中国地质调查局 中国地质科学院主办
科学出版社出版

干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展

李畅, 杨忠芳, 余涛, 牛荣琛, 郭茹璨, 余保成, 夏学齐, 于朝阳, 曹圆圆. 2024. 干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展[J]. 中国地质, 51(4): 1210-1242. doi: 10.12029/gc20230814001
引用本文: 李畅, 杨忠芳, 余涛, 牛荣琛, 郭茹璨, 余保成, 夏学齐, 于朝阳, 曹圆圆. 2024. 干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展[J]. 中国地质, 51(4): 1210-1242. doi: 10.12029/gc20230814001
LI Chang, YANG Zhongfang, YU Tao, NIU Rongchen, GUO Rucan, YU Baocheng, XIA Xueqi, YU Chaoyang, CAO Yuanyuan. 2024. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 51(4): 1210-1242. doi: 10.12029/gc20230814001
Citation: LI Chang, YANG Zhongfang, YU Tao, NIU Rongchen, GUO Rucan, YU Baocheng, XIA Xueqi, YU Chaoyang, CAO Yuanyuan. 2024. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 51(4): 1210-1242. doi: 10.12029/gc20230814001

干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展

  • 基金项目: 宁夏回族自治区重点研发计划重大(重点)项目“宁夏中北部土壤碳汇源转化因素与碳库保育研究”(2022BBF02036)。
详细信息
    作者简介: 李畅,女,1999年生,硕士生,地球化学专业,主要从事环境地球化学研究工作;E-mail:1428268498@qq.com
    通讯作者: 杨忠芳,女,1961年生,教授,主要从事环境地球化学、生态地球化学方面的教学及科研工作;E-mail: zfyang01@126.com
  • 中图分类号: S153.6

Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review

  • Fund Project: Supported by the Key R & D Program of Ningxia Hui Autonomous Region “Research on the transformation factors of soil carbon sinks and carbon pool conservation in north−central Ningxia” (No.2022BBF02036).
More Information
    Author Bio: LI Chang, female, born in 1999, master candidate, majors in geochemistry, engaged in environmental geochemistry research; E-mail: 1428268498@qq.com .
    Corresponding author: YANG Zhongfang, female, born in 1961, professor, engaged in environmental geochemistry and ecological geochemistry related teaching and research; E-mail: zfyang01@126.com.
  • 研究目的

    干旱区土壤无机碳作为全球碳循环举足轻重的组成部分,其碳汇效应不容忽视。

    研究方法

    本文查阅了大量国内外干旱区土壤无机碳的相关文献,重点对土壤无机碳汇确认、碳库组成、来源识别,以及碳汇影响因素进行了系统性归纳总结。

    研究结果

    干旱区无机碳汇效应伴随着干旱区负通量研究得到确认,但其碳库组成十分复杂,包括了液相碳库与固相碳库。其中液相储库主要以可溶性碳酸盐形式赋存于干旱区地下水体;固相储库则为以固相碳酸盐矿物的形式赋存在土壤中,依据不同成因来源分为成岩碳酸盐与成土碳酸盐,后者又细分为碳质成土碳酸盐与硅质成土碳酸盐。成土碳酸盐中的硅质成土碳酸盐具备真正长期稳定的碳汇效应。无机碳汇的影响因素复杂,包括了自然的气候、土壤性质与深度、生物作用、成土母质、土壤有机质等因素,以及土地利用与土地覆盖、农业管理措施等人为因素。

    结论

    干旱区土壤无机碳对全球碳循环研究极其重要,当前研究主要聚焦在土壤无机碳来源分辨,碳汇效应强度确认与固碳潜力量化,以及影响因素明确与人为干预的可能性评估等方面。在实现“双碳目标”驱动下,查清干旱—半干旱地区土壤无机碳源汇过程与影响因素必将是未来的研究热点,也是解决“碳失汇”科学难题的突破点,极大地推动全球碳循环研究。

  • 加载中
  • 图 1  全球碳库与碳失汇示意图(据Lal,2019Naorem et al., 2022修改)

    Figure 1. 

