中国地质调查局 中国地质科学院主办
科学出版社出版

河北省张家口坝上典型莜麦产区重金属元素健康风险评价

王仁琪, 谭科艳, 孙倩, 李航, 张隆隆, 王玉, 袁欣, 朱晓华, 蔡敬怡. 2024. 河北省张家口坝上典型莜麦产区重金属元素健康风险评价[J]. 中国地质, 51(1): 264-275. doi: 10.12029/gc20221228002
引用本文: 王仁琪, 谭科艳, 孙倩, 李航, 张隆隆, 王玉, 袁欣, 朱晓华, 蔡敬怡. 2024. 河北省张家口坝上典型莜麦产区重金属元素健康风险评价[J]. 中国地质, 51(1): 264-275. doi: 10.12029/gc20221228002
WANG Renqi, TAN Keyan, SUN Qian, LI Hang, ZHANG Longlong, WANG Yu, YUAN Xin, ZHU Xiaohua, CAI Jingyi. 2024. Health risk assessment of heavy metals in typical oats production region of Bashang area in Zhangjiakou, Hebei Province[J]. Geology in China, 51(1): 264-275. doi: 10.12029/gc20221228002
Citation: WANG Renqi, TAN Keyan, SUN Qian, LI Hang, ZHANG Longlong, WANG Yu, YUAN Xin, ZHU Xiaohua, CAI Jingyi. 2024. Health risk assessment of heavy metals in typical oats production region of Bashang area in Zhangjiakou, Hebei Province[J]. Geology in China, 51(1): 264-275. doi: 10.12029/gc20221228002

河北省张家口坝上典型莜麦产区重金属元素健康风险评价

  • 基金项目: 中国地质调查局项目(DD20190655)资助。
详细信息
    作者简介: 王仁琪,男,1999 年生,硕士生,地球化学专业,主要从事环境地球化学研究;E-mail: renqiwang1999@163.com
    通讯作者: 谭科艳,女,1979 年生,博士,研究员,主要从事环境地球化学和环境污染修复研究;E-mail: tankeyan2017@163.com
  • 中图分类号: X820.4; X50

Health risk assessment of heavy metals in typical oats production region of Bashang area in Zhangjiakou, Hebei Province

  • Fund Project: Supported by the project of China Geological Survey (No.DD20190655).
More Information
    Author Bio: WANG Renqi, male, born in 1999, master candidate, major in geochemistry, mainly engaged in environmental geochemistry research; E-mail: renqiwang1999@163.com .
    Corresponding author: TAN Keyan, female, born in 1979, professor, mainly engaged in environmental geochemistry research; E-mail: tankeyan2017@163.com.
  • 研究目的

    为研究张家口坝上地区典型粮食作物莜麦产区重金属元素健康风险,以张北县莜麦农田为研究对象,系统采集莜麦籽实及其根系土、地下水和大气沉降样品,分析重金属元素对人体健康风险。

    研究方法

    采用致癌和非致癌健康风险模型评价研究区地下水、大气沉降和土壤重金属的人体健康风险,采用单一目标危害商数与综合目标危害商数评价研究区莜麦籽实重金属含量的人体健康风险。

    研究结果

    研究区地下水中致癌风险元素Cr、非致癌元素Pb和Cu存在一定的健康风险,Pb元素是造成地下水重金属健康风险的主导因素;区内大气重金属不存在非致癌健康风险,Cr、As和Ni元素存在一定的致癌风险;研究区莜麦根系土壤对人体健康尚不存在致癌和非致癌风险,部分莜麦籽实样品显示有一定的人体健康风险,其中Cu、Zn、Ni元素在儿童中目标危害商数均大于1,重金属中单一目标危害商数与综合目标危害商数均是儿童大于成人。

    结论

    通过对张家口坝上典型莜麦产区的重金属元素进行综合健康风险评价,区内重金属元素对人体有的健康风险较小,但需要关注对儿童健康的影响,并对部分重金属元素风险进行监测。

  • 加载中
  • 图 1  研究区样品采样点位图

    Figure 1. 

    图 2  研究区地下水重金属元素对人类健康风险值图

    Figure 2. 

    图 3  地下水重金属健康风险超标率

    Figure 3. 

    图 4  研究区地下水重金属健康风险总值贡献率

    Figure 4. 

    图 5  成人和儿童土壤重金属 HQ 贡献率

    Figure 5. 

