中国地质调查局 中国地质科学院主办
科学出版社出版

内蒙古五原县某地土壤重金属生态健康风险评价

张栋, 李永春, 苏日力格, 袁国礼, 邰苏日嘎拉, 王永亮, 陈国栋, 周文辉, 杜雨春子, 杨建雨. 2024. 内蒙古五原县某地土壤重金属生态健康风险评价[J]. 中国地质, 51(1): 248-263. doi: 10.12029/gc20230420001
引用本文: 张栋, 李永春, 苏日力格, 袁国礼, 邰苏日嘎拉, 王永亮, 陈国栋, 周文辉, 杜雨春子, 杨建雨. 2024. 内蒙古五原县某地土壤重金属生态健康风险评价[J]. 中国地质, 51(1): 248-263. doi: 10.12029/gc20230420001
ZHANG Dong, LI Yongchun, SU Rilige, YUAN Guoli, TAI Surigala, WANG Yongliang, CHEN Guodong, ZHOU Wenhui, DU Yuchunzi, YANG Jianyu. 2024. Ecological health risk assessment of soil heavy metals in Wuyuan County, Inner Mongolia[J]. Geology in China, 51(1): 248-263. doi: 10.12029/gc20230420001
Citation: ZHANG Dong, LI Yongchun, SU Rilige, YUAN Guoli, TAI Surigala, WANG Yongliang, CHEN Guodong, ZHOU Wenhui, DU Yuchunzi, YANG Jianyu. 2024. Ecological health risk assessment of soil heavy metals in Wuyuan County, Inner Mongolia[J]. Geology in China, 51(1): 248-263. doi: 10.12029/gc20230420001

内蒙古五原县某地土壤重金属生态健康风险评价

  • 基金项目: 自然资源综合调查指挥中心科技创新基金项目(KC20220006)和中国地质调查局项目(DD20191015)联合资助。
详细信息
    作者简介: 张栋,男,1995年生,工程师,主要从事生态地球化学调查评价工作;E-mail:zhangdong01@mail.cgs.gov.cn
    通讯作者: 李永春,男,1989年生,高级工程师,主要从事勘查地球化学及生态地球化学调查和评价工作;E-mail:369517099@qq.com
  • 中图分类号: X53

Ecological health risk assessment of soil heavy metals in Wuyuan County, Inner Mongolia

  • Fund Project: Supported by the projects of Science and Technology Innovation Fund of Command Center of Integrated Natural Resources Survey Center (No.KC20220006) and China Geological Survey (No.DD20191015).
More Information
    Author Bio: ZHANG Dong, male, born in 1995, engineer, mainly engaged in ecological geochemical investigation and evaluation; E-mail: zhangdong01@mail.cgs.gov.cn .
    Corresponding author: LI Yongchun, male, born in 1989, senior engineer, mainly engaged in exploration geochemistry and ecological geochemical investigation and evaluation; E-mail: 369517099@qq.com.
  • 研究目的

    五原县位于河套平原,为查明该地区农田土壤重金属污染状况,系统采集了表层土壤样品1985件,农作物样品30件,饮用水样品5件,分析测定As、Cd、Cr、Cu、Hg、Ni、Pb、Zn 8种重金属元素含量。

    研究方法

    通过地累积指数法、内梅罗综合污染指数法和健康风险评估模型,对该区土壤、农作物及饮用水中的重金属污染程度和健康风险等进行评估。

    研究结果

    内梅罗综合污染指数评价该地区土壤尚清洁,局部地区存在As元素轻污染;人体健康风险评估显示,在口和皮肤多重摄入途径下,土壤会对居民造成致癌风险(9.97×10−6),饮用水摄入As(1.62)对居民有一定的健康风险。

    结论

    Hg受人为影响较大,在临近五原县环城公路三叉口存在明显的强异常,其余元素主要受成土母质控制,As在建丰农场等地局部含量较高,超出风险筛选值。As 在饮用水健康风险中贡献最大,应引起关注。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  研究区采样点位图

    Figure 2. 

    图 3  研究区表层土壤重金属元素空间分布图

    Figure 3. 

    图 4  调查区土壤Si/Al等值线图

    Figure 4. 

