中国地质调查局 中国地质科学院主办
科学出版社出版

工业废水去除重金属技术的研究现状与进展

曹文庚, 王妍妍, 张栋, 孙晓悦, 文爱欣, 那静. 2023. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 50(3): 756-776. doi: 10.12029/gc20221128002
引用本文: 曹文庚, 王妍妍, 张栋, 孙晓悦, 文爱欣, 那静. 2023. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 50(3): 756-776. doi: 10.12029/gc20221128002
CAO Wengeng, WANG Yanyan, ZHANG Dong, SUN Xiaoyue, WEN Aixin, NA Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756-776. doi: 10.12029/gc20221128002
Citation: CAO Wengeng, WANG Yanyan, ZHANG Dong, SUN Xiaoyue, WEN Aixin, NA Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756-776. doi: 10.12029/gc20221128002

工业废水去除重金属技术的研究现状与进展

  • 基金项目:
    国家重点研发计划项目课题(2022YFC3703701), 国家自然科学基金项目(41972262)及河北自然科学基金优秀青年科学基金项目(D2020504032)联合资助
详细信息
    作者简介: 曹文庚,男,1985年生,博士,副研究员,主要从事水文地质、水文地球化学方面研究;E-mail:caowengeng@mail.cgs.gov.cn
    通讯作者: 王妍妍, 女, 1987年生, 硕士, 助理研究员, 从事水污染防治方面研究; E-mail: wangyanyan@mail.cgs.gov.cn
  • 中图分类号: X703

Research status and new development on heavy metals removal from industrial wastewater

  • Fund Project: Supported by National Key Research and Development Plan Project (2022YFC3703701), National Natural Science Foundation of China (No.41972262) and Excellent Youth Science Foundation of Hebei Natural Science Foundation (No. D2020504032)
More Information
    Author Bio: CAO Wengeng, male, born in 1985, Ph.D., associate professor, mainly engaged in hydrogeology and hydrogeochemistry; E-mail: caowengeng@mail.cgs.gov.cn .
    Corresponding author: WANG Yanyan, female, born in 1987, master, assistant researcher, mainly engaged in the research of water pollution control; E-mail: wangyanyan@mail.cgs.gov.cn
  • 研究目的

    随着工业的快速发展,重金属(如砷、铜、铬、镉、镍、锌、铅、汞和锰)废水的排放量逐渐增加。由于其不可生物降解且半衰期较长,废水中的重金属会导致地下水、地表水、土壤和农作物受到严重污染,危害人体和动植物的健康。因此需要从工业废水中去除这些有毒重金属。

    研究方法

    基于现阶段的污染现状,综合考虑去除效率、处理成本、污泥量、可回收性等因素,分析工业废水中重金属的治理现状与进展。

    研究结果

    文章全面地介绍了有效去除工业废水中重金属的主要技术,总结了各技术的内在机理、影响因素(pH、温度和重金属浓度等)及各自优缺点,并对重金属去除技术的发展趋势进行了展望,以期为其综合治理提供有意义的参考。

    结论

    各种去除技术均有广泛的应用空间,但同时也存在着诸多缺陷,常规的物理化学方法存在着污泥量高、去除效率低和能耗高等问题,而生物方法对pH值和温度依赖性强、能量和维护需求高。组合工艺是提高重金属分离效率的一种可行方法。研究和发展新型天然吸附剂、膜技术和生物技术,加强多种技术的综合应用,是治理重金属污染的有效途径。

  • 加载中
  • 图 1  化学沉淀模型(据Peng and Guo, 2020

    Figure 1. 

    图 2  不同吸附类型示意图(据Chai et al., 2021

    Figure 2. 

    图 3  离子浮选的整体过程示意图(据Chang et al., 2019

    Figure 3. 

    图 4  层状双氢氧化物中MoS42-与HAsO42-的主导相及可能的结合方式(据Ma et al., 2017

    Figure 4. 

    图 5  混凝/絮凝过程(据Teh et al., 2016

    Figure 5. 

    图 6  电化学方法示意图(据Tran et al., 2017

    Figure 6. 

    图 7  基于甲壳胺的纳米吸附剂去除重金属机理图(据Haripriyan et al., 2022

    Figure 7. 

    图 8  水凝胶去除Pb2+原理图(据Lei et al., 2022

    Figure 8. 

    图 9  细菌生物量对重金属的生物吸附机理研究(据Priyadarshanee and Das, 2021

    Figure 9. 

    图 10  膜分离原理示意图(据Zhu et al., 2019

    Figure 10. 

    图 11  三室电渗析装置示意图, 其中CEM是阳离子交换膜,AEM是阴离子交换膜(据Arana et al., 2022

    Figure 11. 