    图 2  全球土壤无机碳密度分布图及其与年平均降水量低值区的相关性(据Zamanian et al., 2016修改)

    Figure 2. 

    图 3  荒漠土壤CO2负通量的对比实验验证(据Ma et al., 2013修改)

    Figure 3. 

    图 4  土壤无机碳固相、液相储库与转移转化过程示意图

    Figure 4. 

    图 5  土壤无机碳库组成、来源辨析与碳汇作用示意图

    Figure 5. 

    图 6  塔里木盆地土壤无机碳液相储库DIC淋溶传输(据Li et al., 2015

    Figure 6. 

    图 7  景观与剖面尺度中原生碳酸盐与次生碳酸盐赋存形态区别

    Figure 7. 

    图 8  微观尺度中原生碳酸盐与次生碳酸盐赋存形态区别

    Figure 8. 

    图 9  不同来源成土碳酸盐风化与固碳过程示意图(据Monger et al.,2015修改)

    Figure 9. 

    图 10  碳酸盐世代分类示意图(据Monger et al.,2015修改)

    Figure 10. 

    图 11  不同pH下溶液中3种碳酸的比例变化曲线

    Figure 11. 

    图 12  土壤无机碳影响因素关系示意图

    Figure 12. 

    图 13  土壤无机碳溶解损失与源汇效应示意图

    Figure 13. 

    图 14  植物根系促进周围PC沉淀以及钙质根石(Rhizoliths)形成过程示意图(据Zamanian et al., 2016修改)

    Figure 14. 

    表 1  全球干旱荒漠区CO2负通量报告统计(据Schlesinger,2017修改)

    Table 1.  Global negative CO2 flux reporting statistics for arid desert regions (modified from Schlesinger, 2017)

    研究地点 年平均
    降水量/
    mm
    负通量/
    (g C m−2 a−1)
    文献来源
    墨西哥,下加利福尼亚州 174 39~52 Hastings et al., 2005
    美国,莫哈韦沙漠 150 102~127 Jasoni et al., 2005Wohlfahrt et al., 2008
    中国,古尔班通古特沙漠 160 62~622 Xie et al., 2009
    173 49 Liu et al., 2012
    164 25 Ma et al., 2014
    中国,宁夏 287 77 Jia et al., 2014
    275 28 Liu et al., 2015a
    中国,塔里木盆地 21 Li et al., 2015
    下载: 导出CSV

    表 2  基于δ13C值估算的不同地区土壤无机碳PC与LC占比

    Table 2.  Estimated percentage of soil inorganic carbon PC and LC in different regions based on δ13C values

    地点 PC占比/
    %
    PC含量/(g/kg) 文献来源
    塔里木盆地阿拉尔垦区 1.33~35.7 1.34~56.36 李杨梅等,2018
    内蒙古乌兰察布 17.4~83.6 42~177 张林等,2010
    俄罗斯 20~50 / Morgun et al., 2008
    俄罗斯 66.8~73.8 26.9~60.1 Ryskov et al., 2008
    美国德克萨斯州 2~11,
    9~20,
    60~70,
    17~100
    / Nordt et al., 1998
    美国德克萨斯州 40~90 / Rabenhorst et al., 1983
    以色列 30~60 / Magaritz and Amiel, 1980
    下载: 导出CSV

    表 3  基于87Sr/86Sr值估算的不同地区土壤无机碳SPC与CPC占比

    Table 3.  Soil inorganic carbon SPC and CPC shares in different regions estimated based on 87Sr/86Sr values

    地点 PC钙源/SPC占比 成土母质 文献来源

    摩洛哥阿特拉斯 来自降水以及基岩风化 玄武岩 Hamidi et al., 2001
    智利阿塔卡马沙漠 沿海地区主要来自海洋气溶胶输入(>50%),
    大陆内部主要来自基岩风化
    岩浆岩+灰岩+碎屑岩 Rech et al., 2003
    印度西高止山脉 来自非钙质基岩风化以及风沙 片麻岩+花岗岩+绿岩 Durand et al., 2006

