中国地质调查局 中国地质科学院主办
科学出版社出版

世界天然碱矿床资源分布、成矿因素及找矿远景

陈振红, 陈建立, 王九一, 陈英男, 王春连, 杨飞. 2023. 世界天然碱矿床资源分布、成矿因素及找矿远景[J]. 中国地质, 50(5): 1399-1413. doi: 10.12029/gc20230516001
引用本文: 陈振红, 陈建立, 王九一, 陈英男, 王春连, 杨飞. 2023. 世界天然碱矿床资源分布、成矿因素及找矿远景[J]. 中国地质, 50(5): 1399-1413. doi: 10.12029/gc20230516001
CHEN Zhenhong, CHEN Jianli, WANG Jiuyi, CHEN Yingnan, WANG Chunlian, YANG Fei. 2023. Distribution and genesis of global Na-carbonate deposits and its prospecting potential[J]. Geology in China, 50(5): 1399-1413. doi: 10.12029/gc20230516001
Citation: CHEN Zhenhong, CHEN Jianli, WANG Jiuyi, CHEN Yingnan, WANG Chunlian, YANG Fei. 2023. Distribution and genesis of global Na-carbonate deposits and its prospecting potential[J]. Geology in China, 50(5): 1399-1413. doi: 10.12029/gc20230516001

世界天然碱矿床资源分布、成矿因素及找矿远景

  • 基金项目:
    河南省地勘基金项目(豫国发[2014]3号、豫国土资发[2012]80号)、中央级公益性科研院所基本科研业务费专项(KK2005、KK2110)与中国地质调查局项目(DD20190606)联合资助
详细信息
    作者简介: 陈振红, 女, 2000年生, 硕士生, 从事矿产普查与勘探; E-mail: 2562578635@qq.com
    通讯作者: 王九一, 男, 1983年生, 博士, 副研究员, 主要从事非金属矿床成矿规律研究; E-mail: wjyhlx@163.com
  • 中图分类号: P612

Distribution and genesis of global Na-carbonate deposits and its prospecting potential

  • Fund Project: Supported by the projects of Henan Geological Exploration Foundation (No.[2012]80, No.[2014]3), CAGS Funds (No.KK2005, No.KK2110) and China Geological Survey (No.DD20190606)
More Information
    Author Bio: CHEN Zhenhong, female, born in 2000, master candidate, engaged in mineral resource prospecting and exploration; E-mail: 2562578635@qq.com .
    Corresponding author: WANG Jiuyi, male, born in 1983, doctor, associate professor, engaged in mineralization of nonmetallic deposit; E-mail: wjyhlx@163.com
  • 研究目的

    天然碱矿主要用于制纯碱,和合成碱相比,具有绿色环保、成本低的优势。其下游产业遍布各个领域,如玻璃、医药等。光伏等新能源产业的蓬勃发展给纯碱带来了新需求。中国是纯碱消费大国,天然碱或成为稀缺资源。天然碱矿是一种蒸发岩矿床,成矿过程具有重要的研究意义,国内蒸发岩矿床研究领域对天然碱矿的关注较少。理清世界天然碱矿产资源类型、分布特征,总结碱矿成因对深化中国天然碱矿成矿规律研究、预测找矿远景、寻找天然碱矿床具有积极意义。

    研究方法

    搜集已公开发表或出版的天然碱矿床资料,对世界典型矿床区域概况、物源、成因等内容进行系统总结。

    研究结果

    绝大部分天然碱矿床分布于北美洲、亚洲和非洲,主要形成于新生代。类型以现代天然碱矿床居多,古代天然碱矿床较少,但资源规模大。古代天然碱矿以美国绿河组、河南泌阳凹陷安棚天然碱矿最为典型,现代天然碱矿以肯尼亚马加迪湖和内蒙古查干诺尔泡碱矿床为典型。

    结论

    天然碱矿需要在封闭的构造环境、干旱的气候条件、充足的碳酸钠型卤水补给等成矿因素耦合条件成矿。与其他蒸发岩不同的是,维持碳酸钠型卤水所需的CO2来源具有复杂性。中国天然碱矿找矿远景应聚焦内蒙古第四纪盐湖、白垩纪封闭凹陷,以及河南始新世白云岩、油页岩发育的封闭盆地等地。积极开展天然碱矿成矿理论研究和找矿工作具有重要意义。

  • 加载中
  • 图 1  世界主要天然碱矿分布图(据Warren, 2010

    Figure 1. 

