中国地质调查局 中国地质科学院主办
科学出版社出版

咸水层二氧化碳地质封存潜力分级及评价思路

刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943-951. doi: 10.12029/gc20221030001
引用本文: 刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943-951. doi: 10.12029/gc20221030001
DIAO Yujie, LIU Ting, WEI Ning, MA Xin, JIN Xiaolin, FU Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943-951. doi: 10.12029/gc20221030001
Citation: DIAO Yujie, LIU Ting, WEI Ning, MA Xin, JIN Xiaolin, FU Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943-951. doi: 10.12029/gc20221030001

咸水层二氧化碳地质封存潜力分级及评价思路

  • 基金项目:
    中国地质调查局地质调查项目(DD20221818)、国家重点研发计划项目(2019YFE0100100)、河北省重点研发计划项目(22374004D)联合资助
详细信息
    作者简介: 刁玉杰,男,1983年生,博士,正高级工程师,主要从事深部地下空间碳封存及地质利用等研究;E-mail: diaoyujie@mail.cgs.gov.cn
    通讯作者: 刘廷,男,1990年生,硕士,工程师,主要从事深部地下空间碳封存研究;E-mail: liuting@mail.cgs.gov.cn
  • 中图分类号: X701

Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers

  • Fund Project: Supported by the project of China Geological Survey (No.DD20221818), National Key Research and Development Program (No.2019YFE0100100), Key Research and Development Program of Hebei Province (No.22374004D)
More Information
    Author Bio: DIAO Yujie, male, born in 1983, Ph.D., professor of engineering, engaged in CO2 geological utilization and storage in deep underground space; E-mail: diaoyujie@mail.cgs.gov.cn .
    Corresponding author: LIU Ting, male, born in 1990, master, engineer, engaged in CO2 geological storage in deep underground space; E-mail: liuting@mail.cgs.gov.cn
  • 研究目的

    碳达峰碳中和目标背景下,咸水层CO2地质封存技术被认为是中国化石能源领域实现碳中和目标的兜底技术。随着不同地质尺度的封存潜力评价研究日趋广泛和深入,迫切需要建立统一的封存潜力分级体系和科学的评价方法。

    研究方法

    本文参考固体矿产、油气矿产等地质勘查等经验,以及国内外咸水层封存潜力级别及评价方法,划分了中国咸水层封存工作阶段及封存潜力级别,并提出了潜力评价思路、计算公式及重要系数取值参考。

    研究结果

    一是咸水层CO2地质封存可设定为普查、详查、勘探和注入四个工作阶段,封存潜力可划分为地质潜力、技术容量、技术经济容量和工程封存量四大类,其中普查阶段对应预测级别(D级),详查阶段对应控制级别(C级),勘探阶段对应探明级别(B级),注入阶段对应工程级别(A级)。二是咸水层封存潜力评价可总体按照储层筛选、潜力定级、潜力计算三个步骤依次开展,有效储层应综合储集条件、盖层封闭性、封存体稳定性条件及深部资源开发影响等因素予以筛选圈定。三是不同级别的封存潜力计算根据应用场景合理选择容积法或机理法公式,以及地质系数、驱替系数、成本系数等关键参数取值,探明阶段需要结合不同的注入方案开展封存潜力数值模拟预测评价。

    研究结论

    中国咸水层CO2地质封存潜力评价应形成精度由低到高的多尺度多级别动态机制,本文提出的潜力评价级别及方法建议,能够科学地对比不同区域、不同阶段的潜力评价数据,也能够为咸水层封存工程审批和深部地下空间管理提供参考,但未来更符合工程实际的潜力计算公式及关键参数赋值,仍需要通过大量的室内实验、数值模拟和工程实践不断创新。

  • 加载中
  • 表 1  咸水层封存各勘查阶段地质认识程度要求

    Table 1.  Requirements for geological understanding of exploration stages of saline aquifer CO2 storage

