中国地质调查局 中国地质科学院主办
科学出版社出版

川西孝泉—丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用

黄滔, 刘岩, 何建华, 叶泰然, 邓虎成, 李瑞雪, 李可赛, 张家维. 2024. 川西孝泉—丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 51(1): 89-104. doi: 10.12029/gc20230306005
引用本文: 黄滔, 刘岩, 何建华, 叶泰然, 邓虎成, 李瑞雪, 李可赛, 张家维. 2024. 川西孝泉—丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 51(1): 89-104. doi: 10.12029/gc20230306005
HUANG Tao, LIU Yan, HE Jianhua, YE Tairan, DENG Hucheng, LI Ruixue, LI Kesai, ZHANG Jiawei. 2024. Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan[J]. Geology in China, 51(1): 89-104. doi: 10.12029/gc20230306005
Citation: HUANG Tao, LIU Yan, HE Jianhua, YE Tairan, DENG Hucheng, LI Ruixue, LI Kesai, ZHANG Jiawei. 2024. Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan[J]. Geology in China, 51(1): 89-104. doi: 10.12029/gc20230306005

川西孝泉—丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用

  • 基金项目: 深地科学与工程教育部重点实验室开放基金项目(DESEYU202102)与四川省科技厅重点苗子项目(22MZGC0159)联合资助。
详细信息
    作者简介: 黄滔,男,1998年生,硕士生,主要从事非常规油气储层地应力场精细描述研究;E-mail: 1136830431@qq.com
    通讯作者: 刘岩,女,1983年生,副教授,主要从事储层特征及储层评价技术研究;E-mail: liuyan08@cdut.cn
  • 中图分类号: P618.13

Evaluation method and engineering application of in−situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan−Fenggu area, western Sichuan

  • Fund Project: Supported by the Open Found from Key Lab of Deep Earth Science and Engineering, Ministry of Education (No.DESEYU202002), Sichuan Provincial Science and Technology Department Key Seedling Project (No.22MZGC0159).
More Information
    Author Bio: HUANG Tao, male, born in 1998, master candidate, engaged in the study of fine description of the in−situ stress field; E-mail: 1136830431@qq.com .
    Corresponding author: LIU Yan, female, born in 1983, associate professor, mainly engaged in reservoir characteristics and reservoir evaluation technology; E-mail: liuyan08@cdut.cn.
  • 研究目的

    川西坳陷孝泉—丰谷地区须二段砂岩气藏的勘探开发潜力巨大,但该地区埋藏较深且构造复杂、断缝系统多期叠加,使得地应力频繁变化,制约了该区井位轨迹设计与压裂改造的有效实施,故需对该区地应力大小进行精细评价,为工程开发提供建议从而提高产能。

    研究方法

    基于岩石力学、声发射实验及差应变分析等实验测试方法,并结合常规测井、特殊测井及水力压裂等资料分析,优选了适应于深层块状均质致密砂岩储层的地应力大小实验测试方法,并在单点地应力大小准确评价的基础之上,构建了研究区分构造变形单元分层的单井地应力大小连续测井解释模型,查明了纵向上地应力大小变化结构类型及分布规律。

    研究结果

    研究表明差应变分析法计算的地应力大小精确度最高,为更能够准确表征深层均质块状致密砂岩地应力大小的实验方法。测试结果显示须二段属于Ⅲ类地应力类型,处于走滑应力状态,存在部分逆冲挤压应力状态;在井点测试的基础上,形成了基于井壁影像反演的地应力大小评价技术;地应力大小结构变化在纵向上分为5种类型,其中南北向(SN)三级以上断层和南北向(SN)褶皱或北东东向(NEE)褶皱变形的高部位以低低高(LLH)型和低应力(LC)型为主,在小规模断层或平缓构造区以高低高(HLH)型或高低低(HLL)型为主。

    结论

    建议选择低低高(LLH)型地应力剖面进行工程开发,其纵向上可穿透更多含气层,同时避开底层底水,预防生产早期快速见水,故应选择二—三级南北向断层和南北或北东向纵弯褶皱区须二2中上段进行水力压裂改造。

  • 加载中
  • 图 1  新场—合兴场—丰谷地区TX22断层平面分布图及地层特征

    Figure 1. 