    图 12  非均相光催化剂上的光催化过程,其中Eg是带隙能,h+是空穴,VB是价带,CB是导带(据Ren et al., 2021

    Figure 12. 

    表 1  不同重金属的来源和饮用水标准限值

    Table 1.  Sources of different heavy metals and standard limits of drinking water

    下载: 导出CSV

    表 2  治理技术方法的对比分析

    Table 2.  Comparative analysis of treatment methods

    下载: 导出CSV
  • Acero J L, Javier B F, Real F J, Teva F. 2016. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes[J]. Chemical Engineering Journal, 289: 48-58. doi: 10.1016/j.cej.2015.12.082

    Aghababai B A, Akbar E. 2020. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review[J]. Environmental Technology & Innovation, 17: 100503.

    Ahmed S F, Mofijur M, Nuzhat S, Chowdhury A T, Rafa N, Uddin M A, Inayat A, Mahlia TM I, Ong H C, Chia W Y, Show P L. 2021. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater[J]. Journal of Hazardous Materials, 416: 125912. doi: 10.1016/j.jhazmat.2021.125912

    Ahmed S F, Mofijur M, Ahmed B, Mehnaz T, Mehejabin F, Maliat D, Hoang A T, Shafiullah G M. 2022. Nanomaterials as a sustainable choice for treating wastewater[J]. Environmental Research, 214(1): 113807.

    Al-Enezi G, Hamoda M F, Fawzi N. 2004. Ion exchange extraction of heavy metals from wastewater sludges[J]. Journal of Environmental Science and Health, 39(2): 455-464. doi: 10.1081/ESE-120027536

    Ali I, Gupta V K. 2006. Advances in water treatment by adsorption technology[J]. Nature Protocols, 1(6): 2661-2667. doi: 10.1038/nprot.2006.370

    Almubaddal F, Alrumaihi K, Ajbar A. 2009. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant[J]. Journal of Hazardous Materials, 161(1): 431-438. doi: 10.1016/j.jhazmat.2008.03.121

    Alyuz B, Veli S. 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins[J]. Journal of Hazardous Materials, 167(1/3): 482-488.

    An C J, Huang G, Yao Y, Zhao S. 2017. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review[J]. Science of the Total Environmental, 579: 537-556. doi: 10.1016/j.scitotenv.2016.11.062

    Arana J J, Christensen F M S, Wang Y, Wei Z. 2022. Electrodialysis for metal removal and recovery: A review[J]. Chemical Engineering Journal, 435(2): 134857.

    Asghar H M A, Hussain S N, Brown N W, Roberts E P L. 2019. Comparative adsorption-regeneration performance for newly developed carbonaceous adsorbent[J]. Journal of Industrial and Engineering Chemistry, 69: 90-98. doi: 10.1016/j.jiec.2018.09.012

    Aslam M M A, Kuo H W, Den W, Usman M, Sultan M, Ashraf H. 2021. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application[J]. Sustainability, 13(10): 5717. doi: 10.3390/su13105717

    Atta A M, Ismail H S, Elsaaed A M. 2012. Application of anionic acrylamide-based hydrogels in the removal of heavy metals from waste water[J]. Journal of Applied Polymer Science, 123(4): 2500-2510. doi: 10.1002/app.34798

    Ayansina S A. 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 14(1): 94. doi: 10.3390/ijerph14010094

    Bai Y, Bartkiewicz B. 2009. Removal of cadmium from wastewater using ion[J]. Polish Journal of Environmental Studies, 18(6): 1191-1195.

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Minhshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636 (in Chinese with English abstract).

    Barakat M A. 2011. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 4(4): 361-377. doi: 10.1016/j.arabjc.2010.07.019

    Bellouk H, Mrabet I E, Tanji K, Nawdali M, Benzina M, Eloussaief M, Zaitan H. 2022. Performance of coagulation-flocculation followed by ultra-violet/ultrasound activated persulfate/hydrogen peroxide for landfill leachate treatment[J]. Scientific African, 17: e01312. doi: 10.1016/j.sciaf.2022.e01312

    Bolisetty S, Peydayesh M, Mezzenga R. 2019. Sustainable technologies for water purification from heavy metals: Review and analysis[J]. Chemical Society Reviews, 48(2): 463-487. doi: 10.1039/C8CS00493E

    Brbootl M M, AbiD B A, Al-ShuwaikI N M. 2011. Removal of heavy metals using chemicals precipitation[J]. Journal of Engineering Technology, 29(3): 595-612.

    Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans[J]. Heliyon, 6(9): e04691. doi: 10.1016/j.heliyon.2020.e04691

    Campione A, Gurreri L, Ciofalo M, Micale G, Tamburini A, Cipollina A. 2018. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 434: 121-160. doi: 10.1016/j.desal.2017.12.044

    Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review[J]. Journal of Environmental Chemical Engineering, 5(3): 2782-2799. doi: 10.1016/j.jece.2017.05.029

    Çelebi H, Gok G, Gok O. 2020. Adsorption capability of brewed tea waste in waters containing toxic lead(Ⅱ), cadmium(Ⅱ), nickel(Ⅱ), and zinc(Ⅱ) heavy metal ions[J]. Scientific Report, 10(1): 17570. doi: 10.1038/s41598-020-74553-4

    Chai J B, Au P I, Mubarak N M, Khalid M, Ng W P, Jagadish P, Walvekar R, Abdullah E C. 2020. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay-based adsorbent[J]. Environmental Science and Pollution Research, 27(12): 13949-13962. doi: 10.1007/s11356-020-07755-y

    Chai W S, Cheun J Y, Kumar P S, Mubashir M, Majeed Z, Banat F, Ho S H, Show P L. 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 296: 126589. doi: 10.1016/j.jclepro.2021.126589

    Chang L P, Cao Y J, Fan G X, Li C, Peng W J. 2019. A review of the applications of ion floatation: wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 9: 20226. doi: 10.1039/C9RA02905B

    Chaudhary A J, Goswami N C, Grimes S M. 2003. Electrolytic removal of hexavalent chromium from aqueous solutions[J]. Journal of Chemical Technology & Biotechnology, 78(8): 877-883.

    Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H. 2015. Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation[J]. Chemical Engineering and Processing: Process Intensification, 96: 94-99. doi: 10.1016/j.cep.2015.08.007

    Chen Q Y, Yao Y, Li X Y, Lu J, Zhou J, Huang Z L. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 26: 289-300. doi: 10.1016/j.jwpe.2018.11.003

    Chen Zhenyu, Zhao Yuanyi, Chen Danli, Huang Haitao, Zhao Yu, Wu Yujing. 2023. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 6: 15-26.

    Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 56(2): 91-106. doi: 10.1016/j.chemosphere.2004.03.006

    Devda V, Chaudhary K, Varjani S, Pathak B, Patel A K, Singhania R R, Taherzadeh M J, Ngo H H, Wong J W C, Guo W, Chaturvedi P. 2021. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives[J]. Bioengineered, 12(1): 4697-4718. doi: 10.1080/21655979.2021.1946631

    Dizge N, Keskinler B, Barlas H. 2009. Sorption of Ni(Ⅱ) ions from aqueous solution by Lewatit cation-exchange resin[J]. Journal of Hazardous Materials, 167(1/3): 915-926.

    Farah I A, Ahmed A M. 2011. Removal of copper ion from wastewater by flotation[J]. Journal of Engineering, 17(6): 1483-1491.

    Fatehizadeh A, Rahimi S, Ahmadian M, Barati R, Yousefi N, Moussavi S P, Rahimi K, Reshadat S, Ghasemi S R, Gilan N R. 2014. Photocatalytic removal of cadmium(Ⅱ) and lead(Ⅱ) from simulated wastewater at continuous and batch system[J]. International Journal of Environmental Health Engineering, 3(1): 31. doi: 10.4103/2277-9183.139756

    Foo K Y, Hameed B H. 2009. A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects[J]. Journal of Hazardous Materials, 170(2/3): 552-559.

    Gad Y H. 2008. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment[J]. Radiation Physics and Chemistry, 77(9): 1101-1107. doi: 10.1016/j.radphyschem.2008.05.002

    Gao J, Qiu Y R, Hou B, Zhang Q, Zhang X D. 2018. Treatment of wastewater containing nickel by complexation- ultrafiltration using sodium polyacrylate and the stability of PAA-Ni complex in the shear field[J]. Chemical Engineering Journal, 334: 1878-1885. doi: 10.1016/j.cej.2017.11.087

    Gao Liya. 2022. Research progress of heavy metal water pollution treatment methods[J]. Chemical Engineer, 36(4): 56-60 (in Chinese with English abstract).

    Golob V, Vinder A, Simonic M. 2005. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents[J]. Dyes and Pigments, 67(2): 93-97. doi: 10.1016/j.dyepig.2004.11.003

    Gong Miaomiao, Wang Guangrong. 2018. Biological adsorbent and its research progress[J]. Journal of Chifeng University (Natural Science Edition), 34(6): 36-39 (in Chinese with English abstract).

    Hamdaoui O. 2009. Removal of copper(Ⅱ) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling[J]. Journal of Hazardous Materials, 161(2/3): 737-746.

    Hamdy A, Mostafa M K, Nasr M. 2018. Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation[J]. Water Science Technology, 78(1/2): 367-378.