    表 1  单项污染指数与内梅罗综合指数分级标准

    Table 1.  Evaluation standard of single factor pollution index and Nemerow comprehensive index

    等级划分 单项污染指数分级标准 污染指数 内梅罗综合指数分级标准
    污染指数 污染水平 污染等级 污染水平
    Ι Pi < 1.0 清洁 PI < 0.7 安全 清洁
    ΙΙ 1.0 ≤ Pi < 2.0 轻污染 0.7 ≤ PI < 1 警戒线 尚清洁
    ΙΙΙ 2.0 ≤ Pi < 3.0 中污染 1 ≤ PI < 2 轻污染 农田土壤开始受到污染
    ΙV Pi ≥ 3.0 重污染 2 ≤ PI < 3 中污染 农田土壤已受中度污染
    PI ≥ 3 重污染 农田土壤已受重度污染
    下载: 导出CSV

    表 2  健康风险评价模型暴露因子参数

    Table 2.  Exposure factor parameters of health risk assessment mode

    符号 参数 单位 参考值
    $ {{\mathrm{OISER}}}_{\mathrm{n}} $ 非致癌(致癌)效应下经口摄入土壤暴露量 - -
    $ {{\mathrm{PISER}}}_{\mathrm{n}} $ 非致癌(致癌)效应下吸入土壤颗粒暴露量 - -
    $ {{\mathrm{DCSER}}}_{\mathrm{n}} $ 非致癌(致癌)效应下皮肤接触土壤暴露量 - -
    $ {\mathrm{OISR}} $ 每日摄入土壤量 mg/d 100
    $ \text{E}{{\mathrm{D}}}_{s} $ 暴露时长 a 25
    $ \text{E}{{\mathrm{F}}}_{s} $ 暴露频率 d/a 250
    $ {\text{ABS}}_{0} $ 经口摄入吸收效率因子 无量纲 1
    BW 平均体重 kg 61.8
    $ {\text{AT}}_{\mathrm{n}} $ 非致癌(致癌)效应平均时长 d 27740(致癌)9125(非致癌)
    $ {\mathrm{DAIR}} $ 每日空气呼吸量 m3/d 14.5
    $ {{\mathrm{PM}}}_{10} $ 空气中可吸入悬浮颗粒物总量 mg/m3 0.119I
    PIAF 吸入土壤颗粒物在体内滞留比例 无量纲 0.75
    $ {\mathrm{fspi}} $ 室内空气中来自土壤的颗粒物所占比例 无量纲 0.8
    EFI 室内暴露频率 d/a 187.5
    $ {\mathrm{fspo}} $ 室外空气中来自土壤的颗粒物所占比例 无量纲 0.5
    EFO 室外暴露频率 d/a 62.5
    $ \text{SAE} $ 皮肤暴露面积 cm2 3033II
    $ \text{SSAR} $ 皮肤表面土壤黏附系数 mg/cm2 0.2
    $ {{\mathrm{ABS}}}_{\mathrm{d}} $ 皮肤接触吸收效率子 无量纲 0.001(镉)0.03(As)
    E 每日皮肤接触事件频率 次/d 1
      注:Ⅰ为引用自《建设用地土壤污染风险评估技术导则》(HJ 25.3–2019);Ⅱ为根据《建设用地土壤污染风险评估技术导则》(HJ 25.3–2019)计算得出。
    下载: 导出CSV

    表 3  土壤重金属不同暴露途径的RfD和SF

    Table 3.  RfD and SF values for different types of exposure of heavy metals in soil

    重金属元素 参考剂量/(mg/(kg·d)) 致癌斜率因子/((kg·d)/mg)
    $ {{\mathrm{RfD}}}_{0} $ 数据
    来源
    $ {{\mathrm{RfD}}}_{\mathrm{i}} $ 数据
    来源
    $ {{\mathrm{RfD}}}_{\mathrm{d}} $ 数据
    来源
    $ {{\mathrm{SF}}}_{0} $ 数据
    来源
    $ {{\mathrm{SF}}}_{\mathrm{i}} $ 数据
    来源
    $ {{\mathrm{SF}}}_{\mathrm{d}} $ 数据
    来源
    As 3.00×10−4 I 3.52×10−6 II 3.00×10−4 II 1.50 I 1.83×10−2 II 1.50 II
    Cd 1.00×10−3 I 2.35×10−6 II 2.50×10−5 II 7.06 II
    Cr 3.00×10−3 I 2.35×10−5 7.50×10−2 II 4.71×10−2 II
    Cu 4.00×10−2 I 4.00×10−2 II
    Hg 3.00×10−4 I 7.04×10−5 II 2.10×10−5 II
    Ni 2.00×10−2 I 2.11×10−5 II 8.00×10−4 II 1.11 II
    Zn 3.00×10−1 I 3.00×10−1 II
      注:I为直接引用自《建设用地土壤污染风险评估技术导则》(HJ 25.3–2019);II为根据《建设用地土壤污染风险评估技术导则》(HJ 25.3–2019)中外推公式引用I计算得出。
    下载: 导出CSV

    表 4  土壤重金属致癌风险的分级标准

    Table 4.  Classification criteria for carcinogenic risk of heavy metals in soil

    等级 CR 致癌风险
    1 CR ≤ 10−6 无风险
    2 10−6 < CR ≤ 10−5 低风险,可接受
    3 10−5 < CR ≤ 10−4 中风险,可接受
    4 CR > 10−4 有,不可接受
    下载: 导出CSV

    表 5  表层土壤重金属元素参数统计(n=1985)