    西班牙两座火山岛 极少 岩浆岩+砂岩+风积物 Huerta et al., 2015
    美国新墨西哥州 <2% 非钙质冲积物 Capo and Chadwick,1999
    西班牙中部 2.7% ~ 7.8% 花岗岩 Chiquet et al., 1999
    澳大利亚中南部 ~10% 花岗岩、玄武岩、角闪岩、绿岩、页岩 Dart et al., 2007
    夏威夷岛 33% 玄武岩 Whipkey et al., 2000
    美国西南部 39~58% 岩浆岩+灰岩 Naiman et al., 2000
    印度南部 24%~82% 片麻岩+超镁质岩 Violette et al., 2010
    喀麦隆远北地区 >50% 花岗岩+绿岩 Dietrich et al., 2017
      注:定性指研究中基于87Sr/86Sr值推断PC的主要钙源,并未得到明确SPC占比的;定量指研究中基于87Sr/86Sr值得出明确SPC占比或来自硅酸岩风化钙源贡献比例的。
    下载: 导出CSV

    表 4  不同深度土壤中土壤无机碳占比

    Table 4.  Percentage of soil inorganic carbon in soils at different depths

    研究地点 不同深度SIC分布结论 文献来源
    中国 1~3 m储量占比54.9%~88.5% Li et al., 2007
    内蒙古 1~3 m储量占比>50% Wang et al., 2010
    兰州 1~2 m储量占比50% Zhang et al., 2015
    西班牙东南部 1~2 m储量占比51% Dı́az−Hernández et al., 2003
    新疆 1 m以下储量占比>80%,3 m以下储量占比>50% Wang et al., 2013a
    加拿大萨斯喀彻温省 深层土壤(C层)储量占比几乎100% Landi et al., 2003
    内蒙古 0~30 cm、30~100 cm储量占比15%、85% Wang et al., 2013b
    黄土高原 0~20 cm、20~50 cm、50~100 cm储量均值2.39、2.92、4.89 Pg Tan et al., 2014
    新疆 0~30 cm、30~100 cm密度均值:耕地11.0、30.9 kg C m−2,灌木林地9.8、27.0 kg C m−2 Wang et al., 2015c
    青藏高原 0~30 cm、0~50 cm、0~100 cm密度均值5.70、9.10、13.46 kg C m−2 Yang et al., 2010
    黄河三角洲 0~20 cm、80~100 cm含量均值为10.48 g∙kg−1、12.72 g∙kg−1 Guo et al., 2016
    伊朗西北部 表土平均含量(A层):7.9%;深层平均含量(C层):21.2% Raheb et al., 2017
    下载: 导出CSV

    表 5  不同地区土壤无机碳与土壤有机碳相关性汇总

    Table 5.  Summary of correlation between soil inorganic carbon and soil organic carbon in different regions

    研究地点 SIC与SOC
    相关性结论
    文献来源
    甘肃省河西走廊中部 正相关 Su et al., 2010
    以色列贝特谢安 Tamir et al., 2012
    内蒙古、西藏 Shi et al., 2012
    新疆焉耆盆地 Wang et al., 2014
    新疆焉耆盆地 Wang et al., 2015b
    新疆焉耆盆地 Wang et al., 2015c
    黄河三角洲 Guo et al., 2016
    中国河北衢州
    黄土高原
    Bughio et al., 2016
    Tong et al., 2020
    室内实验 负相关 Demoling et al., 2007
    宁夏 Liu et al., 2014
    兰州 Zhang et al., 2015
    云南 Li et al., 2016
    黄土高原 Zhao et al., 2016
    黑河流域 Yang et al., 2018
    青藏高原 Du and Gao, 2020
    内蒙古、西藏 不相关 Shi et al., 2012
    华北平原 Lu et al., 2020
    西班牙巴塞罗那 PC与SOC碳
    同位素线性相关,
    具备成因联系
    Rovira and Vallejo,2008
    美国华盛顿州 Stevenson et al., 2005
    下载: 导出CSV