    Haripriyan U, Gopinath K P, Arun J. 2022. Chitosan based nano adsorbents and its types for heavy metal removal: A mini review[J]. Materials Letters, 312: 131670. doi: 10.1016/j.matlet.2022.131670

    Hazrat A, Ezzat K, Ikram I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019: 1-14.

    He J, Strezov V, Kumar R, Weldekidan H, Jahan S, Dastjerdi B H, Zhou X T, Kan T. 2019. Pyrolysis of heavy metal contaminated avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products[J]. Journal of Cleaner Production, 234: 1235-1245. doi: 10.1016/j.jclepro.2019.06.285

    He S, Yang Z Q, Cui X D, Zhang X Y, Niu X J. 2020. Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (Ⅵ)[J]. Chemosphere, 260: 127548. doi: 10.1016/j.chemosphere.2020.127548

    Hoseinian F S, Rezai B, Kowsari E, Safari M. 2019. A hybrid neural network/genetic algorithm to predict Zn(Ⅱ) removal by ion flotation[J]. Separation Science and Technology, 55(6): 1197-1206.

    Huang G X, Sun J C, Zhang Y, Chen Z Y, Liu F. 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of The Total Environment, 463-464: 209-221. doi: 10.1016/j.scitotenv.2013.05.078

    Ihsanullah A A, Al-Amer A M, Laoui T, Al-Marri M J, Nasser M S, Khraisheh M, Atieh M A. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications[J]. Separation and Purification Technology, 157: 141-161. doi: 10.1016/j.seppur.2015.11.039

    Jafarigol E, Afshar G R, Hajipour A, Pahlevani H, Baghban S M. 2021. Tough dual-network GAMAAX hydrogel for the efficient removal of cadmium and nickle ions in wastewater treatment applications[J]. Journal of Industrial and Engineering Chemistry, 94: 352-360. doi: 10.1016/j.jiec.2020.11.006

    Jéssica M N, Jorge D O, Andrea C L R, Seima G F L. 2019. Biosorption Cu(Ⅱ) by the yeast Saccharomyces cerevisiae[J]. Biotechnology Reports, 21: e00315. doi: 10.1016/j.btre.2019.e00315

    Ji S M, Tiwari A P, Kim H Y. 2020. Graphene oxide coated zinc oxide core-shell nanofibers for enhanced photocatalytic performance and durability[J]. Coatings, 10(12): 1183. doi: 10.3390/coatings10121183

    Kabdasli I, Arslan T, Olmez-Hanci T, Arslan-Alaton I, Tunay O. 2009. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J]. Journal of Hazardous Materials, 165(1/3): 838-845.

    Kabra K, Chaudhary R, Sawhney R L. 2008. Solar photocatalytic removal of metal ions from industrial wastewater[J]. Environmental Progress, 27(4): 487-495. doi: 10.1002/ep.10304

    Kadirvelu K, Thamaraiselvi K, Namasivayam C. 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource Technology, 76: 63-65. doi: 10.1016/S0960-8524(00)00072-9

    Kang S Y, Lee J U, Moon S H, Kim K W. 2004. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater[J]. Chemosphere, 56(2): 141-147. doi: 10.1016/j.chemosphere.2004.02.004

    Khattab I A, Shaffei M F, Shaaban N A, Hussein H S, Abd E S S. 2013. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part Ⅰ[J]. Egyptian Journal of Petroleum, 22(1): 199-203. doi: 10.1016/j.ejpe.2012.09.011

    Kurniawan T A, Chan G Y S, Lo W H, Babel S. 2006. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 118(1/2): 83-98.

    Kwak H W, Lee K H. 2018. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution[J]. Chemosphere, 207: 507-516. doi: 10.1016/j.chemosphere.2018.04.158

    Ladeira A C Q, Morais C A. 2005. Uranium recovery from industrial effluent by ion exchange-column experiments[J]. Minerals Engineering, 18(13/14): 1337-1340.

    Lei C Y, Bian Y, Zhi F K, Hou X H, Lv C N, Hu Q. 2022. Enhanced adsorption capacity of cellulose hydrogel based on corn stalk for pollutants removal and mechanism exploration[J]. Journal of Cleaner Production, 375: 134130. doi: 10.1016/j.jclepro.2022.134130

    Li Bowen, Yang Guijin. 2021. Research progress of heavy metal wastewater treatment technology[J]. Comprehensive Utilization of Resources in China, 39(11): 87-92 (in Chinese with English abstract).

    Li Xinjuan, Wang Wensheng, Tang Liang. 2020. Research on treatment methods of heavy metal pollution in water[J]. Guangzhou Chemical Industry, 48(5): 27-29 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-9677.2020.05.015

    Liu H, Zhang F, Peng Z Y. 2019. Adsorption mechanism of Cr(Ⅵ) onto GO/PAMAMs composites[J]. Scientific Reports, 9(1): 3663. doi: 10.1038/s41598-019-40344-9

    Liu Ruiping, Xu Youning, Zhang Jianghua, Wang Wenke, Rafaey M Elwardany. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3: 402-410.