    图 2  形成天然碱矿的不饱和卤水演化路径(改自Hardie and Eugster, 1970

    Figure 2. 

    图 3  苏打石-天然碱-泡碱随温度、CO2的变化的稳定图(改自Jagniecki et al., 2015

    Figure 3. 

    图 4  绿河组沉积盆地地质简图及盐类矿床地层柱状简图(改自Dyni, 1997

    Figure 4. 

    图 5  贝帕扎里盆地地质简图及天然碱矿床地层柱状简图(据Helvaci, 2010

    Figure 5. 

    图 6  泌阳凹陷地质简图及安棚天然碱矿床岩性柱状简图(据杨江海等, 2014; 易承龙, 2016

    Figure 6. 

    图 7  东非大裂谷东支区域图(a)与马加迪湖区地质图(b)(改自Eugster and Blair, 1968; Schubel and Simonson, 1990; Damnati et al., 1992; Owen et al., 2019

    Figure 7. 

    图 8  查干诺尔区域地质简图和泡碱矿床岩性柱状简图(改自张晨鼎, 2013

    Figure 8. 

    图 9  中国天然碱矿产地(全国矿产地数据库, 2021

    Figure 9. 

    表 1  纯碱矿物产量及碳酸钠储量(据USGS, 2023

    Table 1.  Soda-ash mine production and reserves (after USGS, 2023)

    下载: 导出CSV

    表 2  世界典型天然碱矿床(据张晨鼎, 2013; 叶铁林, 2013; Warren, 2016

    Table 2.  Typical Na-carbonate deposits in the world (after Zhang Chending, 2013; Ye Tielin, 2013; Warren, 2016)

    下载: 导出CSV
  • Baker B H, Mitchell J G. 1976. Volcanic stratigraphy and geochronology of the Kedong-Olorgesailie area and the evolution of the South Kenya rift valley[J]. Journal of the Geological Society, 132: 467-484. doi: 10.1144/gsjgs.132.5.0467

    Baker B H. 1986. Tectonics and volcanism of the southern Kenya Rift Valley and its influence on rift sedimentation[J]. Geological Society London Special Publications, 25(1): 45-57. doi: 10.1144/GSL.SP.1986.025.01.05

    Chen Jianli. 2013. Geological characteristics, genesis and ore prediction of natural soda deposit in Biyang depression: Taking Anpeng trona deposit as an example[J]. Contributions to Geology and Mineral Resources Research, 28(3): 393-400 (in Chinese with English abstract).

    Crossley R. 1979. The Cenozoic stratigraphy and structure of the western part of the Rift Valley in southern Kenya[J]. Journal of the Geological Society, 136(4): 393-405. doi: 10.1144/gsjgs.136.4.0393

    Culbertson W C. 1972. Trona and Halite resources in Wilkins Peak Member of Green river Formation, Green River Basin, Wyoming: Abstract[J]. AAPG Bulletin, 56: 612-612.

    Cumming V M, Selby D, Lillis P G. 2012. Re-Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re-Os systematics and paleocontinental weathering[J]. Earth and Planetary Science Letters, 359/360: 194-205. doi: 10.1016/j.epsl.2012.10.012

    Cumming V M, Selby D, Lillis P G, Lewan M D. 2014. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type Ⅰ lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 138: 32-56. doi: 10.1016/j.gca.2014.04.016

    Damnati B, Taieb M, Williamson D. 1992. Laminated deposits from Lake Magadi (Kenya); climatic contrast effect during the maximum wet period between 12, 000-10, 000 yrs BP[J]. Bulletin De La Société Géologique De France, 163(4): 407-414.