    图 2  新场—合兴场—丰谷地区南西—北东向地震剖面解释

    Figure 2. 

    图 3  声发射岩心取样示意图及XS1井声发射实验试件

    Figure 3. 

    图 4  差应变实验的试件及应变片贴法示意图

    Figure 4. 

    图 5  XS1井4487 m,1−S4号样品累计能量对数、振铃计数与到达时间关系图

    Figure 5. 

    图 6  CX560井差应变结果图

    Figure 6. 

    图 7  多种方法计算单点最小水平主应力值对比图

    Figure 7. 

    图 8  诱导缝形态与差应力系数之间的关系图

    Figure 8. 

    图 9  鞍形诱导缝岩心示意图及X10井岩样照片

    Figure 9. 

    图 10  不同崩落宽度下水平应力量值示意图

    Figure 10. 

    图 11  井壁崩落宽度与水平两向差应力关系图

    Figure 11. 

    图 12  X11井须二段各小层岩石力学与地应力综合剖面

    Figure 12. 

    图 13  研究区须二段典型地应力剖面类型

    Figure 13. 

    图 14  研究区TX22小层井上地应力剖面类型主要分布图

    Figure 14. 

    图 15  不同储隔层应力差模拟水力裂缝扩展形态图

    Figure 15. 

    表 1  水力压裂法计算的地应力大小的数据结果

    Table 1.  Results of the magnitude of in-situ stress calculated using hydraulic fracturing

    井号层位测试段中深/m最大主应力/MPa最小主应力/MPa垂向主应力/MPa井所在构造位置
    CH127须二4581.50141.35101.35114.61F6上盘
    GM2须二14713.00146.99122.99116.51F23上盘
    GM2须二24776.00150.31122.31116.19F23上盘
    GM2须二34845.00149.87109.87118.82F23上盘
    GM3须二34920.00157.31125.31121.15H7上盘
    GM4须二44882.00153.06113.06113.98F44上盘
    X10须二24717.00138.68103.00117.99F24上盘
    X10须二65042.00153.00112.40125.92F24上盘
    X10-2须二24732.00143.9683.96111.41新场构造七郎庙高点
    X10-2须二44880.00154.1894.18114.89新场构造七郎庙高点
    X10-2须二44851.50154.2294.22114.22新场构造七郎庙高点
    X11须二44917.00145.00113.00121.45新场构造七郎庙高点北翼
    X209须二44868.00153.66104.46124.16新场构造七郎庙高点
    X5须二34880.00155.05107.05119.68F4上盘
    X8-1H须二24880.00141.92101.52117.29F3下盘
    XC12须二85250.13162.31102.31128.76孝泉构造
    XS1须二14496.00127.3787.37112.03F8上盘
    XS101须二14598.00144.79112.79114.12F9-1上盘
    XS101须二24807.00149.07109.07120.25F9-1上盘
    XS101须二24786.00150.43110.43118.79F9-1上盘
    XS101须二24709.00144.63104.63115.49F9-1上盘
    XS101须二24634.00143.50103.50112.29F9-1上盘
    下载: 导出CSV

    表 2  孝泉—丰谷地区须二段声发射实验测试的三向应力值的测试结果数据

    Table 2.  Test results of the three−direction stress value of the acoustic emission test of the second member of the Xuxujiahe Formation in the Xiaoquan–Fenggu area

    井号层位井深/mKaiser点应力值/MPa最大主应力/MPa最小主应力/MPa垂向主应力/MPa
    45°90°垂直
    XS1须二14487.00101.3382.1088.62101.29118.7690.04110.71
    X11须二24762.24116.1692.7499.78119.56135.26100.68129.56
    CG561须二44943.80112.7489.5197.28109.74132.7198.07120.12
    XC12须二44766.83111.6795.32106.53114.13133.13105.09124.14
    X501须二65270.70120.8799.48110.79117.80144.01109.79128.87
    下载: 导出CSV