    Ma L J, Islam S M, Liu H Y, Zhao J, Sun G B, Li H F, Ma S, Kanatzidis M G. 2017. Selective and efficient removal of toxic oxoanions of As(Ⅲ), As(Ⅴ), and Cr(Ⅵ)by layered double hydroxide intercalated with MoS42-[J]. Chemistry of Materials, 29: 3274-3284. doi: 10.1021/acs.chemmater.7b00618

    Ma X F, Liu X, Anderson D P, Chang P R. 2015. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution[J]. Food Chemistry, 181: 133-139. doi: 10.1016/j.foodchem.2015.02.089

    Mani D, Kumar C, Patel N K. 2015. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils[J]. International Journal of Phytoremediation, 17(1/6): 256-263.

    Mei Guangquan. 2004. Harm and treatment of heavy metal wastewater[J]. Journal of Trace Elements and Health Research, 21(4): 54-56 (in Chinese with English abstract).

    Mohd N N, Asyraf M R M, Khalina A, Abdullah N, Sabaruddin F A, Kamarudin S H, Ahmad S, Mahat A M, Lee C L, Aisyah H A, Norrrahim M N F, Ilyas R A, Harussani M M, Ishak M R, Sapuan S M. 2021. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview[J]. Polymers (Basel), 13(7): 1047. doi: 10.3390/polym13071047

    Molinari R, Argurio P. 2017. Arsenic removal from water by coupling photocatalysis and complexation- ultrafiltration processes: a preliminary study[J]. Water Research, 109: 327-336. doi: 10.1016/j.watres.2016.11.054

    Muhammad E M H N, Obidul H A K, Binti Y R. 2016. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review[J]. RSC Advances, 6(18): 14778-14791. doi: 10.1039/C5RA24358K

    Nabid M R, Sedghi R, Behbahani M, Arvan B, Heravi M M, Oskooie H A. 2014. Application of poly 1, 8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples[J]. Journal of Molecular Recognition, 27(7): 421-428. doi: 10.1002/jmr.2361

    Nanseu-Njiki C P, Tchamango S R, Ngom P C, Darchen A, Ngameni E. 2009. Mercury(Ⅱ) removal from water by electrocoagulation using aluminium and iron electrodes[J]. Journal of Hazardous Materials, 168(2/3): 1430-1436.

    Nazaripour M, Reshadi M A M, Mirbagheri S A, Nazaripour M, Bazargan A. 2021. Research trends of heavy metal removal from aqueous environments[J]. Journal of Environmental Management, 287: 112322. doi: 10.1016/j.jenvman.2021.112322

    Nemati M, Hosseini S M, Shabanian M. 2017. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal[J]. Journal of Hazardous Materials, 337: 90-104. doi: 10.1016/j.jhazmat.2017.04.074

    Niu Yile, Liu Yunguo, Lu Pei, Zhou Ming. 2005. Research progress on the status quo of ecological destruction and control technology of mines in China[J]. Environmental Science and Management, (5): 59-60, 66 (in Chinese with English abstract).

    Pandey L M. 2021. Surface engineering of nano-sorbents for the removal of heavy metals: Interfacial aspects[J]. Journal of Environmental Chemical Engineering, 9(1): 104586. doi: 10.1016/j.jece.2020.104586

    Peng H, Guo J. 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review[J]. Environmental Chemistry Letters, 18: 2055-2068. doi: 10.1007/s10311-020-01058-x

    Perumal S, Atchudan R, Yoon D H, Joo J, Cheong I W. 2019. Spherical chitosan gelatin hydrogel particles for removalof multiple heavy metal[J]. Industrial & Engineering Chemistry Research, 58(23): 9900-9907.

    Plattes M, Bertrand A, Schmitt B, Sinner J, Verstraeten F, Welfring J. 2007. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes[J]. Journal of Hazardous Materials, 148(3): 613-615. doi: 10.1016/j.jhazmat.2007.03.016

    Priyadarshanee M, Das S. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 9: 104686. doi: 10.1016/j.jece.2020.104686

    Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. 2012. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: behavior and XPS study[J]. Journal of Colloid and Interface Science, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070

    Rai P K, Lee S S, Zhang M, Tsang Y F, Kim K H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 125: 365-385. doi: 10.1016/j.envint.2019.01.067

    Rajkumar D, Palanivelu K. 2004. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials, 113(1/3): 123-129.

    Rangabhashiyam S, Nakkeeran E, Anu N, Selvaraju N. 2014. Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions[J]. Research on Chemical Intermediates, 41(11): 8405-8424.