    表 6  土地利用类型变化与不同土地覆盖对SIC的影响

    Table 6.  Effect of land use type change and different land cover on SIC

    研究地点 研究结论 文献来源
    黄土高原 耕地−草地:SIC减少 Liu et al., 2014
    美国南部阿根廷潘帕斯草原 自然土地−灌溉耕地,SIC减少 Kim et al., 2020
    俄罗斯库尔斯克 自然土地−灌溉耕地:SIC增加 Mikhailova and Post, 2006
    新疆焉耆盆地 Wang et al., 2015b
    新疆焉耆盆地 Wang et al., 2015c
    美国西北部蛇河平原 Entry et al., 2004
    中国 Wu et al., 2009
    美国西南部 Nyachoti et al., 2019
    新疆塔里木盆地 干旱盐碱地−灌溉耕地:SIC增加 Li et al., 2015
    甘肃省河西走廊中部 沙地−灌木、林地、耕地:SIC增加 Su et al., 2010
    华北平原 普通耕地−集约化种植耕地:SIC增加 Lu et al., 2020
    综述 草地−耕地:SIC增加;沙地−林地:SIC增加;草地、耕地−林地:SIC减少 An et al., 2019
    黄土高原 SIC密度:农田=草地>森林 Tan et al., 2014
    中国 SIC密度:沙漠、草原>灌木丛、耕地>沼泽、森林、草甸 Mi et al., 2008
    内蒙古 SIC密度:沙漠>灌木沙漠>灌木−草原>森林、草原 Wang et al., 2010
    中国西北部黑河流域 SIC密度:温带草原>高山草甸 Yang et al., 2018
    下载: 导出CSV

    表 7  灌溉对土壤SIC的影响及可能原因总结

    Table 7.  Summary of the effect of irrigation in soil SIC and possible causes

    相关性 可能原因 相关文献 研究地点
    正相关 灌溉提供溶液环境,加强生物活动,
    输入钙镁离子以及DIC,促进PC形成
    Wu et al., 2009 中国
    Zhang et al., 2015 兰州
    Bughio et al., 2016 河北衢州
    Entry et al., 2004 美国西北部蛇河平原
    Li et al., 2015 新疆塔里木盆地
    Wang et al., 2016 美国新墨西哥州
    Nyachoti et al., 2019 美国西南部
    负相关 低EC(碳酸钙不饱和)的大量灌溉
    水易造成SIC溶解流失
    Wu et al., 2008 加利福尼亚
    Schindlbacher et al., 2019 德国拜罗伊特市
    Kim et al., 2020 美国南部大平原,
    阿根廷潘帕斯草原
    下载: 导出CSV
  • [1]

    Amundson R, Stern L, Baisden T, Wang Y. 1998. The isotopic composition of soil and soil−respired CO2[J]. Geoderma, 82(1/3): 83−114. doi: 10.1016/S0016-7061(97)00098-0

    [2]

    An H, Wu X, Zhang Y, Tang Z. 2019. Effects of land−use change on soil inorganic carbon: A meta−analysis[J]. Geoderma, 353: 273−282. doi: 10.1016/j.geoderma.2019.07.008

    [3]

    Anand R R, Phang C, Wildman J E, Lintern M J. 1997. Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: implications for mineral exploration[J]. Australian Journal of Earth Sciences, 44(1): 87−103. doi: 10.1080/08120099708728296

    [4]

    Andrews J A, Schlesinger W H. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment[J]. Global Biogeochemical Cycles, 15(1): 149−162. doi: 10.1029/2000GB001278

    [5]

    Archer D. 2011. The Global Carbon Cycle[M]. Princeton: Princeton University Press.