    表 1  元素分析方法及检出限

    Table 1.  Analysis methods and detection limits

    分析项目 分析方法 检出限/(mg/kg)
    As 氢化物−原子荧光光谱法(HG−AFS) 0.23
    Cd 电感耦合等离子质谱法(ICP−MS) 0.01
    Cr 电感耦合等离子质谱法(ICP−MS) 0.13
    Cu 电感耦合等离子质谱法(ICP−MS) 1.00
    Hg 氢化物−原子荧光光谱法(HG−AFS) 0.05
    Ni 电感耦合等离子质谱法(ICP−MS) 0.05
    Pb 电感耦合等离子质谱法(ICP−MS) 0.05
    Zn 电感耦合等离子质谱法(ICP−MS) 4.00
    下载: 导出CSV

    表 2  重金属健康风险暴露参数

    Table 2.  Parameters of health risk assessment of soil heavy metals

    参数名称 符号 成人参考值 儿童参考值 单位
    每日空气
    呼吸量
    IRinh 14.5 7.5 m3/d
    暴露皮肤
    表面积
    SA 5373.99 2848.01 cm2
    皮肤黏附系数 AF 0.07 0.2 mg/(cm2·d)
    皮肤吸收因子 ABS As 0.03;Cd 0.001;
    Cr 0.001;Cu 0.06;
    Hg 0.05;Ni 0.001;
    Pb 0.006;Zn 0.02;
    无量纲
    地表灰尘
    排放因子
    PEF 1.36×109 1.36×109 m3/kg
    暴露频率 EF 350 350 d/a
    暴露年限 ED 24 6 a
    平均体重 BW 61.8 19.2 kg
    平均暴露时间 AT 致癌 27740
    非致癌9125
    致癌 27740
    非致癌9125
    d
    下载: 导出CSV

    表 3  重金属不同暴露途径参考计量及致癌斜率因子

    Table 3.  Reference dose and carcinogenic slope factor of heavy metals in the different exposed ways

    重金属 参考计量RfD/(mg/(kg·d)) 致癌斜率因子SF /((kg·d)/mg)
    经口摄入 皮肤接触 呼吸吸入(成人) 呼吸吸入(儿童) 经口摄入 皮肤接触 呼吸吸入
    As 3.0×10−4 3.0×10−4 3.52×10−6 5.86×10−6 1.5 1.5 4.3×10−3(土壤)/15.1(大气)
    Cd 1.0×10−3 2.5×10−5 2.35×10−6 3.91×10−6 6.1 6.1 6.30(大气)
    Cr 3.0×10−3 7.5×10−5 2.35×10−5 3.91×10−6 42(大气)
    Cu 4.0×10−2 4.0×10−2 4.0×10−2 4.0×10−2
    Hg 3.0×10−4 2.1×10−5 7.04×10−5 1.27×10−5
    Ni 2.0×10−2 8.0×10−4 2.11×10−5 3.52×10−5 0.84(大气)
    Pb 3.5×10−3 5.3×10−4 8.21×10−5 1.37×10−4
    Zn 3.0×10−1 3.0×10−1 3.0×10−1 3.0×10−1
    下载: 导出CSV

    表 4  研究区大气干沉降重金属儿童与成人暴露剂量

    Table 4.  Children and adults exposure doses of study area in bulk air depositions

    暴露途径/(mg/(kg·d)) AsCdCrCuHgNiPbZn
    ADDinh成人1.60×10−98.24×10−112.21×10−85.45×10−97.77×10−125.51×10−95.96×10−92.46×10−8
    儿童6.67×10−103.43×10−119.20×10−92.27×10−93.23×10−122.30×10−92.48×10−91.02×10−8
    LADDinh 1.79×10−59.21×10−62.47×10−46.17×10−5
    下载: 导出CSV

    表 5  研究区大气沉降重金属健康风险指数

    Table 5.  Health risk index of heavy metals in study area

    项目 暴露途径/(mg/(kg·d))   As Cd Cr Cu Hg Ni Pb Zn
    HI 呼吸摄入 成人 3.23×10−1 6.64×10−3 5.94×10−1 1.65×10−2 3.73×10−2 1.39×10−2 1.36×10−1 3.31×10−3
    儿童 4.28×10−2 8.80×10−3 7.87×10−2 2.18×10−3 4.94×10−3 1.84×10−3 1.80×10−2 4.38×10−4
    CR     1.08×10−3 2.32×10−5 4.15×10−2 2.07×10−4
    下载: 导出CSV