    Rehman K, Fatima F, Waheed I, Akash M S H. 2018. Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal or Cellular Biochemistry, 119(1): 157-184. doi: 10.1002/jcb.26234

    Reig M, Vecino X, Valderrama C, Gibert O, Cortina J L. 2018. Application of selectrodialysis for the removal of As from metallurgical process waters: recovery of Cu and Zn[J]. Separation and Purification Technology, 195: 404-412. doi: 10.1016/j.seppur.2017.12.040

    Ren G M, Han H T, Wang Y X, Liu S T, Zhao J Y, Meng X C, Li Z Z. 2021. Recent advances of photocatalytic application in water treatment: a review[J]. Nanomaterials (Basel), 11(7): 1804. doi: 10.3390/nano11071804

    Rengaraj S, Joo C K, Kim Y, Yi J. 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H[J]. Journal of Hazardous Materials, 102(2/3): 257-275.

    Sanmuga P E, Senthamil S P. 2017. Water hyacinth (Eichhornia crassipes) - an efficient and economic adsorbent for textile effluent treatment - a review[J]. Arabian Journal of Chemistry, 10: 3548-3558. doi: 10.1016/j.arabjc.2014.03.002

    Santhosh C, Velmurugan V, Jacob G, Jeong S K, Grace A N, Bhatnagar A. 2016. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal, 306: 1116-1137. doi: 10.1016/j.cej.2016.08.053

    Santhy K, Selvapathy P. 2010. Removal of heavy metals from wastewater by adsorption on coir pith activated carbon[J]. Separation Science and Technology, 39(14): 3331-3351.

    Sepehri A, Sarrafzadeh M H, Avateffazeli M. 2020. Interaction between chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio[J]. Journal of Cleaner Production, 247: 119164. doi: 10.1016/j.jclepro.2019.119164

    Shafaqat A, Zohaib A, Muhammad R, Ihsan Z, İlkay Y, Aydın ü, Mohamed A D, May B J, Mirza H, Dimitris K. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review[J]. Sustainability, 12(5): 1927. doi: 10.3390/su12051927

    Shen X F, Song L L Luo L, Zhang Y, Zhu B, Liu J S, Chen Z G, Zhang L S. 2018. Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater[J]. Journal of Colloid and Interface Science, 532: 798-807. doi: 10.1016/j.jcis.2018.08.028

    Sher F, Malik A, Liu H. 2013. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 1(4): 684-689. doi: 10.1016/j.jece.2013.07.003

    Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari A P, Kim H Y, Joshi M K. 2021. Technological trends in heavy metals removal from industrial wastewater: a review[J]. Journal of Environmental Chemical Engineering, 9(4): 105688. doi: 10.1016/j.jece.2021.105688

    Singh N B, Nagpal G, Agrawal S, Rachna. 2018. Water purification by using adsorbents: A review[J]. Environmental Technology & Innovation, 11: 187-240. doi: 10.3969/j.issn.1004-7204.2018.z1.040

    Somu P, Paul S. 2018. Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: A rational strategy for wastewater treatment[J]. Journal of Chemical Technology & Biotechnology, 93(10): 2962-2976.

    State Administration for Market Regulation and Standardization Administration. 2022. Standards for Drinking Water Quality (GB 5749-2022)[S] (in Chinese).

    Su S, Wu W H, Gao J M, Lu J X, Fan C H. 2012. Nanomaterials-based sensors for applications in environmental monitoring[J]. Journal of Materials Chemistry, 22(35): 18101. doi: 10.1039/c2jm33284a

    Sultana N, Hossain S M Z, Mohammed M E, Irfan M F, Haq B, Faruque M O, Razzak S A, Hossain M M. 2020. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm[J]. Scientific Reports, 10(1): 15068. doi: 10.1038/s41598-020-72236-8

    Sun Ken, Hua Yufeng, Wang Zhenyue. 2022. Research on heavy metal pollution and health risk assessment of industrial wastewater[J]. Journal of North China University of Water Resources and Hydropower (Natural Science Edition), 43(3): 99-108 (in Chinese with English abstract).

    Teh C Y, Budiman P M, Shak K P Y, Wu T Y. 2016. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. Industrial & Engineering Chemistry Research, 55(16): 4363-4389.

    Thomas B, Alexander L K. 2020. Removal of Pb2+ and Cd2+ toxic heavy metal ions driven by Fermi level modification in NiFe2O4-Pd nano hybrids[J]. Journal of Solid State Chemistry, 288: 121417. doi: 10.1016/j.jssc.2020.121417

    Tran T K, Chiu K F, Lin C Y, Leu H J. 2017. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process[J]. International Journal of Hydrogen Energy, 42(45): 27741-27748. doi: 10.1016/j.ijhydene.2017.05.156

    Wahaab R A, Moawad A, Taleb E, Ibrahim H S, El-Nazer H. 2010. Combined photocatalytic oxidation and chemical coagulation for cyanide and heavy metals removal from electroplating wastewater[J]. World Applied Sciences Journal, 8(4): 462-469.