    Table 5.  Statistics of heavy metal elements in topsoil (n=1985)

    元素 量纲 最大值 最小值 平均值 标准差 Cv/% 富集系数 Xb河套平原
    Cd mg/kg 0.3 0.07 0.16 0.04 0.22 1.33 0.12
    Pb mg/kg 33.7 14.12 21.29 3.11 0.15 1.13 18.76
    Cr mg/kg 97.1 40.27 75.58 9.34 0.12 1.35 56
    Cu mg/kg 40.9 10.31 26.12 5.08 0.19 1.36 19.2
    Zn mg/kg 122.2 32.66 73.79 12.35 0.17 1.32 55.7
    Ni mg/kg 87.6 15.07 31.68 5.26 0.17 1.27 25
    As mg/kg 27.0 6.06 15.20 2.94 0.19 1.57 9.68
    Hg ng/g 523.0 8.24 24.60 14.81 0.60 0.99 24.9
    pH 无量纲 10.5 6.85 8.89 0.32 0.04 - 8.69
      注:Xb河套平原代表河套平原背景值。
    下载: 导出CSV

    表 6  基于风险筛选值的超标情况

    Table 6.  Exceedance based on risk-screening values

    pH值范围样数Cd
    筛选值
    超标数Pb
    筛选值
    超标数Cr
    筛选值
    超标数Cu
    筛选值
    超标数Zn
    筛选值
    超标数Ni
    筛选值
    超标数As
    筛选值
    超标数Hg
    筛选值
    超标数
    6.5~7.510.30120020001000250010002500.60
    ≥7.519840.60170025001000300019002011110
    合计19850000001110
    超标率%0000005.60
      注:8种元素筛选值的质量分数单位为mg/kg。
    下载: 导出CSV

    表 7  土壤重金属主成分分析结果

    Table 7.  Result of principal component analysis of heavy metal concentrations in the soil samples

    重金属 主成分
    1 2 3
    特征值 6.208 0.955 0.307
    贡献率/% 77.602 11.935 3.837
    累积贡献率/% 77.602 89.536 93.373
    Cd 0.867 0.016 0.473
    Cr 0.947 −0.046 −0.150
    Cu 0.971 −0.050 0.017
    Hg 0.237 0.971 −0.028
    Ni 0.937 −0.053 −0.143
    Pb 0.945 −0.034 0.094
    Zn 0.958 −0.039 −0.108
    下载: 导出CSV

    表 8  土壤重金属地累积指数分级

    Table 8.  Accumulation index classification of soil heavy metal

    元素 值域 均值 分级样本数/件 污染点数占比/%
    无污染
    $ \le $0)
    轻污染
    (0~1)
    中污染
    (1~2)
    中—重污染
    (2~3)
    重污染
    (3~4)
    Cd −1.32~5.70 −6.59 1592 393 0 0 0 19.80
    Pb −1.47~0.21 −0.89 1982 3 0 0 0 0.15
    Cr −1.18~0.28 −0.29 1599 386 0 0 0 19.45
    Cu −0.17~9.27 8.59 1356 629 0 0 0 31.69
    Zn −1.76~0.13 −0.61 1497 488 0 0 0 24.58
    Ni −1.42~1.12 −0.37 1703 281 1 0 0 14.21
    As −1.46~0.68 −0.17 855 1130 0 0 0 56.93
    Hg −3.56~2.42 −2.06 1933 47 3 0 2 2.62
    下载: 导出CSV

    表 9  内梅罗综合污染指数法评价结果

    Table 9.  Evaluation results of Nemerow comprehensive pollution index method

    元素单因子污染指数Pi内梅罗综合污染指数PI
    最小值最大值平均值中位数
    Cd0.120.500.270.270.40
    Pb0.080.200.130.120.17
    Cr0.160.390.300.300.348
    Cu0.100.410.260.260.343
    Zn0.110.410.250.250.336
    Ni0.080.460.170.170.347
    As0.241.080.610.600.88
    Hg0.010.520.020.020.11
    下载: 导出CSV

    表 10  土壤重金属非致癌健康风险指数(HQ/10−4

    Table 10.  Non-carcinogenic health risk index of heavy metal in the soil (HQ/10−4)