    表 6  土壤重金属非致癌平均日暴露量 (mg/(kg·d))

    Table 6.  Non-carcinogenic average daily exposure doses for soil heavy metal (mg/(kg·d))

    重金属 成人 儿童
    ADDiing ADDiinh ADDiderm ADDadult ADDiing ADDiinh ADDiderm ADDchild
    As 2.62×10−5 1.52×10−9 4.63×10−6 3.09×10−5 1.01×10−5 1.07×10−9 1.14×10−6 1.12×10−5
    Cd 3.32×10−7 1.92×10−11 1.95×10−8 3.52×10−7 1.27×10−7 1.36×10−11 4.79×10−9 1.32×10−7
    Cr 1.36×10−4 7.87×10−9 7.99×10−7 1.37×10−4 5.21×10−5 5.56×10−9 1.96×10−7 5.23×10−5
    Cu 4.51×10−5 2.61×10−9 1.59×10−5 6.10×10−5 1.73×10−5 1.84×10−9 3.90×10−6 2.12×10−5
    Hg 7.09×10−8 4.10×10−12 2.08×10−8 9.18×10−8 2.72×10−8 2.90×10−12 5.11×10−9 3.23×10−8
    Ni 5.85×10−5 3.38×10−9 3.44×10−7 5.88×10−5 2.24×10−5 2.39×10−9 8.43×10−8 2.25×10−5
    Pb 7.53×10−5 4.36×10−9 2.66×10−6 7.80×10−5 2.89×10−5 3.08×10−9 6.51×10−7 2.95×10−5
    Zn 1.42×10−4 8.20×10−9 1.67×10−5 1.58×10−4 5.43×10−5 5.79×10−9 4.09×10−6 5.84×10−5
    ADD 4.83×10−4 2.80×10−8 4.10×10−5 5.24×10−4 1.85×10−4 1.97×10−8 1.01×10−5 1.95×10−4
    下载: 导出CSV

    表 7  研究区莜麦籽实单一与综合目标危害商数

    Table 7.  Harm quotient of single and comprehensive target of Oats in study area

    项目元素人群最大值最小值均值>1占比
    单一目标危害商数(THQ)As成人0.870.080.270
    儿童2.160.200.6818.60%
    Cd成人0.060.010.030
    儿童0.160.030.070
    Cr成人0.120.120.120
    儿童0.300.300.300
    Cu成人0.860.290.550
    儿童2.130.721.3690.70%
    Hg成人0.040.020.030
    儿童0.100.050.070
    Ni成人2.120.260.6111.63%
    儿童5.270.651.5167.44%
    Pb成人0.170.030.070
    儿童0.430.090.180
    Zn成人0.630.240.420
    儿童1.570.601.0358.14%
    单一目标危害商数(TTHQ)成人4.241.121.90100%
    儿童10.542.774.72100%
    下载: 导出CSV
  • [1]

    Abbas A, Al−Amer A M, Laoui T, Al−Marri M J, Nasser M S, Khraisheh M, Atieh M A. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications[J]. Separation and Purification Technology, 157: 141−161. doi: 10.1016/j.seppur.2015.11.039

    [2]

    Amin N U, Ahmad T. 2015. Contamination of soil with heavy metals from industrial effluent and their translocation in green vegetables of Peshawar, Pakistan[J]. RSC Advances, 5(19): 14322−14329. doi: 10.1039/C4RA14957B

    [3]

    Cai K, Li C. 2022. Ecological risk, input flux, and source of heavy metals in the agricultural plain of Hebei Province, China[J]. International Journal of Environmental Research and Public Health, 19(4): 2288.

    [4]

    Cai K, Li C, Na S. 2019. Spatial distribution, pollution source, and health risk assessment of heavy metals in atmospheric depositions: A case study from the sustainable city of Shijiazhuang, China[J]. Atmosphere, 10(4): 222. doi: 10.3390/atmos10040222

    [5]

    Chai Y, Guo J, Chai S, Cai J, Xue L, Zhang Q. 2015. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China[J]. Chemosphere, 134: 67−75. doi: 10.1016/j.chemosphere.2015.04.008

    [6]

    Drobnik T, Greiner L, Keller A, Grêt−Regamey A. 2018. Soil quality indicators–From soil functions to ecosystem services[J]. Ecological Indicators, 94: 151−169.