    Wahyusi K N, Utami L I, Aprilio S, Fergina N. 2020. Reduction of Pb and Cr levels in paper industrial liquid waste with ion exchange method[J]. Journal of Physics: Conference Series, 1569(4): 042054. doi: 10.1088/1742-6596/1569/4/042054

    Wang J L, Tang X B, Liang H, Bai L M, Xie B H, Xing J J, Wang T Y, Zhao J, Li G B. 2020. Efficient recovery of divalent metals from nanofiltration concentrate based on a hybrid process coupling single-cation electrolysis (SCE) with ultrafiltration (UF)[J]. Journal of Membrane Science, 602: 117953. doi: 10.1016/j.memsci.2020.117953

    Wang L X, Li J C, Jiang Q, Zhao L J. 2012. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water[J]. Dalton Trans, 41(15): 4544-4551. doi: 10.1039/c2dt11827k

    Wang Y, Meng D P, Fei L, Dong Q, Wang Z L. 2019. A novel phytoextraction strategy based on harvesting the dead leaves: cadmium distribution and chelator regulations among leaves of tall fescue[J]. Science of the Total Environment, 650(2): 3041-3047.

    Wattigney W A, Irvin-Barnwell E, Li Z, Davis S I, Manente S, Maqsood J, Scher D, Messing R, Schuldt N, Hwang S A, Aldous K M, Lewis-Michl E L, Ragin-Wilson A. 2019. Biomonitoring programs in Michigan, Minnesota and New York to assess human exposure to Great Lakes contaminants[J]. International Journal of Hygiene and Environmental Health, 222(1): 125-135. doi: 10.1016/j.ijheh.2018.08.012

    Wei Lai. 2017. Research progress of synthetic hydrogel materials and their treatment of heavy metal ions in water[J]. Journal of Hubei University (Natureal Science), 39(1): 1-6 (in Chinese with English abstract).

    Wei X Z, Kong X, Wang S X, Xiang H, Wang J D, Chen J Y. 2013. Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes[J]. Industrial & Engineering Chemistry Research, 52(49): 17583-17590.

    WHO. 2017. Guidelines for drinking-water quality: Fourth edition incorporating the first addendum[J]. World Health Organization.

    Widrig C A, Porter M D, Ryan M D, Strein T G, Ewing A G. 1990. Dynamic electrochemistry: Methodology and application[J]. Analytical Chemistry, 62(12): 1R. doi: 10.1021/ac00211a001

    Wu R P. 2019. Removal of heavy metal ions from industrial wastewater based on chemical precipitation method[J]. Ekoloji, 28(107): 2443-2452.

    Xu Zhenmin, Shi Liyi. 2020. Research progress of photocatalytic removal of heavy metal ions from water[J]. Journal of Shanghai University (Natural Science Edition), 26(4): 491-505 (in Chinese with English abstract).

    Yan R H, Luo D Y, Fu C Y, Tian W, Wu P, Wang Y, Zhang H, Jiang W. 2020. Simultaneous removal of Cu(Ⅱ) and Cr(Ⅵ) ions from wastewater by photoreduction with TiO2-ZrO2[J]. Journal of Water Process Engineering, 33: 101052. doi: 10.1016/j.jwpe.2019.101052

    Yang J Y, Hou B H, Wang J K, Tian B Q, Bi J T, Wang N, Li X, Huang X. 2019. Nanomaterials for the removal of heavy metals from wastewater[J]. Nanomaterials (Basel), 9(3): 123.

    Yang Weilong, Bai Yuming, Li Yongli, Hu Haoyuan, Du Xin. 2022. Plant optimal screening for contaminated soil remediation in an iron mining tailing of Baotou, Inner Monglia[J]. Geology in China, 49(3): 683-694 (in Chinese with English abstract).

    Yu Yongquan, Huang Weiwei, Dong Jianjiang, Zhu Qifa, Lu Diannna, Liu Yongming. 2017. Study on the mechanism of adsorption of heavy metal cadmium by Pseudomonas nitroreducers[J]. China Environmental Science, 37(6): 2232-2238 (in Chinese with English abstract).

    Zakeri K M, Abdollahy M, Khalesi M R, Rezai B. 2020. Selective separation of neodymium from synthetic wastewater by ion flotation[J]. Separation Science and Technology, 56(10): 1802-1810.