    重金属 $ {{{\mathrm{HQ}}}_{{\mathrm{o}\mathrm{i}\mathrm{s}}_{\mathrm{n}}}} $ ${{\mathrm{HQ}}}_{\mathrm{d}\mathrm{c}\mathrm{s}_{\mathrm{n}} }$ $ {{{\mathrm{HQ}}}_{\mathrm{p}\mathrm{i}\mathrm{s}_{\mathrm{n}}} }$ HQ
    As 最大值 1994.95 363.04 1595.23 3953.22
    平均值 1123.64 204.40 898.15 1553.26
    Cd 最大值 6.61 1.60 26.37 34.58
    平均值 3.64 0.88 14.55 19.07
    Cr 最大值 717.44 859.32 1576.76
    平均值 558.57 668.94 1227.51
    Cu 最大值 22.66 22.66
    平均值 14.48 14.48
    Hg 最大值 38.64 1.55 40.19
    平均值 1.84 0.07 1.91
    Ni 最大值 97.09 863.42 960.51
    平均值 35.15 312.31 347.46
    Zn 最大值 9.03 9.03
    平均值 5.45 5.45
    HI 最大值 2886.42 364.64 3345.89 6596.95
    平均值 1069.84 205.28 1894.02 3169.14
      注:$ {{{\mathrm{HQ}}}_{{\mathrm{o}\mathrm{i}\mathrm{s}}_{\mathrm{n}}}} $$ {{{\mathrm{HQ}}}_{{\mathrm{d}\mathrm{c}\mathrm{s}}_{\mathrm{n}}}} $$ {{{\mathrm{HQ}}}_{\mathrm{p}\mathrm{i}\mathrm{s}_{\mathrm{n}}}} $分别为经口摄入、皮肤接触、吸入土壤颗粒途径的危害商。
    下载: 导出CSV

    表 11  土壤重金属致癌健康风险指数(CR/10−8

    Table 11.  Carcinogenic health risk index of heavy metal in the soil (CR/10−8)

    重金属 $ {{{\mathrm{CR}}}_{{\mathrm{o}\mathrm{i}\mathrm{s}}_{\mathrm{n}}}} $ $ {{{\mathrm{CR}}}_{{\mathrm{d}\mathrm{c}\mathrm{s}}_{\mathrm{n}}}} $ $ {{{\mathrm{CR}}}_{\mathrm{p}\mathrm{i}\mathrm{s}_{\mathrm{n}}}} $ CR
    As 最大值 1476.52 268.70 0.17 1745.39
    平均值 831.64 151.28 0.10 983.02
    Cd 最大值 0.72 0.72
    平均值 0.40 0.40
    Cr 最大值 1.56 1.56
    平均值 1.22 1.22
    Ni 最大值 33.26 33.26
    平均值 12.03 12.03
    CR 最大值 1361.68 268.70 35.71 1780.93
    平均值 471.67 151.28 13.75 996.67
    下载: 导出CSV

    表 12  农作物及饮用水重金属非致癌健康风险指数(HQ/10−4

    Table 12.  Non−carcinogenic health risk index of heavy metal in crops and drinking water (HQ/10−4)

    重金属 $ {{\mathrm{HQ}}}_{谷物} $ $ {{\mathrm{HQ}}}_{饮用水} $
    As 最大值 42369.90
    平均值 16200.31
    Cd 最大值
    平均值
    Cr 最大值 5265.05
    平均值 2231.86
    Cu 最大值 3117.81 24.84
    平均值 1989.01 11.88
    Hg 最大值
    平均值
    Ni 最大值 2538.92 57.63
    平均值 1311.50 19.11
    Zn 最大值 4162.44 145.26
    平均值 3381.40 35.03
    HI 最大值 15084.22 42597.63
    平均值 8913.77 16266.33
    下载: 导出CSV
  • [1]

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological health risk assessment of heavy metals in farmland soil in northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).

    [2]

    Bao Fengqin, Li Youguo, Wang Peidong, Li Hongwei, Sun Huiling, Wu Huizhen. 2015. The geochemical characteristics of Arsenic in the Hetao area of Inner Mongolia[J]. Geophysical and Geochemical Exploration, 39(5): 1032−1040 (in Chinese with English abstract).

    [3]

    Chen Z Y, Zhao Y Y, Chen D L, Huang H T, Zhao Y, Wu Y J. 2023. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 6(1): 15−26.

    [4]

    Dong Q Y, Wen H T, Pan W, Song C, Lai S Y, Yang Z J, Zhao Y Y, Yan M J. 2023. Health risk assessment of heavy metals in soils and crops in a mining area (Au–Ag–Cu–trona–oil et al. ) of the Nanyang Basin, Henan Province, China[J]. China Geology, 6: 1−13.

    [5]

    Fang Qing, Xian Ping, Meng Zhengcheng. 2021. Soil health risk assessment of agricultural land based on Monte Carlo simulation[J]. Environmental Engineering, 39(2): 147−152 (in Chinese with English abstract).

    [6]

    Feng Boxin, Xu Duoxun, Zhang Hongyu, Yang Shengfei, Gan Liming, Men Qianni. 2023. Geochemical characteristic of heavy metal in Zhouzhi area and analysis of their causes based on minimum data set[J]. Northwestern Geology, 56(1): 284–292 (in Chinese with English abstract).

    [7]

    Forstner U, Ahlf W, Calmano W. 1993. Sediment quality objectives and criteria development in Germany[J]. Water Science and Technology, 28(8): 307−314.

