王文澍, 秦艺豪, 桑骏, 钱继坤, 王春苗. 2022. 基于层次分析法的黄河上游水源涵养区生态系统恢复力评价—以甘南州、临夏州为例[J/OL]. 中国沙漠, (6): 1–9.

    [67]

    荔琢, 蒋卫国, 王文杰, 吕金霞, 陈征. 2020. 湿地退化风险评估方法及其应用—以天津市为例[J]. 环境工程技术学报, 10(1): 17−24. doi: 10.12153/j.issn.1674-991X.20190100

    [68]

    刘亚玲, 信忠保, 李宗善, 克依木买尔当. 2020. 近40年河北坝上地区杨树人工林径向生长对气候变化的响应差异[J]. 生态学报, 40(24): 9108−9119.

    [69]

    刘焱序, 彭建, 汪安, 谢盼, 韩忆楠. 2015. 生态系统健康研究进展[J]. 生态学报, 35(18): 5920−5930.

    [70]

    裴宏伟, 刘孟竹, 李雅丽, 张红娟, 肖雨霄, 杨国丽. 2022. 生态修复措施对干旱半干旱地区生态系统服务影响研究—以河北坝上地区为例[J]. 水土保持研究, 29(2): 192−199, 205. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202029

    [71]

    尚博譞, 肖春蕾, 赵丹, 朱振洲, 张高强. 2021. 中国湖泊分布特征及典型流域生态保护修复建议[J]. 中国地质调查, 8(6): 114−125.

    [72]

    申豪勇, 李佳, 王志恒, 谢浩, 梁永平, Xu Yongxin, 韩双宝, 任建会, 潘尧云, 赵春红, 赵一. 2022. 黄河支流汾河流域水资源开发利用现状及生态环境问题[J]. 中国地质, 49(4): 1127−1138. doi: 10.12029/gc20220407

    [73]

    宋博, 张发旺, 杨会峰, 刘春雷, 孟瑞芳, 南天. 2021. 基于生态优先的水资源承载力分源评价及应用—以河北保定平原为例[J]. 中国地质, 48(4): 1156−1165. doi: 10.12029/gc20210412

    [74]

    王彦芳, 裴宏伟. 2018. 1980—2015年河北坝上地区生态环境状况评价与对策研究[J]. 生态经济, 34(1): 186−190, 236.

    [75]

    王翠翠. 2015. 若尔盖高原沼泽湿地退化风险评估及其演变分析[D]. 北京: 中国地质大学(北京), 1–85.

    [76]

    王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法—以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611−1624. doi: 10.12029/gc20200601

    [77]

    吴楠, 陈红枫, 匡丕东, 冯朝阳, 蒋洪强, 吴文俊, 李岱青, 赵洋尘. 2020. 生态保护红线区干扰退化风险评价—以安徽省为例[J]. 生态学报, 40(16): 5571−5578.

    [78]

    吴秦豫, 张绍良, 杨永均, 侯湖平, 陈东兴. 2021. 基于恢复力的半干旱矿区生态系统退化风险空间评估[J]. 煤炭学报, 46(5): 1587−1598.

    [79]

    武爱彬, 赵艳霞. 2017. 坝上高原生态用地时空格局演变与生态系统服务价值分析[J]. 农业工程学报, 33(2): 283−290. doi: 10.11975/j.issn.1002-6819.2017.02.039

    [80]

    熊芳园, 陆颖, 刘晗, 程琳, 吴兴华, 陈宇顺, 王殿常. 2022. 长江源区水生态系统健康研究进展[J]. 中国环境监测, 38(1): 14−26.

    [81]

    杨丹, 王文杰, 吴秀芹, 蒋卫国, 张欢. 2021. 1985—2016年安固里淖湖泊湿地生态系统稳态转变及对气候变化的响应[J]. 环境科学研究, 34(12): 2954−2961.

    [82]

    杨庚, 曹银贵, 罗古拜, 况欣宇, 黄雨晗, 王舒菲. 2019. 生态系统恢复力评价研究进展[J]. 浙江农业科学, 60(3): 508−513.

    [83]

    杨涛, 阎晓娟, 赵寒森, 王鹏, 朱涛, 蔡浩杰, 左旭刚, 奚仁刚, 张雨莲, 王立社, 吴硕. 2023. 渭河流域土地利用类型转换及其对生态空间格局的影响[J]. 中国地质, 50(5): 1460–1470.

    [84]

    于昊辰, 卞正富, 陈浮, 牟守国. 2020. 矿山土地生态系统退化诊断及其调控研究[J]. 煤炭科学技术, 48(12): 214−223.

    [85]

    战金艳, 闫海明, 邓祥征, 张韬. 2012. 森林生态系统恢复力评价—以江西省莲花县为例[J]. 自然资源学报, 27(8): 1304−1315. doi: 10.11849/zrzyxb.2012.08.005

    [86]

    张文发, 苏涛, 雷波, 王蕾, 孙浩然, 许越越. 2021. 基于多源数据的内蒙古察汗淖尔流域作物生育期实际蒸散发分析[J]. 节水灌溉, (10): 1−6. doi: 10.3969/j.issn.1007-4929.2021.10.001

    [87]

    张颖睿. 2017. 小清河流域生态健康评估研究[D]. 济南: 山东大学: 1–78.

    [88]

    郑艺文, 李福杰, 刘晓煌, 常铭, 赵宏慧, 赖明, 张子凡. 2022. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应[J]. 中国地质, 49(5): 1361−1373. doi: 10.12029/gc20220501

    [89]

    卓昭君, 柯樱海, 洪剑明, 朱丽娟, 张玉虎. 2022. 2000年以来张家口坝上高原生态系统服务价值及其变化[J]. 湿地科学, 20(2): 162−175.

  • 加载中

(7)

(8)

计量
  • 文章访问数:  161
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-04-15
修回日期:  2022-11-30
刊出日期:  2024-05-25

目录