    Zhang C Q, Hu Z Q, Li P, Gajaraj S. 2016. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment[J]. Science of the Total Environment, 572: 852-873. doi: 10.1016/j.scitotenv.2016.07.145

    Zhang J F, Li Y, Xie X D, Zhu W H, Meng X G. 2019. Fate of adsorbed Pb(Ⅱ) on graphene oxide under variable redox potential controlled by electrochemical method[J]. Journal of Hazardous Materials, 367: 152-159. doi: 10.1016/j.jhazmat.2018.12.073

    Zhang X S, Zhang M M, He J, Wang Q X, Li D S. 2019. The spatial-temporal characteristics of cultivated land and its influential factors in the low hilly region: A case study of Lishan Town, Hubei Province, China[J]. Sustainability, 11(14): 3810. doi: 10.3390/su11143810

    Zhao D P, Wu X. 2018. Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification[J]. Materials Letters, 210: 354-357. doi: 10.1016/j.matlet.2017.09.068

    Zhou Q Q, Yang N, Li Y Z, Ren B, Ding X H, Bian H L, Yao X. 2020. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017[J]. Global Ecology and Conservation, 22: e00925. doi: 10.1016/j.gecco.2020.e00925

    Zhu G C, Zheng H L, Zhang Z, Tshukudu T, Zhang P, Xiang X Y. 2011. Characterization and coagulation- flocculation behavior of polymeric aluminum ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 178: 50-59. doi: 10.1016/j.cej.2011.10.008

    Zhu W P, Sun S P, Gao J, Fu F J, Chung T S. 2014. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater[J]. Journal of Membrane Science, 456: 117-127. doi: 10.1016/j.memsci.2014.01.001

    Zhu Y, Fan W H, Zhou T T, Li X M. 2019. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms[J]. Science of the Total Environment, 678: 253-266. doi: 10.1016/j.scitotenv.2019.04.416

    Zuo J X, Fan W H, Wang X L, Ren J Q, Zhang Y, Wang X R, Zhang Y, Yu T, Li X M. 2018. Trophic transfer of Cu, Zn, Cd, and Cr, and biomarker response for food webs in Taihu Lake, China[J]. RSC Advances, 8(7): 3410-3417. doi: 10.1039/C7RA11677B

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636. http://geochina.cgs.gov.cn/geochina/article/abstract/20200602?st=search

    高利亚. 2022. 重金属水污染处理方法的研究进展[J]. 化学工程师, 36(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202204024.htm

    国家市场监督管理总局和国家标准化管理委员会. 2022. 生活饮用水卫生标准(GB 5749-2022)[S].

    巩苗苗, 王光荣. 2018. 生物吸附剂及其研究进展[J]. 赤峰学院学报(自然科学版), 34(6): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CFXB201806011.htm

    李博文, 杨桂锦. 2021. 重金属废水处理技术研究进展[J]. 中国资源综合利用, 39(11): 87-92. doi: 10.3969/j.issn.1008-9500.2021.11.024

    李欣娟, 王文生, 唐亮. 2020. 水中重金属污染处理方法研究[J]. 广州化工, 48(5): 27-29. doi: 10.3969/j.issn.1001-9677.2020.05.015

    梅光泉. 2004. 重金属废水的危害及治理[J]. 微量元素与健康研究杂志, 21(4): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK200404027.htm

    牛一乐, 刘云国, 路培, 周鸣. 2005. 中国矿山生态破坏现状及治理技术研究进展[J]. 环境科学与管理, (5): 59-60, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200505023.htm

    孙垦, 华宇峰, 王镇岳. 2022. 工业废水重金属污染与健康风险评价研究[J]. 华北水利水电大学学报(自然科学版), 43(3): 99-108. doi: 10.19760/j.ncwu.zk.2022041

    魏来. 2017. 合成水凝胶材料及其对水体中重金属离子处理的研究进展[J]. 湖北大学学报(自然科学版), 39(1): 1-6. doi: 10.3969/j.issn.1000-2375.2017.01.001

    许振民, 施利毅. 2020. 光催化去除水体中重金属离子的研究进展[J]. 上海大学学报(自然科学版), 26(4): 491-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ202004001.htm

    杨伟龙, 白宇明, 李永利, 胡浩远, 杜鑫. 2022. 内蒙古包头某铁矿尾矿库生态修复的植物优选研究[J]. 中国地质, 49(3): 683-694. http://geochina.cgs.gov.cn/geochina/article/abstract/20220301?st=search

    喻涌泉, 黄魏魏, 董建江, 朱启法, 卢滇楠, 刘永民. 2017. 硝基还原假单胞菌吸附重金属镉的机理研究[J]. 中国环境科学, 37(6): 2232-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201706034.htm

  • 加载中

(12)

(2)

计量
  • 文章访问数:  4204
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2022-11-28
修回日期:  2023-01-10
刊出日期:  2023-06-25

目录