    [8]

    Guan Houchun, Li Yunhuai, Peng Miaozhi, Liu Daobin. 2013. Heavy metal pollution and potential ecological risk assessment of urban soil in Huangshan[J]. Geology in China, 40(6): 1949−1958 (in Chinese with English abstract).

    [9]

    Guo Huaming, Ni Ping, Jia Yongfeng, Zhang Bo, Zhang Yang. 2015. Chemical characteristics and origin of surface water and shallow groundwater in Hetao Basin, Inner Mongolia[J]. Geoscience, 29(2): 229−237 (in Chinese with English abstract).

    [10]

    Lei Peiyu, Zheng Jingli, Jia Ru, Meng Zhaowei. 2022. Health risk assessment of typical metals and heavy metals in rural drinking water of Shaanxi Province in 2020[J]. Journal of Health Research, 51(1): 45−50 (in Chinese with English abstract).

    [11]

    Li Wenpeng, Shi Xiaolong, Liu Jianzhang, Chen Shuang, Cai Kui, Song Zefeng, Tian Haofei. 2022. Relationship between heavy metals and clay minerals in farmland surrounding industrial zone and ecological health risk assessment [J/OL]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20220516.1455.002.html (in Chinese with English abstract).

    [12]

    Liang Shuai, Dai Huimin, Zhang Guangyang, Liu Kai, Zhai Furong, Li Qiuyan, Wei Minghui. 2023. Heavy metal contents in soil−Chinese herbal medicine system in Xibo River Basin, Chifeng City, Inner Mongolia: Distribution characteristics and ecological effect evaluation[J]. Geology and Resources, 32(6): 779–788 (in Chinese with English abstract).

    [13]

    Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecological health risk assessment of heavy metals in farmland surrounding Tongguan gold deposit, Shaanxi Province[J]. Geology in China, 48(3): 749−763 (in Chinese with English abstract).

    [14]

    Liu R P, Xu Y N, Zhang, Wang W K, Elwardany R M. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling gold belt, China[J]. China Geology, 3(3): 402−410.

    [15]

    Liu Tong, Liu Chuanpeng, Deng Jun, Kang Pengyu, Wang Kaikai, Zhao Yuyan. 2022. Ecological health risk assessment of soil heavy metals in eastern Yinan County, Shandong Province[J]. Geology in China, 49(5): 1497−1508 (in Chinese with English abstract).

    [16]

    Niu L, Liu W, Yang H, Yang F, Xu C. 2013. Status of metal accumulation in farmland soils across China: From distribution to risk assessment[J]. Environmental Pollution, 176: 55−62.

    [17]

    Pan L B, Ma J, Hu Y, Su B Y, Fang G L, Wang Y, Wang Z S, Wang L, Xiang B. 2016. Assessment of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China[J]. Environment Science and Pollution Research, 23(19): 1−11.

    [18]

    Pezzarossa B, Malorgio F, Lubrano L, Tognoni F, Petruzzelli G. 1990. Phosphatic fertilizers as a source of heavy metals in protected cultivation[J]. Communications in Soil Science and Plant Analysis, 21(9/10): 737−751. doi: 10.1080/00103629009368266

    [19]

    Shang Erping, Xu Erqi, Zhang Hongqi, Huang Caihong. 2018. Spatial and temporal variation of heavy metals in cultivated soil in China[J]. Journal of Environmental Sciences, 39(10): 4670−4683 (in Chinese with English abstract).

    [20]

    Song H Y, Hu K L, An Y, Chen C, Li G D. 2018. Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale[J]. Journal of Soils & Sediments: Protection, Risk Assessment, & Remediation, 18(3): 852–862.

    [21]

    Song Mian, Gong Lei, Wang Yan, Tian D Z, Wang X F, Li Y, Li W. 2022. Risk assessment of heavy metals on human health in topsoil of Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 41(1): 133−144 (in Chinese with English abstract).

    [22]

    Song Wei, Chen Baiming, Liu Lin. 2013. Soil Heavy metal pollution of cultivated Lang in China[J]. Research of Soil and Water Conservation, 20(2): 293−298 (in Chinese with English abstract).

    [23]

    Tang Doudou, Yuan Xuyin, Wang Yimin, Ji Junfeng, Wen Yubo, Zhao Wanfu. 2018. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro–Environment Science, 37(1): 18−26 (in Chinese with English abstract).

    [24]

    Tao Yonggang, Ma Pengcheng, Chen Mianbiao, Huang Chushan, Zhang LiJuan, Yu Yunjiang, Liu Xiaolin, Xu Qun, Hu Guocheng. 2019. Ferroalloy plant around the characteristics of heavy metal pollution in indoor dust and health risk assessment[J]. Journal of Agricultural Resources and Environment, 4(6): 829−838 (in Chinese with English abstract).