    Demicco R V, Lowenstein T K, Hardie L A. 2003. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy[J]. Geology, 31(9): 793-796. doi: 10.1130/G19727.1

    Dickinson W R, Klut M A, Hayes M J, Janecke S U, Lundin E R, McKittrick M A, Olivares M D. 1988. Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region[J]. Geological Society of America Bulletin, 100: 1023-1039. doi: 10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2

    Earman S, Phillips F M, McPherson B J O L. 2005. The role of "excess" CO2 in the formation of trona deposits[J]. Applied Geochemistry, 20(12): 2217-2232. doi: 10.1016/j.apgeochem.2005.08.007

    Eugster H P. 1967. Hydrous sodium silicates from lake Magadi, Kenya: Precursors of bedded chert[J]. Science, 157(3793): 1177-1180. doi: 10.1126/science.157.3793.1177

    Eugster H P, Blair F J. 1968. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya[J]. Science, 161(3837): 160-163. doi: 10.1126/science.161.3837.160

    Eugster H P. 1969. Inorganic bedded cherts from the Magadi area, Kenya[J]. Contributions to Mineralogy and Petrology, 22(1): 1-31. doi: 10.1007/BF00388011

    Eugster H P, Hardie L A. 1975. Sedimentation in an ancient PlayaLake Complex: The Wilkins peak member of the Green River Formation of Wyoming[J]. Geological Society of America Bulletin, 86(3): 319-334. doi: 10.1130/0016-7606(1975)86<319:SIAAPC>2.0.CO;2

    Eugster H P, Jones B F, Shirley L R. 1977. Hydrochemistry of the Lake Magadi basin, Kenya[J]. Geochimica et Cosmochimica Acta, 41(1): 53-72. doi: 10.1016/0016-7037(77)90186-7

    Eugster H P. 1980. Hypersaline Brines and Evaporitic Environments[M]. Netherland: Elsevier Science.

    Garcia-Veigas J, Gundogan I, Helvacı C, Prats E. 2013. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazari trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 294: 315-327. doi: 10.1016/j.sedgeo.2013.06.011

    Hardie L A, Eugster H P. 1970. The evolution of closed-basin brines[J]. Mineralogical Society of America Special Publication, 3: 253-273.

    Helvaci C, Inci U, Yilmaz H, Yaǧmurlu F. 1989. Geology and Neogene trona deposit of the Beypazari region, Turkey[J]. Turkish Journal of Engineering and Environmental Sciences, 13: 245-256.

    Helvaci C. 1998. The Beypazari Trona Deposit, Ankara Province, Turkey[C]//Wyoming State Geological Survey Public Information Circular 40.

    Helvaci C. 2010. Geology of the Beypazari trona field, Ankara, Turkey. Mid-congress field excursion guide book, tectonic crossroads: Evolving orogens of Eurasia-Africa-Arabia[C]//Tectonic Crossroads: Evolving Orogens of Eurasia-AfricaArabia, Ankara, Turkey.

    Hyland E G, Sheldon N. 2013. Coupled CO2-climate response during the Early Eocene climatic optimum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 125-135. doi: 10.1016/j.palaeo.2012.10.011

    Inci U. 1991. Miocene alluvial fan-alkaline playa lignite-trona bearing deposits from an inverted basin in Anatolia: Sedimentology and tectonic controls on deposition[J]. Sedimentary Geology, 71(1): 73-97.

    Jagniecki E A, Lowenstein T K, Jenkins D M, Demicco R V. 2015. Eocene atmospheric CO2 from the nahcolite proxy[J]. Geology, 43(12): 1075-1078.

    Jagniecki E A, Lowenstein T K, Demicco R V, Baddouh M, Carroll A R, Beard B L, Johnson C M. 2021. Spring origin of Eocene carbonate mounds in the Green River Formation, Northern Bridger Basin, Wyoming, USA[J]. Sedimentology, 68(6): 2334-2364. doi: 10.1111/sed.12852

    Jin Qiang, Xiong Shousheng, Lu Peide. 1998. Volcanic activity in major source rocks in faulted basins of China and its significance in main source rocks of fault basins in China [J]. Geological Review, 44: 136-142 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1998.02.004

    Lee H, Muirhead J. D, Fischer T P, Ebinger C J, Sharp Z. D, Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting[J]. Nature Geoscience, 9: 145-149. doi: 10.1038/ngeo2622