    表 3  孝泉—丰谷地区须二段差应变实验测试的三向应力值的测试结果数据

    Table 3.  Test results of triaxial stress value of the second member of Xujiahe Formation in Xiaoquan–Fenggu area

    井号 层位 深度/m 三向主应力/MPa
    最大主应力 最小主应力 垂向主应力
    CX560 须二2 4810.97 141.00 102.00 125.00
    CH127 须二1 4566.14 135.09 100.65 111.87
    CH127 须二2 4639.29 137.60 104.72 113.66
    X10 须二4 4882.06 148.86 107.93 119.61
    X10 须二4 4884.04 140.75 104.76 119.66
    下载: 导出CSV

    表 4  研究区样品地应力大小计算实例

    Table 4.  Calculation example of in-situ stress of samples in the study area

    样品编号 深度/m 诱导缝形态 差应力系数 端面尺寸/mm Δd/μm 弹性模量/GPa 泊松比 最大水平主应力/MPa 最小水平主应力/MPa
    dmax dmin
    X10井 4928.92 马鞍形 0.25~0.30 69.207 69.157 50 45.359 0.182 120.23~138.72 92.48~110.98
    下载: 导出CSV

    表 5  不同构造变形单元内不同层位构造应力系数反算结果

    Table 5.  Back−calculation results of tectonic stress coefficient of different layers in different tectonic deformation units

    层位构造应力系数构造变形单元
    新场合兴场丰谷
    TX21–TX23A0.9821.1021.060
    B0.5100.6500.610
    TX24–TX210A1.0651.1101.105
    B0.6240.6600.648
    下载: 导出CSV
  • [1]

    Cai Meifeng. 1993. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 12(3): 275−283 (in Chinese with English abstract).

    [2]

    Chen Nian, Wang Chenghu, Gao Guiyun, Wang Pu. 2021. Characteristics of in–situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376−3384 (in Chinese with English abstract).

    [3]

    Cheng Yuanfang, Shen Haichao, Zhao Yizhong. 2008. A simplified differential strain analysis stress method for in–situ stress measurement[J]. Oil Drilling and Production Technology, 30(2): 61−64 (in Chinese with English abstract).

    [4]

    Dai Jinxing, Ni Yunyan, Wu Xiaoqi. 2012. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 39(3): 257−264 (in Chinese with English abstract).

    [5]

    Fu Xiaomin, Wang Xudong. 2007. The research on data processing about in–Situ stress measurement with AE[J]. Research and Exploration in Laboratory, (11): 296−299 (in Chinese with English abstract).

    [6]

    He Jianhua, Cao Feng, Deng Hucheng, Wang Yuanyuan, Li Yong, Xu Qinglong. 2023. Evaluation of in–situ stress in dense sandstone reservoirs in the second member of Xujiahe formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China: 50(4): 1107–1121 (in Chinese with English abstract).

    [7]

    Huang Rongzun, Zhuang Jinjiang. 1986. A new method for predicting formation fracture pressure[J]. Oil Drilling and Production Technology, (3): 1−14 (in Chinese).

    [8]

    Jia Chengzao, Zheng Min, Zhang Yongfeng. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 39(2): 129−136 (in Chinese with English abstract).

    [9]

    Jiang Yongdong, Xian Xuefu, Xu Jiang. 2005. Research on application of Kaiser effect of acoustic emission to measuring initial stress in rock mass[J]. Rock and Soil Mechanics, 26(6): 946−950 (in Chinese with English abstract).

    [10]

    Li Guoxin, Lei Zhengdong, Dong Weihong, Wang Hongyan, Zheng Xingfan, Tan Jian. 2022. Progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 27(1): 1−11 (in Chinese with English abstract).

    [11]

    Liu Yaqun, Li Haibo, Jing Feng, Luo Chaowen, Chen Bingrui, Li Junru, Zhou Qingchun. 2007. Determination of in–situ stress by hydraulic fracturing tests on preexisting fractures considering stress gradient and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1145−1149 (in Chinese with English abstract).