    [7]

    Feng W, Guo Z, Peng C, Xiao X, Shi L, Zeng Peng Z, Ran H, Xue Q. 2019. Atmospheric bulk deposition of heavy metal (loid) s in central south China: Fluxes, influencing factors and implication for paddy soils[J]. Journal of Hazardous Materials, 371: 634−642. doi: 10.1016/j.jhazmat.2019.02.090

    [8]

    Guo Zhijuan, Zhou Yalong, Wang Qiaolin, Wang Chenwen, Song Wentao, Liu Fei, Kong Mu. 2021. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science, 41(1): 431−441 (in Chinese with English abstract).

    [9]

    He Jin, Zheng Yidi, Deng Qijun, He Xueqin. 2021. Groundwater origin and hydrochemical characteristics in cenozoic basaltic aquifer in North China: A case study of Zhangbei County, Hebei Province[J]. Journal of Jilin University (Earth Science Edition), 52(1): 181−193 (in Chinese with English abstract).

    [10]

    Hong H, Dai M, Lu H, Liu J, Zhang J, Yan C. 2018. Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China[J]. Environmental Pollution, 233: 246−260.

    [11]

    Li H, Ji H. 2017. Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal−mine brownfield, Beijing, China[J]. Journal of Geochemical Exploration, 183: 22−32. doi: 10.1016/j.gexplo.2017.09.012

    [12]

    Li Jingxin. 2009. Study on Evaluation of Ecological Security in the Northern Farming−pastoral Transitional Zone—Taking Zhangbei County as an Example[D]. Beijing: Beijing Forestry University (in Chinese with English abstract).

    [13]

    Li T, Song Y, Yuan X, Li J, Ji J, Fu X, Zhang Q, Guo S. 2018. Incorporating bioaccessibility into human health risk assessment of heavy metals in rice (Oryza sativa L.): A probabilistic−based analysis[J]. Journal of Agricultural and Food Chemistry, 66(22): 5683−5690. doi: 10.1021/acs.jafc.8b01525

    [14]

    Liang Q, Xue Z J, Wang F, Sun Z M, Yang Z X, Liu S Q. 2015. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China[J]. Environmental Monitoring and Assessment, 187: 1−11.

    [15]

    Liu Bin, Cui Xingtao, Wang Xueqiu, Hu Qinghai. 2023. Source identification and health risk assessment of heavy metals in groundwater of Yongqing County, Hebei Province[J]. Journal of Ecology and Rural Environment, 39: 741−749 (in Chinese with English abstract).

    [16]

    Liu Chao, Huo Yongwei, Xu Yueqing, Huang An, Sun Peiling, Lu Longhui. 2018. Changes in cultivated land and influencing factors before and after the implementation of grain for green project in Zhangjiakou city[J]. Journal of Natural Resources, 33(10): 1806−1820 (in Chinese with English abstract). doi: 10.31497/zrzyxb.20170965

    [17]

    Liu Jin, Pan Yuepeng, Shi Huading. 2022. Atmospheric deposition as a dominant source of cadmium in agricultural soils of north China[J]. Journal of Agro−Environment Science, 41(8): 1698−1708 (in Chinese with English abstract).

    [18]

    Liu Q, Wang F, Meng F, Jiang L, Li G, Zhou R. 2018a. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index[J]. Marine Pollution Bulletin, 126: 293−303. doi: 10.1016/j.marpolbul.2017.11.017

    [19]

    Liu R, Liu J, Zhang Z, Borthwick A G, Cai Y, Dong L, Du X. 2018b. Risks of airborne pollution accidents in a major conurbation: Case study of Zhangjiakou, a host city for the 2022 Winter Olympics[J]. Stochastic Environmental Research and Risk Assessment, 32: 3257−3272. doi: 10.1007/s00477-018-1590-5

    [20]

    Liu Rui, Zhang Hui, Gou Xin, Luo Xuqiang, Yang Hongyan. 2014. Approaches of health risk assessment for heavy metals applied in China and advance in exposure assessment models: A review[J]. Ecology and Environmental Sciences, 23(7): 1239−1244 (in Chinese with English abstract).

    [21]

    Mahmood Q, Shaheen S, Bilal M, Tariq M, Zeb B S, Ullah Z, Ali A. 2019. Chemical pollutants from an industrial estate in Pakistan: A threat to environmental sustainability[J]. Applied Water Science, 9: 1−9. doi: 10.1007/s13201-018-0879-3

    [22]

    Muhammad S, Shah M T, Khan S. 2011. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan[J]. Microchemical Journal, 98(2): 334−343. doi: 10.1016/j.microc.2011.03.003

    [23]

    Shan H, Bingsheng X, Ling L, Geng W, Yan L. 2019. Practical study on standardization of local ecological civilization−A case study of Zhangjiakou[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 295(2): 012080.