    下载: 导出CSV

    表 2  勘查注入阶段与潜力级别对应关系

    Table 2.  Corresponding relationships between exploration & injection stages and potential levels

    下载: 导出CSV

    表 3  Esweep取值推荐(Goodman et al., 2011

    Table 3.  Recommendation value of Esweep(Goodman et al., 2011)

    下载: 导出CSV

    表 4  Ecost取值推荐(%; Li et al., 2019

    Table 4.  Recommendation value of Ecost(%; Li et al., 2019)

    下载: 导出CSV
  • Bachu S. 2015. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 40: 188-202. doi: 10.1016/j.ijggc.2015.01.007

    Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, Buddensiek M L, Dillen M, Nickel M, Lima A L. 2010. Quantitative analysis of time-lapse seismic monitoring dataat the Sleipner CO2 storage operation[J]. Leading Edge, 29: 170-177. doi: 10.1190/1.3304820

    CSLF. 2007. Estimation of CO2 Storage Capacity in Geological Media - Phase Ⅱ Report[R].

    CSLF. 2019. Carbon Capture, Utilisation and Storage (CCUS) and Energy Intensive Industries (EIIs): From Energy/Emission Intensive Industries to Low Carbon Industries[R].

    Cui Zhendong, Liu Da'an, Zeng Rongshu, Niu Jingrui. 2011. Potential geological and environmental risks and its prevention measures for CO2 geological storage projects[J]. Geological Review, 57(5): 700-706 (in Chinese with English abstract).

    Dai Shixin, Dong Yanjiao, Wang Feng, Xing Zhenhan, Hu Pan, Yang Fu. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality[J]. China Geology, 5: 359-371.

    Diao Yujie, Zhang Senqi, Guo Jianqiang, Li Xufeng, Zhang Hui. 2011. Geological safety evaluation method for CO2 geological storage in deep saline aquifer[J]. Geology in China, 38(3): 786-792 (in Chinese with English abstract).

    Diao Yujie, Zhu Guowei, Jin Xiaolin, Zhang Chao, Li Xufeng. 2017. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 36 (6): 1088-1095 (in Chinese with English abstract).

    Diao Yujie, Li Xufeng, Jin Xiaolin, Guo Jianqiang, Zhang Senqi. 2019. Exploration, Evaluation and Engineering Control Technology of Carbon Dioxide Geological Storage in Deep Saltwater[M]. Beijing: Geological Publishing House (in Chinese).

    Diao Y, Zhu G, Li X, Bai B, Zhang B. 2020. Characterizing CO2 plume migration in multi-layer reservoirs with strong heterogeneity and low permeability using time-lapse 2D VSP technology and numerical simulation[J]. International Journal of Greenhouse Gas Control, 92: 102880. doi: 10.1016/j.ijggc.2019.102880

    Ding Zhongli. 2021. Research on China's "Carbon Neutralization Framework Roadmap"[R] (in Chinese).

    Furre A K, Eiken O, Alnes H, Vevatne J N, Kiær A F. 2017. 20 Years of monitoring CO2- injection at sleipner[J]. Energy Procedia, 114(1): 3916-3926.

    Ghosh R, Sen M K, Vedanti N. 2015. Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling[J]. International Journal of Greenhouse Gas Control, 32: 147-158. doi: 10.1016/j.ijggc.2014.11.002

    Goodman A, Hakala A, Bromhal G, Deel D, Rodosta T, Frailey S, Small M, Allen D, Romanov V, Fazio J, Huerta N, McIntyre D, Kutchko B, Guthrie G. 2011. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 5: 952-965. doi: 10.1016/j.ijggc.2011.03.010

    Guo Jianqiang, Wen Dongguang, Zhang Senqi, Jia Xiaofeng, Fan Jijiao. 2014. The Atlas of Carbon Dioxide Geological Storage Potential and Suitability Assessments of China Major Sedimentary Basins[M]. Beijing: Geological Publishing House (in Chinese).