    [12]

    Mao H Y, Luo T T, Lai F Q, Zhang G T, Zhong L L. 2019. Experimental analysis and logging evaluation of in–situ stress of mud shale reservoir: Taking the deep shale gas reservoir of Longmaxi Formation in western Chongqing as an example[J]. IOP Conference Series:Earth and Environmental Science, 384(1): 012129.

    [13]

    Qiu Zhen, Zou Caineng, Li Jianzhong, Guo Qiulin, Wu Xiaozhi, Hou Lianhua. 2013. Unconventional petroleum resources assessment: Progress and future prospects[J]. Natural Gas Geoscience, 24(2): 238−246 (in Chinese with English abstract).

    [14]

    Schmitt D R, Currie C A, Zhang L. 2012. Crustal stress determination from boreholes and rock cores: Fundamental principles[J]. Tectonophysics, 580: 1−26. doi: 10.1016/j.tecto.2012.08.029

    [15]

    Shen Haichao, Cheng Yuanyuan, Wang Jingyin, Zhao Yizhong, Zhang Jianguo. 2008. Principal direction differential strain method for in–situ stress measurement and application[J]. Xinjiang Petroleum Geology, (2): 250−252 (in Chinese with English abstract).

    [16]

    Shi Lin, Zhang Xudong, Jin Yan, Chen Mian. 2004. New method for measurement of in–situ stresses at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, (14): 2355−2358 (in Chinese with English abstract).

    [17]

    Wang Chenghu, Gao Guiyun, Wang Hong, Wang Pu. 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167−174 (in Chinese with English abstract).

    [18]

    Wang Pu, Wang Chenghu, Yang Ruhua, Hou Zhengyang, Wang Hong. 2019. Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution[J]. Rock and Soil Mechanics, 40(11): 4486−4496 (in Chinese with English abstract).

    [19]

    Wang Xiaoqiong, Ge Hongkui, Song Lili, Hetai Ming, Xinwei. 2011. Experimental study of two types of rock sample acoustic emission events and Kaiser effect point recognition approach[J]. Chinese Journal of Rock Mechanics and Engineering, 30(3): 580−588 (in Chinese with English abstract).

    [20]

    Yin Shuai, Ding Wenlong, Lin Lifei, Liu Hanlin, Li Airong. 2023. Characteristics and the controlling effect on hydrocarbon accumulation of fractures in Yanchang Formation in Zhidan–Wuqi area, western Ordos Basin[J]. Earth Science, 48(7): 2614−2629 (in Chinese with English abstract).

    [21]

    Yin Shuai, Sun Xiaoguang, Wu Zhonghu, Wang Yingbin, Zhao Jingzhou, Sun Weihao, Yan Haolin. 2022. Coupling control of tectonic evolution and fractures on the Upper Paleozoic gas reservoirs in the northeastern margin of the Ordos Basin[J]. Journal of Central South University (Science and Technology), 53(9): 3724−3737 (in Chinese with English abstract).

    [22]

    Yin Xingyao, Ma Ni, Ma Zhengqian, Zong Zhaoyun. 2018. Review of in–situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 57(4): 488−504 (in Chinese with English abstract).

    [23]

    Zhang Chongyuan, Wu Manlu, Chen Qunze, Liao Chunting, Feng Chengjun. 2012. Reviews of in–situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3): 305−310 (in Chinese with English abstract).

    [24]

    Zhang Jincai, Fan Xin, Huang Zhiwen, Liu Zhongqun, Qi Yuanchang. 2021. Assessment of anisotropic in–situ stressses in the upper Triassic Xujiahe Formation reservoirs in Western Sichuan Depression of the Sichuan Basin[J]. Oil and Gas Geology, 42(4): 963−972 (in Chinese with English abstract).