    [24]

    Shi Huanhuan, Pan Yujie, Zeng Min, Huang Changsheng, Hou Qingqin, Pi Pengcheng, Peng Hongxia. 2021. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou Peninsula[J]. Environmental Science, 42(9): 4246−4256 (in Chinese with English abstract).

    [25]

    Sun P, Xu Y, Yu Z, Liu Q, Xie B, Liu J. 2016. Scenario simulation and landscape pattern dynamic changes of land use in the poverty belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province[J]. Journal of Geographical Sciences, 26: 272−296. doi: 10.1007/s11442-016-1268-1

    [26]

    Tan B, Wang H, Wang X, Ma C, Zhou J, Dai X. 2021. Health risks and source analysis of heavy metal pollution from dust in Tianshui, China[J]. Minerals, 11(5): 502. doi: 10.3390/min11050502

    [27]

    Tian Yanan, Zhang Menghan, Xu Dangfei, Zhang Shengwei. 2019. Landscape ecological security patterns in an ecological city, based on source−sink theory[J]. Acta Ecologica Sinica, 39: 2311−2321 (in Chinese with English abstract).

    [28]

    Wang Baojun, Song Cuier, Fu Hua. 2008. Analysis on the environment features and problems in the Beijing−Zhangjiakou region[J]. Arid Zone Research, 25(4): 537−543 (in Chinese with English abstract).

    [29]

    Wang C, Zhou S, Song J, Wu S. 2018. Human health risks of polycyclic aromatic hydrocarbons in the urban soils of Nanjing, China[J]. Science of the Total Environment, 612: 750−757. doi: 10.1016/j.scitotenv.2017.08.269

    [30]

    Wang J, Chen C. 2015. The current status of heavy metal pollution and treatment technology development in China[J]. Environmental Technology Reviews, 4(1): 39−53. doi: 10.1080/21622515.2015.1051136

    [31]

    Wang M, Zhao W, Li L, Liu T, Wang L, Shen N, Hong J, Zhao W, Hu Z. 2022. Air quality assessment and Gray model prediction for the 2022 Winter Olympics in Zhangjiakou, China[J]. Air Quality, Atmosphere & Health, 15(7): 1303−1315.

    [32]

    Xu Chaoxuan, Lu Chunxuan, Huang Shaolin. 2020. Study on ecological vulnerability and its influencing factors in Zhangjiakou area[J]. Journal of Natural Resources, 35(6): 1288−1300 (in Chinese with English abstract). doi: 10.31497/zrzyxb.20200603

    [33]

    Yang An, Wang Yihan, Hu Jian, Liu Xiaolong, Li Jun. 2020. Evaluation and source of heavy metal pollution in surface soil of Qinghai−Tibet plateau[J]. Environmental Science, 41(2): 886−894 (in Chinese with English abstract).

    [34]

    Yang S, Liu J, Bi X, Ning Y, Qiao S, Yu Q, Zhang J. 2020. Risks related to heavy metal pollution in urban construction dust fall of fast−developing Chinese cities[J]. Ecotoxicology and Environmental Safety, 197: 110628. doi: 10.1016/j.ecoenv.2020.110628

    [35]

    Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 642: 690−700. doi: 10.1016/j.scitotenv.2018.06.068

    [36]

    Yang Xiaoyan, Jia Qiumiao, Sun Dali, Hu Yongfeng, Lü Xiaojian. 2021. Research on the relationship between urbanization and atmospheric environmental quality in the economic development of major cities in Beijing−Tianjin−Hebei region[J]. Rock and Mineral Analysis, 40(2): 273−284 (in Chinese with English abstract).

    [37]

    Yu Feng, Wang Wei, Yu Yang, Wang Denghong, Liu Shanbao, Gao Juanqin, Lü Binting, Liu Lijun. 2021. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li−Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 40(3): 408−424 (in Chinese with English abstract).

    [38]

    Zhang J, Gao X. 2015. Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: Distributions, sources and contamination assessment[J]. Marine Pollution Bulletin, 98(1−2): 320−327.