    LeGall B, Nonnotte, P, Rolet J, Benoit M, Guillou, H, MousseauNonnotte M, Albaric J, Deverchère J. 2008. Rift propagation at craton margin. Distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times[J]. Tectonophysics, 448, 1-19. doi: 10.1016/j.tecto.2007.11.005

    Lowenstein T K, Demicco R V. 2006. Elevated Eocene atmospheric CO2 and its subsequent decline[J]. Science, 313(5795): 1928-1928. doi: 10.1126/science.1129555

    Lowenstein T K, Lauren A D, García-Veigas, J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California[J]. Geological Society of America Bulletin, 128: 1555-1568. doi: 10.1130/B31398.1

    Lowenstein T K, Jagniecki E A, Carroll A R, Smith M E, Renaut R W, Owen R B. 2017. The Green River salt mystery: What was the source of the hyperalkaline lake waters?[J]. Earth-Science Reviews, 173: 295-306. doi: 10.1016/j.earscirev.2017.07.014

    Lowenstein T K, Demicco R V. 2019. When evaporites are not formed by evaporation-The role of temperature and pCO2 on saline deposits of the Eocene Green River Formation, Colorado, USA[J]. Geological Society of America Bulletin, 132: 1365-1380.

    McNulty E. 2017. Lake Magadi and the Soda Lake Cycle: A Study of the Modern Sodium Carbonates and of Late Pleistocene and Holocene Lacustrine Core Sediments[D]. Binghamton: Binghamton University.

    Muirhead J D, Simon A K, Hyunwoo L, Sara M, Brent D T, Tobias P F, Kianji G W, Sarah S D. 2016. Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift[J]. Geosphere, 12: 1670-1700. doi: 10.1130/GES01375.1

    Ogola J S, Behr H J. 2000. Mineralogy and Trona Formation in lake Magadi, Kenya[C]//Applied Mineralogy in Research, Economy, Technology, Ecology and Culture: Proceedings of the Sixth International Congress on Applied Mineralogy. Göttingen, GER: ICAM, 383-386.

    Olson K J, Lowenstein T K. 2021. Searles Lake evaporite sequences Indicators of late Pleistocene-Holocene lake temperatures, brine evolution, and pCO2[J]. Geological Society of America Bulletin, 133(11): 2319-2334.

    Owen R B, Muiruri V M, Lowenstein T K, Renaut R W, Rabideaux N, Luo S, Deino A L, Sier M J, Dupont-Nivet G, McNulty E P, Leet K, Cohen A, Campisano C, Deocampo D, Shen C, Billingsley A, Mbuthia A. 2018. Progressive aridification in East Africa over the last half million years and implications for human evolution[J]. Proceedings of the National Academy of Sciences, 115(44): 11174-11179. doi: 10.1073/pnas.1801357115

    Owen R B, Renaut R W, Muiruri V M, Rabideaux N M, Lowenstein T K, McNulty E P, Leet K, Deocampo, D, Luo S, Deino A L, Cohen, A, Sier M J, Campisano, C, Shen C, Billingsley A, Mbuthia A, Stockhecke M. 2019. Quaternary history of the Lake Magadi Basin, southern Kenya Rift: Tectonic and climatic controls[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 518: 97-118. doi: 10.1016/j.palaeo.2019.01.017

    Qi Bingde, Xie Xing, Deng Liangwu, Zeng Qingliang, Ma Lanlan. 2011. Analysis on metallogenic conditions of Chaganur natural alkali deposit in Sunite Right Banner, Inner Mongolia[J]. Journal of Sichuan Geology, 31(S1): 8-10 (in Chinese).

    Renaut R W, Ashley G M. 2002. Sedimentation in Continental Rifts[M]. US: SEPM Society for Sedimentary Geology.