    [25]

    Zhang Kang, Zhang Liqin, Liu Dongmei. 2022. Situation of China’s oil and gas exploration and development in recent years and relevant suggestions[J]. Acta Petrolei Sinica, 43(1): 15−28,111 (in Chinese with English abstract). doi: 10.1038/s41401-021-00637-0

    [26]

    Zhao Gang, Dong Shier. 2009. The theory of the measurement of ground stress by hydraulic fracturing method and its application[J]. Shanxi Architecture, 35(36): 77−78 (in Chinese with English abstract).

    [27]

    Zheng Herong, Liu Zhongqun, Xu Shilin, Liu Zhenfeng, Liu Junlong, Huang Zhiwen, Huang Yanqing, Shi Zhiliang, Wu Qingzhao, Fan Lingxiao, Gao Jinhui. 2021. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J]. Oil and Gas Geology, 42(4): 765−783 (in Chinese with English abstract).

    [28]

    Zhou Wen. 2006. The Characteristics of In–situ Earth Stress and its Application Research in Engineering Geology of Petroleum on Compact Reservoir in Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 1–142 (in Chinese with English abstract).

    [29]

    Zhu Haiyan, Song Yu jia, Xu Yun, Li Kuidong, Tang Xuanhe. 2021. Four–dimensional in–situ stress evolution of shale gas reservoirs and its impact on infill well complex fractures propagation[J]. Acta Petrolei Sinica, 42(9): 1224−1236 (in Chinese with English abstract).

    [30]

    Ziegler M, Valley B. 2021. Evaluation of the diametrical core deformation and discing analyses for in–situ stress estimation and application to the 4.9 km deep rock core from the Basel geothermal borehole, Switzerland[J]. Rock Mechanics and Rock Engineering, 54(12): 6511−6532. doi: 10.1007/s00603-021-02631-8

    [31]

    Zoback M D, Barton C A, Brudy M, Castillo D A, Finkbeiner T, Grollimund B R, Moos D B, Peska P, Ward C D, Wiprut D J. 2003. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1049−1076.

    [32]

    Zou Caineng, Tao Shizhen, Yang Zhi, Yuan Xuanjun, Zhu Rukai, Hou Lianhua, Jia Jinhua, Wang Lan, Wu Songtao, Bai Bin, Gao Xiaohui, Yang Chun. 2012. New advance in unconventional petroleum exploration and research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(4): 312–322 (in Chinese with English abstract).

    [33]

    Zou Caineng, Yang Zhi, He Dongbo, Wei Yunsheng, Li Jian, Jia Ailin, Chen Jianjun, Zhao Qun, Li Yilong, Li Jun, Yang Shen. 2018. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 45(4): 575−587 (in Chinese with English abstract).

    [34]

    蔡美峰. 1993. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 12(3): 275−283.

    [35]

    陈念, 王成虎, 高桂云, 王璞. 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376−3384.

    [36]

    程远方, 沈海超, 赵益忠. 2008. 一种简化的差应变地应力测量技术[J]. 石油钻采工艺, 30(2): 61−64.

    [37]

    戴金星, 倪云燕, 吴小奇. 2012. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 39(3): 257−264.

    [38]

    付小敏, 王旭东. 2007. 利用岩石声发射测试地应力数据处理方法的研究[J]. 实验室研究与探索, (11): 296−299.

    [39]

    何建华, 曹峰, 邓虎成, 王园园, 李勇, 徐庆龙. 2023. 四川盆地HC地区须二段致密砂岩储层地应力评价及其在致密气开发中的应用[J]. 中国地质, 50(4): 1107−1121.

    [40]

    黄荣樽, 庄锦江. 1986. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, (3): 1−14.

    [41]

    贾承造, 郑民, 张永峰. 2012. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 39(2): 129−136.

    [42]

    姜永东, 鲜学福, 许江. 2005. 岩石声发射Kaiser效应应用于地应力测试的研究[J]. 岩土力学, 26(6): 946−950.

    [43]

    李国欣, 雷征东, 董伟宏, 王红岩, 郑兴范, 谭健. 2022. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探, 27(1): 1−11.