    Huang Jing. 2021. National Assessment Report on Development of Carbon Capture Utilization and Storage Technology in China[M]. Beijing: Science Press (in Chinese).

    IEA GHG. 2009. Development of Storage Coefficients for CO2 Storage in Deep Saline Formations[R]. IEA Greeen House Gas R & D Programme (IEA GHG).

    Li C, Zhang K N, Wang Y S, Guo C B, Maggi F. 2016. Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China[J]. International Journal of Greenhouse Gas Control, 45: 216-232. doi: 10.1016/j.ijggc.2015.11.011

    Li Qi, Cai Bofeng, Chen Fan, Liu Guizhen, Liu Lancui. 2019. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 37(2): 13-21 (in Chinese with English abstract).

    Li X C, Wei N, Jiao Z S, Liu S N, Dahowski R. 2019. Cost curve of large-scale deployment of CO2- enhanced water recovery technology in modern coal chemical industries in China[J]. International Journal of Greenhouse Gas Control, 81: 66-82. doi: 10.1016/j.ijggc.2018.12.012

    Li Xiaochun, Liu Yanfeng, Bai Bing, Fang Zhiming. 2006. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968 (in Chinese with English abstract).

    Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347-358 (in Chinese with English abstract).

    Ma Xin, Li Xufeng, Wen Dongguang, Luo Xingwang, Diao Yujie, Yang Guodong, Yin Shuguo, Cao Wei. 2021. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the Eastern Junggar Area of Xinjiang[J]. Hydrogeology & Engineering Geology, 48(6): 196-205 (in Chinese with English abstract).

    Metz Bert, Davidson Ogunlade, De Coninck H C, Loos Manuela, Meyer Leo. 2005. IPCC Special Report on Carbon Dioxide Capture and Storage[M]. Cambridge: Cambridge University Press.

    Raknes E B, Arntsen B, Weibull W. 2015. Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area[J]. Geophysical Journal International, 202: 1877-1894. doi: 10.1093/gji/ggv258

    USDOE. 2006. Carbon Sequestration Atlas of the United States and Canada: Appendix A - Methodology for development of carbon sequestration capacity estimates[R].

    Wang Huan, Zheng Yuzhou, Wang Wei. 2022. The major work and implication of Geoscience Australia on geological carbon sequestration[J]. Geology in China, 49(3): 1005-1008 (in Chinese with English abstract).

    Wang Yao, Guo Chihui, Zhuang Shurong, Chen Xijie, Jia Liqiong, Chen Zeyu, Xia Zilong, Wu Zhen. 2021. Major contribution to carbon neutrality by China's geosciences and geological technologies[J]. China Geology, 4: 329-352.

    Wei N, Li X, Wang Y, Dahowski R T, Davidson C L, Bromhal G S. 2013. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control, 12: 231-246. doi: 10.1016/j.ijggc.2012.10.012

    Wei N, Jiao Z S, Ellett K, Ku A Y, Liu S N, Middleton R, Li X C. 2021. Decarbonizing the coal-fired power sector in China via carbon capture, geological utilization, and storage technology[J]. Environmental Science & Technology, 55: 13164-13173.

    Wei N, Li X C, Jiao Z S, Stauffer P H, Liu S N, Ellett K, Middleton R S. 2022. A hierarchical framework for CO2 storage capacity in deep saline aquifer formations[J]. Frontiers in Earth Science, 9: 1-121.

    Xie Heping, Xie Lingzhi, Wang Yufei, Zhu Jiahua, Liang Bin, Ju Yang. 2012. CCU: A more feasible and economic strategy than CCS for reducing CO2 emissions[J]. Journal of Sichuan University (Engineering Science Edition), 44(4): 1-5 (in Chinese with English abstract).

    Xie Jian, Zhang Keni, Wang Yongsheng, Tan Liqing, Guo Chaobin. 2016. Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin, China[J]. Rock and Soil Mechanics, 37(1): 166-174 (in Chinese with English abstract).