    Renaut R W, Owen R B, Lowenstein T K, De C G, Mcnulty E, Scott J J, Mbuthia A. 2021. The role of hydrothermal fluids in sedimentation in saline alkaline lakes: Evidence from Nasikie Engida, Kenya Rift Valley[J]. Sedimentology, 68(1): 108-134. doi: 10.1111/sed.12778

    Schubel K A, Simonson B M. 1990. Petrography and diagenesis of cherts from Lake Magadi, Kenya[J]. Journal of Sedimentary Petrology, 60(5): 761-776.

    Smith M E, Carroll A R, Scott J J, Singer B S. 2014. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming[J]. Earth and Planetary Science Letters, 403: 393-406. doi: 10.1016/j.epsl.2014.06.024

    USGS. 2023. Mineral Commodity Summaries[R]. United States Geological Survey.

    Wang Aiyun, Chen Wenxi. 2022. Trona: From ancient washing powder to the mother of chemical industry[J]. Earth, (1): 6-11 (in Chinese).

    Wang Jiuyi, Liu Chenglin, Wang Chunlian, Yu Xiaocan, Yan Kai, Gao Chao. 2021. Tectono-paleoclimatic coupling process for mineralization of Late Cretaceous-Paleogene evaporites in South China[J]. Acta Geologica Sinica, 95(7): 2041-2051 (in Chinese with English abstract).

    Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. EarthScience Reviews, 98(3/4): 217-268.

    Warren J K. 2016. Evaporites: Sediments, Resources and Hydrocarbons[M]. Switzerland: Springer International Publishing AG.

    Xu Hong, Peng Qiming, Martin R Palmer. 2004. Origin of tourmalinerich rocks in a Paleoproterozoic terrene (N.E. China): Evidence for evaporite-derived boron[J]. Geology in China, (3): 240-253 (in Chinese with English abstract).

    Xu Yang, Cao Yangtong, Liu Chenglin. 2021. Whether the middle Eocene salt-forming brine in the Kuqa Basin reached the potashforming stage: Quantitative evidence from halite fluid inclusions[J]. Geofluids, 2: 1-12.

    Xu Yang, Liu Chenglin, Cao Yangtong. 2021. Salt-forming evolution characteristics of Middle Eocene in the Kuqa basin, Xinjiang: A case study of borehole KL4[J]. Acta Geologica Sinica, 95(7): 2183-2192 (in Chinese with English abstract).

    Yan Kai, Liu Chenglin, Wang Chunlian, Fan Meiling, Xu Haiming, Wang Jiuyi. 2021. Mineral deposition and paleoenvironment of Cretaceous evaporite in Southwestern Congo[J]. Acta Petrologica et Mineralogica, 40(3): 525-534 (in Chinese with English abstract).

    Yang Jianghai, Yi Chenglong, Du Yuansheng, Zhang Zongheng, Yan Jiaxin. 2014. Geochemical characteristics of Paleogene alkalibearing rock series in Biyang Depression and their indicative significance for alkali-formation[J]. Scientia Sinica (Terrae), 44(10): 2172-2184 (in Chinese). doi: 10.1360/zd-2014-44-10-2172

    Ye Tielin. 1978. Trona and its genesis briefly[J]. Industrial Minerals and Processing, 6: 18-23 (in Chinese).

    Ye Tielin. 2013. Trona Resources, Geology, Mining and Processing, 3rd Edition[M]. Beijing: Chemical Industry Press (in Chinese).

    Yi Chenglong. 2016. Sequence stratigraphy characteristics and its significance of alkaliferous strata of the Paleogene Hetaoyuan Formation in Anpeng area, Biyang sag in Henan Province[J]. Journal of Palaeogeography (Chinese Edition), 18(1): 93-100 (in Chinese with English abstract).

    Zachos J C, Dickens G R, Zeebe R E. 2008. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 451: 279-283. doi: 10.1038/nature06588

    Zhang Chending. 1979. Soda-ash deposits[J]. Soda Industry, 3: 56-64(in Chinese).

    Zhang Chending. 2004. Development of the Trona deposit in Beypazari, Turkey [J]. Soda ash Industry, (2): 15-18 (in Chinese).

    Zhang Chending. 2013. Development of the Trona Deposit[M]. Beijing: China Petrochemical Press (in Chinese).