    [44]

    刘亚群, 李海波, 景锋, 罗超文, 陈炳瑞, 李俊如, 周青春. 2007. 考虑应力梯度的原生裂隙水压致裂法地应力测量的原理及工程应用[J]. 岩石力学与工程学报, 26(6): 1145−1149.

    [45]

    邱振, 邹才能, 李建忠, 郭秋麟, 吴晓智, 侯连华. 2013. 非常规油气资源评价进展与未来展望[J]. 天然气地球科学, 24(2): 238−246.

    [46]

    沈海超, 程远方, 王京印, 赵益忠, 张建国. 2008. 主方向差应变地应力测量方法[J]. 新疆石油地质, (2): 250−252.

    [47]

    石林, 张旭东, 金衍, 陈勉. 2004. 深层地应力测量新方法[J]. 岩石力学与工程学报, (14): 2355−2358.

    [48]

    王成虎, 高桂云, 王洪, 王璞. 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167−174.

    [49]

    王璞, 王成虎, 杨汝华, 侯正阳, 王洪. 2019. 基于应力多边形与震源机制解的深部岩体应力状态预测方法初探[J]. 岩土力学, 40(11): 4486−4496.

    [50]

    王小琼, 葛洪魁, 宋丽莉, 和泰名, 辛维. 2011. 两类岩石声发射事件与Kaiser效应点识别方法的试验研究[J]. 岩石力学与工程学报, 30(3): 580−588.

    [51]

    尹帅, 丁文龙, 林利飞, 刘翰林, 李爱荣. 2023. 鄂尔多斯盆地西部志丹–吴起地区延长组裂缝特征及其控藏作用[J]. 地球科学, 48(7): 2614−2629.

    [52]

    尹帅, 孙晓光, 邬忠虎, 王应斌, 赵靖舟, 孙伟豪, 闫浩霖. 2022. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用[J]. 中南大学学报(自然科学版), 53(9): 3724−3737.

    [53]

    印兴耀, 马妮, 马正乾, 宗兆云. 2018. 地应力预测技术的研究现状与进展[J]. 石油物探, 57(4): 488−504.

    [54]

    张重远, 吴满路, 陈群策, 廖椿庭, 丰成君. 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3): 305−310.

    [55]

    张金才, 范鑫, 黄志文, 刘忠群, 亓原昌. 2021. 四川盆地川西坳陷上三叠统须家河组储层各向异性地应力评价方法[J]. 石油与天然气地质, 42(4): 963−972.

    [56]

    张抗, 张立勤, 刘冬梅. 2022. 近年中国油气勘探开发形势及发展建议[J]. 石油学报, 43(1): 15−28,111.

    [57]

    赵刚, 董事尔. 2009. 水压致裂法测量地应力理论与应用[J]. 山西建筑, 35(36): 77−78. doi: 10.3969/j.issn.1009-6825.2009.36.048

    [58]

    郑和荣, 刘忠群, 徐士林, 刘振峰, 刘君龙, 黄志文, 黄彦庆, 石志良, 武清钊, 范凌霄, 高金慧. 2021. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 42(4): 765−783.

    [59]

    周文. 2006. 川西致密储层现今地应力场特征及石油工程地质应用研究[D]: 成都: 成都理工大学, 1–142.

    [60]

    朱海燕, 宋宇家, 胥云, 李奎东, 唐煊赫. 2021. 页岩气储层四维地应力演化及加密井复杂裂缝扩展规律[J]. 石油学报, 42(9): 1224−1236.

    [61]

    邹才能, 陶士振, 杨智, 袁选俊, 朱如凯, 侯连华, 贾进华, 王岚, 吴松涛, 白斌, 高晓辉, 杨春. 2012. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 31(4): 312−322.

    [62]

    邹才能, 杨智, 何东博, 位云生, 李剑, 贾爱林, 陈建军, 赵群, 李易隆, 李君, 杨慎. 2018. 常规–非常规天然气理论、技术及前景[J]. 石油勘探与开发, 45(04): 575−587.

  • 加载中

(15)

(5)

计量
  • 文章访问数:  305
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2023-03-06
修回日期:  2023-05-23
刊出日期:  2024-01-25

目录