    [25]

    Temmerman L D, Vanongeval L, Boon W, Hoenig M, Geypens M. 2003. Heavy metal content of arable soils in northern Belgium[J]. Water, Air and Soil Pollution, 148(1): 61–76.

    [26]

    Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Heavy metal pollution degree and risk assessment of soil in a metal smelting area of Xiongan New District[J]. Geology in China, 48(6): 1697−1709 (in Chinese with English abstract).

    [27]

    Wang Ding. 2020. Study on the Treatment Effect of Composite Soil Conditioner on Saline–alkali Soil in Hetao Irrigation District, Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University (in Chinese with English abstract).

    [28]

    Wang Jie, Gong Jing, Liu Yujia, Yu Miao, Wang Weihao, Li Mengying, Xu Wumei, Xiang Ping. 2021. Ecological and health risk assessment of soil heavy metals in Kunming City[J]. Journal of Light Industry, 37(4): 118−126 (in Chinese with English abstract

    [29]

    Wang Jun, Chen Zhenlou, Wang Chu, Ye Mingwu, Shen Jing, Nie Zhiling. 2007. Shanghai Chongming island vegetable soil heavy metal content and the ecology risk early warning assessment[J]. Journal of environmental science, (3): 647−653 (in Chinese with English abstract).

    [30]

    Wang Xikuan, Huang Zengfang, Su Meixia, Li Shibao, Wang Zhong, Zhao Suozhi, Zhang Qing. 2007. Characteristics of soil base value and background value in Hetao Area[J]. Rock and Mineral Analysis, 26(4): 287−292 (in Chinese with English abstract).

    [31]

    Wei Liang. 2020. Migration and Transformation of Soil Arsenic and Heavy Metals in Typical Polluted and Irrigated Areas of North China Plain[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    [32]

    Wu Ting, Li Xiaoping, Cai Yue, Ai Yuwei, Sun Xuemeng, Yu Hongtao. 2017. Geochemical behavior and risk of heavy metals in different size lead–polluted soil particles[J]. China Environmental Science, 37(11): 4212−4221 (in Chinese with English abstract).

    [33]

    Yang Bingxue, Fang Chen, Ma Qin, Xu Zhenbo. 2021. Health risk assessment of heavy metal pollution in farmland soil in Zhejiang Province[J]. Journal of Anhui Agricultural Sciences, 49(7): 66−69 (in Chinese with English abstract).

    [34]

    Yang Ling, Tian Lei, Bai Guangyu, Pei Shengliang, Zhang Deqiang. 2022. Ecological risk assessments and source analysis of heavy metals in the soil of Xin Barag Youqi, Inner Mongolia[J]. Geology in China, 49(6): 1970−1983 (in Chinese with English abstract).

    [35]

    Yu Fei, Zhang Yongwen, Yan Mingshu, Wang Rui, Zhang Fenglei, Zhong Keqiang, Zhu Haishan, Luo Kai. 2022. Heavy metal pollution status and health risk assessment of cultivated soil and crops in mercury mining area of Chongqing[J]. Chinese Journal of Environmental Chemistry, 41(2): 1−13 (in Chinese with English abstract).

    [36]

    Yu Tao. 2006. Land Quality Geochemical Assessment in the Dongting Lake Region of Hunan Province[D]. Beijing: China University of Geosciences (Beijing).

    [37]

    Zhang Haoyue, Liu Wenbo, Zhang Xujiao, Su Chunli. 2021. Analysis of spatial variability and influencing factors of arsenic in groundwater of Hetao Plain, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 40(1): 192−108 (in Chinese with English abstract).

    [38]

    Zhang Lirui, Peng Xinbo, Ma Yanlong, Kang Le, Zhang Yane, Wang Quanling, Zhang Songlin. 2022. Risk assessment and attribution analysis of "five poisons" heavy metals in cultivated land in Lanzhou[J]. Environmental Science, 43(9): 4767−4778 (in Chinese with English abstract).

    [39]

    Zhang Xiaomin, Zhang Xiuying, Zhong Taiyang, Jiang Hong. 2014. Study on the concentration and spatial distribution of heavy metals in agricultural soils in China[J]. Environmental Science, 35(2): 692−703 (in Chinese with English abstract).

    [40]

    Zhang Yi, Zhou Xinquan, Zeng Xiaomin, Feng Jiao, Liu Yurong. 2022. Characteristics and evaluation of soil heavy metal pollution in industrial zone of Yangtze River Economic Belt[J]. Environmental Science, 43(4): 2062−2070 (in Chinese with English abstract).

    [41]

    Zhang Youwen, Han Jianhua, Tu Qi, Yang Yongan, Xu Yan, Shi Rongguang. 2019. Characteristics and evaluation of heavy metal accumulation in farmland soil in Tianjin suburb[J]. Journal of Ecology and Rural Environment, 35(11): 1445−1452 (in Chinese with English abstract).