    Yang Hong, Zhao Xisen, Kang Yulong, Chen Longlong, Huang Chunxia, Wang Hong. 2019. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research, 15(1): 95-102 (in Chinese with English abstract).

    Zhang Bing, Liang Kaiqian, Wang Weibo, Chen Longlong, Wang Hong. 2019. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 6(3): 15-20 (in Chinese with English abstract).

    Zhang Hongtao, Wen Dongguang, Li Yilian, Zhang Jiaqiang, Lu Jincai. 2005. Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China, 24(12): 1107-1110 (in Chinese with English abstract).

    Zhang K N, Xie J, Li C, Hu L T, Wu X Z, Wang Y S. 2016. A full chain CCS demonstration project in northeast Ordos Basin, China: Operational experience and challenges[J]. International Journal of Greenhouse Gas Control, 50: 218-230. doi: 10.1016/j.ijggc.2016.04.025

    崔振东, 刘大安, 曾荣树, 牛晶蕊. 2011. CO2地质封存工程的潜在地质环境灾害风险及防范措施[J]. 地质论评, 57(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201105012.htm

    刁玉杰, 张森琦, 郭建强, 李旭峰, 张徽. 2011. 深部咸水层CO2地质储存地质安全性评价方法研究[J]. 中国地质, 38(3): 786-792. http://geochina.cgs.gov.cn/geochina/article/abstract/20110327?st=search

    刁玉杰, 朱国维, 金晓琳, 张超, 李旭峰. 2017. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 36(6): 1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201706021.htm

    刁玉杰, 李旭峰, 金晓琳, 郭建强, 张森琦. 2019. 深部咸水层二氧化碳地质储存勘查评价与工程控制技术[M]. 北京: 地质出版社.

    丁仲礼. 2021. 中国"碳中和框架路线图"研究[R].

    郭建强, 文冬光, 张森琦, 贾小丰, 范基姣. 2014. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京: 地质出版社.

    黄晶. 2021. 中国碳捕集利用与封存技术评估报告[M]. 北京: 科学出版社.

    李琦, 蔡博峰, 陈帆, 刘桂臻, 刘兰翠. 2019. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程, 37(2): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201902035.htm

    李小春, 刘延锋, 白冰, 方志明. 2006. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 25(5): 963-968. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200605016.htm

    马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102002.htm

    马鑫, 李旭峰, 文冬光, 罗兴旺, 刁玉杰, 杨国栋, 尹书郭, 曹伟. 2021. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质, 48(6): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106022.htm

    王欢, 郑宇舟, 王为. 2022. 澳大利亚地球科学局在地质碳封存方面开展的主要工作与启示[J]. 中国地质, 49(3): 1005-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203027.htm

    谢和平, 谢凌志, 王昱飞, 朱家骅, 梁斌, 鞠杨. 2012. 全球二氧化碳减排不应是CCS, 应是CCU[J]. 四川大学学报: 工程科学版, 44(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201204002.htm

    谢健, 张可霓, 王永胜, 覃莉清, 郭朝斌. 2016. 鄂尔多斯深部咸水层CO2地质封存效果评价[J]. 岩土力学, 37(1): 166-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601021.htm

    杨红, 赵习森, 康宇龙, 陈龙龙, 黄春霞, 王宏. 2019. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 15(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201901010.htm

    张冰, 梁凯强, 王维波, 陈龙龙, 王宏. 2019. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 6(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201903004.htm

    张洪涛, 文冬光, 李义连, 张家强, 卢进才. 2005. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 24(12): 1107-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200512004.htm

  • 加载中

(4)

计量
  • 文章访问数:  3700
  • PDF下载数:  392
  • 施引文献:  0
出版历程
收稿日期:  2022-10-30
修回日期:  2022-11-25
刊出日期:  2023-06-25

目录