    Zhang Tianfu, Zhang Yun, Cheng Xianyu, Sun Lixin, Cheng Yinhang, Zhou Xiaoxi, Wang Shaooyi, Ma Hailin, Lu Chao. 2020. Borehole databases and 3D geological model of Jurassic-Cretaceous strata in Dongsheng area, North Odors Basin[J]. China Geology, 47(S1): 220-245 (in Chinese with English abstract).

    Zhong Yisi, Wang Licheng, Dong Haowei. 2022. Evaporite sedimentary characteristics and environment: A review[J]. Acta Sedimentologica Sinica, 40(5): 1188-1214 (in Chinese with English abstract).

    陈建立. 2013. 泌阳凹陷碱矿床地质特征、成因及成矿预测——以安棚碱矿床为例[J]. 地质找矿论丛, 28(3): 393-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201303010.htm

    金强, 熊寿生, 卢陪德. 1998. 中国断陷盆地主要生油岩中的火山活动及其意义[J]. 地质论评, 44: 136-142. doi: 10.16509/j.georeview.1998.02.005

    齐兵德, 谢星, 邓良武, 曾清亮, 马兰兰. 2011. 内蒙古苏尼特右旗查干诺尔天然碱矿成矿条件浅析[J]. 四川地质学报, 31(S1): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB2011S1005.htm

    王爱云, 陈文西. 2022. 天然碱: 从古代洗衣粉到化工之母[J]. 地球, (1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DIQU202201003.htm

    王九一, 刘成林, 王春连, 余小灿, 颜开, 高超. 2021. 晚白垩世-古近纪华南蒸发岩矿床形成的构造和气候耦合控制[J]. 地质学报, 95(7): 2041-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202107004.htm

    许虹, 彭齐鸣, Martin R Palmer. 2004. 辽宁古元古代地体中富电气石岩石的成因: 蒸发岩硼源的证据(英文)[J]. 中国地质, (3): 240-253. http://geochina.cgs.gov.cn/geochina/article/abstract/20040302?st=search

    徐洋, 刘成林, 曹养同. 2021. 新疆库车盆地中始新世成盐演化特征——以KL4钻孔为例[J]. 地质学报, 95(7): 2183-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202107017.htm

    颜开, 刘成林, 王春连, 范美玲, 徐海明, 王九一. 2021. 刚果盆地西南部白垩纪蒸发岩矿物与古环境特征[J]. 岩石矿物学杂志, 40(3): 525-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202103006.htm

    杨江海, 易承龙, 杜远生, 张宗恒, 颜佳新. 2014. 泌阳凹陷古近纪含碱岩系地球化学特征对成碱作用的指示意义[J]. 中国科学: 地球科学, 44(10): 2172-2184. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410006.htm

    叶铁林. 1978. 天然碱及其成因简述[J]. 化工矿山技术, 6: 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ197806003.htm

    叶铁林. 2013. 天然碱资源·地质·开采·加工第3版[M]. 北京: 化学工业出版社.

    易承龙. 2016. 河南省泌阳凹陷安棚地区古近系核桃园组含碱地层层序特征及其意义[J]. 古地理学报, 18(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601008.htm

    张晨鼎. 1979. 天然碱矿床[J]. 纯碱工业, 3: 56-64.

    张晨鼎. 2004. 土耳其贝帕扎里天然碱矿床的开发[J]. 纯碱工业, (2): 15-18.

    张晨鼎. 2013. 天然碱矿床开发[M]. 北京: 中国石化出版社.

    张天福, 张云, 程先钰, 孙立新, 程银行, 周小希, 王少轶, 马海林, 鲁超. 2020. 鄂尔多斯盆地北部东胜地区侏罗系-白垩系钻孔数据库与三维地质模型[J]. 中国地质, 47(S1): 220-245. http://geochina.cgs.gov.cn/geochina/article/abstract/2020S120?st=search

    钟逸斯, 王立成, 董浩伟. 2022. 蒸发岩沉积特征及环境综述[J]. 沉积学报, 40(5): 1188-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202205003.htm

  • 加载中

(9)

(2)

计量
  • 文章访问数:  2801
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2023-05-16
修回日期:  2023-07-25
刊出日期:  2023-10-25

目录