    [42]

    Zhao Qingling, Li Qingcai, Xie Jiangkun, Li Yuanzhong, Ji Yonghong, Pang Chengbao, Wan Miao. 2015. Study on the characteristics and ecological risk assessment of soil heavy metal pollution in southern Jining by means of enrichment coefficient method and ground accumulation index method[J]. Rock and Mineral Testing, 34(1): 129−137 (in Chinese with English abstract).

    [43]

    Zhao Xinna, Yang Zhongfang, Yu Tao. 2023. Research progress of soil heavy metal pollution and remediation technology in mining area[J]. Geology in China, 50(1): 84−101 (in Chinese with English abstract).

    [44]

    Zhao Yan, Guo Changlai, Cui Jian, Zhang Yanfei, Li Ying, Li Xuguang, Yu Huiming. 2023. Distribution characteristics, ecological risk assessment and source analysis of heavy metals in soil of Beizhen agricultural area, Jinzhou City, Liao Province[J/OL]. Geology in China. http://kns.cnki.net/kcms/detail/11.1167.P.20230313.1251.002.html. (in Chinese with English abstract).

    [45]

    Zhou Qinli, Wang Xuedong, Li Zhitao, Wang Xiahui, He Jun, Ji Guohua. 2019. Distribution characteristics and ecological risk assessment of soil heavy metal in Helan County of Ningxia, China[J]. Journal of Agricultural Resources and Environment, 36(4): 513−521 (in Chinese with English abstract).

    [46]

    Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil– crop system in different tillage types and ecological health risk assessment[J]. Geology in China, 48(3): 708−720 (in Chinese with English abstract).

    [47]

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636. doi: 10.12029/gc20200602

    [48]

    包凤琴, 李佑国, 王沛东, 李红威, 孙惠玲, 武慧珍. 2015. 内蒙古河套地区砷地球化学特征[J]. 物探与化探, 39(5): 1032−1040.

    [49]

    方晴, 冼萍, 蒙政成. 2021. 基于蒙特卡罗模拟的农用地土壤健康风险评价[J]. 环境工程, 39(2): 147−152.

    [50]

    冯博鑫, 徐多勋, 张宏宇, 杨生飞, 甘黎明, 门倩妮. 2023. 基于最小数据集的周至地区土壤重金属地球化学特征及成因分析[J]. 西北地质, 56(1): 284–292.

    [51]

    管后春, 李运怀, 彭苗枝, 刘道彬. 2013. 黄山城市土壤重金属污染及其潜在生态风险评价[J]. 中国地质, 40(6): 1949−1958.

    [52]

    郭华明, 倪萍, 贾永锋, 张波, 张扬. 2015. 内蒙古河套盆地地表水-浅层地下水化学特征及成因[J]. 现代地质, 29(2): 229−237. doi: 10.3969/j.issn.1000-8527.2015.02.001

    [53]

    雷佩玉, 郑晶利, 贾茹, 孟昭伟. 2022. 2020年陕西省农村饮用水典型类金属及重金属健康风险评估[J]. 卫生研究, 51(1): 45−50.

    [54]

    李文鹏, 史小龙, 刘建章, 陈爽, 蔡奎, 宋泽峰, 田浩飞. 2022. 工业区周边农田土壤重金属与黏土矿物的关系及其生态健康风险评价[J/OL]. 中国地质. http://kns.cnki.net/kcms/detail/11.1167.P.20220516.1455.002.html.

    [55]

    梁帅, 戴慧敏, 张广阳, 刘凯, 翟富荣, 李秋燕, 魏明辉. 2023. 内蒙古赤峰锡伯河流域土壤−中药材系统中的重金属元素——含量分布特征及生态效应评价[J]. 地质与资源, 32(6): 779–788.

    [56]

    林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749−763. doi: 10.12029/gc20210306

    [57]

    刘同, 刘传朋, 邓俊, 康鹏宇, 王凯凯, 赵玉岩. 2022. 山东省沂南县东部土壤重金属生态健康风险评价[J]. 中国地质, 49(5): 1497−1508. doi: 10.12029/gc20220509

    [58]

    尚二萍, 许尔琪, 张红旗, 黄彩红. 2018. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 39(10): 4670−4683.

    [59]

    宋绵, 龚磊, 王艳, 田大争, 王新峰, 李跃, 李伟. 2022. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 41(1): 133−144. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201013

    [60]

    宋伟, 陈百明, 刘琳. 2013. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 20(2): 293−298.

    [61]

    唐豆豆, 袁旭音, 汪宜敏, 季峻峰, 文宇博, 赵万伏. 2018. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 37(1): 18−26. doi: 10.11654/jaes.2017-0801

    [62]

    陶永刚, 马鹏程, 陈棉彪, 黄楚珊, 张丽娟, 于云江, 柳晓琳, 许群, 胡国成. 2019. 铁合金厂周边室内积尘中重金属污染特征及健康风险评价[J]. 农业资源与环境学报, 36(6): 829−838.