    [39]

    Zhang Xia, Liu Bin, Xiao Bolin, Wang Jia, Wan Da. 2020. Pollution characteristics and assessment of heavy metals in atmospheric deposition in core urban areas, Chongqing[J]. Environmental Science, 41(12): 5288−5294 (in Chinese with English abstract).

    [40]

    Zhao Jiawei, Zhang Yunpeng, Liu Zhiyuan, Chai Quan, Wei Yunfei. 2022. Radon distribution characteristics and controlling factors in the soil of Zhangbei, Hebei Province[J]. Computing Techniques for Geophysical and Geochemical Exploration, 44(3): 375−380 (in Chinese with English abstract).

    [41]

    Zuo Lu, Sun Leigang, Lu Junjing, Xu Quanhong, Liu Jianfeng, Ma Xiaoqian. 2022. MODIS−based comprehensive assessment and spatial−temporal change monitoring of ecological quality in Beijing−Tianjin−Hebei region[J]. Remote Sensing for Natural Resources, 34(2): 203−214 (in Chinese with English abstract).

    [42]

    郭志娟, 周亚龙, 王乔林, 王成文, 宋云涛, 刘飞, 孔牧. 2021. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, (1): 431−441.

    [43]

    何锦, 郑一迪, 邓启军, 何雪琴. 2022. 我国北方新生代玄武岩地下水化学特征及其成因—以河北省张北县为例[J]. 吉林大学学报:地球科学版, 52(1): 181−193.

    [44]

    李婧欣. 2009. 北方农牧交错带生态安全评价研究—以张北县为例[D]. 北京: 北京林业大学.

    [45]

    刘彬, 崔邢涛, 王学求, 胡庆海. 2023. 河北省永清县地下水重金属来源识别及健康风险评价[J]. 生态与农村环境学报, 39(6): 741−749.

    [46]

    刘超, 霍永伟, 许月卿, 黄安, 孙丕苓, 卢龙辉. 2018. 生态退耕前后张家口市耕地变化及影响因素识别[J]. 自然资源学报, 33(10): 1806−1820.

    [47]

    刘进, 潘月鹏, 师华定. 2022. 华北地区农田土壤镉来源及大气沉降的贡献[J]. 农业环境科学学报, 41(8): 1698−1708.

    [48]

    刘蕊, 张辉, 勾昕, 罗绪强, 杨鸿雁. 2014. 健康风险评估方法在中国重金属污染中的应用及暴露评估模型的研究进展[J]. 生态环境学报, 23(7): 1239−1244. doi: 10.3969/j.issn.1674-5906.2014.07.023

    [49]

    师环环, 潘羽杰, 曾敏, 黄长生, 侯清芹, 皮鹏程, 彭红霞. 2021. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 42(9): 4246−4256.

    [50]

    田雅楠, 张梦晗, 许荡飞, 张圣微. 2019. 基于 “源−汇” 理论的生态型市域景观生态安全格局构建[J]. 生态学报, 39(7): 2311−2321.

    [51]

    王宝钧, 宋翠娥, 傅桦. 2008. 京张区域生态与环境特征及问题分析[J]. 干旱区研究, 25(4): 537−543.

    [52]

    徐超璇, 鲁春霞, 黄绍琳. 2020. 张家口地区生态脆弱性及其影响因素[J]. 自然资源学报, 35(6): 1288−1300.

    [53]

    杨安, 王艺涵, 胡健, 刘小龙, 李军. 2020. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学, 41(2): 886−894.

    [54]

    杨晓燕, 贾秋淼, 孙大利, 胡永锋, 吕晓剑. 2021. 京津冀主要大城市经济发展中城市化与大气环境质量的关系[J]. 岩矿测试, 40(2): 273−284.

    [55]

    于沨, 王伟, 于扬, 王登红, 刘善宝, 高娟琴, 吕秉廷, 刘丽君. 2021. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 40(3): 408−424.

    [56]

    张夏, 刘斌, 肖柏林, 王佳, 万达. 2020. 重庆主城大气降尘中重金属污染特征及评价[J]. 环境科学, 41(12): 5288−5294.

    [57]

    赵嘉炜, 张云鹏, 刘志远, 柴泉, 魏云飞. 2022. 河北省张北地区土壤氡分布特征及控制因素研究[J]. 物探化探计算技术, 44(3): 375−380.

    [58]

    左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 2022. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 34(2): 203−214.

  • 加载中

(5)

(7)

计量
  • 文章访问数:  906
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2022-12-28
修回日期:  2023-04-13
刊出日期:  2024-01-25

目录