    [63]

    王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697−1709. doi: 10.12029/gc20210603

    [64]

    王鼎. 2020. 复合土壤调理剂对内蒙古河套灌区盐碱土治理效果研究[D]. 呼和浩特: 内蒙古农业大学.

    [65]

    汪洁, 龚竞, 刘雨佳, 于淼, 王炜皓, 李梦莹, 徐武美, 向萍. 2021. 昆明市土壤重金属污染特征及其生态与健康风险评价[J]. 轻工学报, 37(4): 118−126. doi: 10.12187/2021.04.015

    [66]

    王军, 陈振楼, 王初, 叶明武, 沈静, 聂智凌. 2007. 上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J]. 环境科学, (3): 647−653. doi: 10.3321/j.issn:0250-3301.2007.03.036

    [67]

    王喜宽, 黄增芳, 苏美霞, 李世宝, 王忠, 赵锁志, 张青. 2007. 河套地区土壤基准值及背景值特征[J]. 岩矿测试, 26(4): 287−292. doi: 10.3969/j.issn.0254-5357.2007.04.008

    [68]

    魏亮. 2020. 华北平原典型污灌区土壤As及重金属迁移转化规律[D]. 北京: 中国地质大学(北京).

    [69]

    吴婷, 李小平, 蔡月, 艾雨为, 孙薛梦, Hongtao Yu. 2017. 铅污染不同粒径土壤的重金属地球化学行为与风险[J]. 中国环境科学, 37(11): 4212−4221. doi: 10.3969/j.issn.1000-6923.2017.11.026

    [70]

    杨冰雪, 方晨, 马勤, 许振波. 2021. 浙江省某地区农田土壤重金属污染的健康风险评价[J]. 安徽农业科学, 49(7): 66−69. doi: 10.3969/j.issn.0517-6611.2021.07.018

    [71]

    杨玲, 田磊, 白光宇, 裴圣良, 张德强. 2022. 内蒙古新巴尔虎右旗土壤重金属生态风险与来源分析[J]. 中国地质, 49(6): 1970−1983. doi: 10.12029/gc20220619

    [72]

    余飞, 张永文, 严明书, 王锐, 张风雷, 钟克强, 朱海山, 罗凯. 2022. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 41(2): 1−13. doi: 10.7524/j.issn.0254-6108.2020101302

    [73]

    余涛. 2006. 湖南洞庭湖地区土地质量地球化学评估[D]. 北京: 中国地质大学(北京).

    [74]

    张皓月, 刘文波, 张绪教, 苏春利. 2021. 河套平原地下水中As的空间变异特征及影响因素分析[J]. 地质科技通报, 40(1): 192−108.

    [75]

    张利瑞, 彭鑫波, 马延龙, 康乐, 张妍娥, 王泉灵, 张松林. 2022. 兰州市耕地“五毒”重金属的风险评价与归因分析[J]. 环境科学, 43(9): 4767−4778.

    [76]

    张小敏, 张秀英, 钟太洋, 江洪. 2014. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 35(2): 692−703.

    [77]

    张义, 周心劝, 曾晓敏, 冯娇, 刘玉荣. 2022. 长江经济带工业区土壤重金属污染特征与评价[J]. 环境科学, 43(4): 2062−2070.

    [78]

    张又文, 韩建华, 涂棋, 杨永安, 徐艳, 师荣光. 2019, 天津市郊农田土壤重金属积累特征及评价[J]. 生态与农村环境学报, 35(11): 1445–1452.

    [79]

    赵庆令, 李清彩, 谢江坤, 李元仲, 姬永红, 庞成宝, 万淼. 2015. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 34(1): 129−137.

    [80]

    赵鑫娜, 杨忠芳, 余涛. 2023. 矿区土壤重金属污染及修复技术研究进展[J]. 中国地质, 50(1): 84−101. doi: 10.12029/gc20220702001

    [81]

    赵岩, 郭常来, 崔健, 张艳飞, 李莹, 李旭光, 于慧明. 2023. 辽宁省锦州市北镇农业区土壤重金属分布特征、生态风险评价及源解析[J/OL]. 中国地质. http://kns.cnki.net/kcms/detail/11.1167.P.20230313.1251.002.html.

    [82]

    周勤利, 王学东, 李志涛, 王夏晖, 何俊, 季国华. 2019. 宁夏贺兰县土壤重金属分布特征及其生态风险评价[J]. 农业资源与环境学报, 36(4): 513−521.

    [83]

    朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤–农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708−720. doi: 10.12029/gc20210303

  • 加载中

(4)

(12)

计量
  • 文章访问数:  1012
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2023-04-20
修回日期:  2023-05-24
刊出日期:  2024-01-25

目录