    [6]

    Ball B A, Virginia R A, Barrett J E, Parsons A N, Wall D H. 2009. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils[J]. Soil Biology and Biochemistry, 41(7): 1510−1517. doi: 10.1016/j.soilbio.2009.04.011

    [7]

    Barker S L L, Cox S F. 2011. Oscillatory zoning and trace element incorporation in hydrothermal minerals: Insights from calcite growth experiments[J]. Geofluids, 11(1): 48−56. doi: 10.1111/j.1468-8123.2010.00305.x

    [8]

    Batjes N H. 1996. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 47(2): 151−163. doi: 10.1111/j.1365-2389.1996.tb01386.x

    [9]

    Bayat O, Karimi A, Amundson R. 2021. Stable isotope geochemistry of pedogenic carbonates in calcareous materials, Iran: A review and synthesis[J]. Geological Society Special Publication, 507(1): 255−272. doi: 10.1144/SP507-2019-236

    [10]

    Berner R A. 1992. Weathering, plants, and the long−term carbon cycle[J]. Geochimica et Cosmochimica Acta, 56(8): 3225−3231. doi: 10.1016/0016-7037(92)90300-8

    [11]

    Berner R A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2[M]. New York: Oxford University Press.

    [12]

    Berner R A, Lasaga A C, Garrels R M. 1983. Carbonate−silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 283(7): 641−683. doi: 10.2475/ajs.283.7.641

    [13]

    Berner R A, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory[J]. Geochimica et Cosmochimica Acta, 47(5): 855−862. doi: 10.1016/0016-7037(83)90151-5

    [14]

    Berthelin J. 1988. Microbial weathering processes in natural environments[J]. Physical and Chemical Weathering in Geochemical Cycles, 251: 33−59.

    [15]

    Birkeland P W. 1999. Soils and geomorphology (Book review)[J]. The Geographical Bulletin, 41(2): 121.

    [16]

    Braissant O, Verrecchia E P, Aragno M. 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated?[J]. Naturwissenschaften, 89(8): 366−370. doi: 10.1007/s00114-002-0340-0

    [17]

    Brock A L, Buck B J. 2005. A new formation process for calcic pendants from Pahranagat Valley, Nevada, USA, and implication for dating Quaternary landforms[J]. Quaternary Research, 63(3): 359−367. doi: 10.1016/j.yqres.2005.01.007

    [18]

    Bruce J P. 1999. Carbon sequestration in soils[J]. Science, 54(1): 382−389.

    [19]

    Bughio M A, Wang P, Meng F, Qing C, Kuzyakov Y, Wang X, Junejo S A. 2016. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil[J]. Geoderma, 262: 12−19. doi: 10.1016/j.geoderma.2015.08.003

    [20]

    Burgener L, Huntington K W, Hoke G D, Schauer A, Ringham M C, Latorre C, Díaz F P. 2016. Variations in soil carbonate formation and seasonal bias over > 4 km of relief in the western Andes (30 S) revealed by clumped isotope thermometry[J]. Earth and Planetary Science Letters, 441: 188−199. doi: 10.1016/j.jpgl.2016.02.033

    [21]

    Capo R C, Chadwick O A. 1999. Sources of strontium and calcium in desert soil and calcrete[J]. Earth and Planetary Science Letters, 170(1/2): 61−72. doi: 10.1016/S0012-821X(99)00090-4

    [22]

    Capo R C, Stewart B W, Chadwick O A. 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods[J]. Geoderma, 82(1/3): 197−225. doi: 10.1016/S0016-7061(97)00102-X

    [23]

    Cerling T E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229−240. doi: 10.1016/0012-821X(84)90089-X

    [24]

    Chadwick O A, Sowers J M, Amundson R G. 1989. Morphology of calcite crystals in clast coatings from four soils in the Mojave Desert region[J]. Soil Science Society of America Journal, 53(1): 211−219. doi: 10.2136/sssaj1989.03615995005300010038x

    [25]

    Chiquet A, Michard A, Nahon D, Hamelin B. 1999. Atmospheric input vs in situ weathering in the genesis of calcretes: an Sr isotope study at Gálvez (Central Spain)[J]. Geochimica et Cosmochimica Acta, 63(3−4): 311−323. doi: 10.1016/S0016-7037(98)00271-3

    [26]

    Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 10: 172−185. doi: 10.1007/s10021-006-9013-8

    [27]

    Da J, Zhang Y G, Li G, Meng X, Ji J. 2019. Low CO2 levels of the entire Pleistocene epoch[J]. Nature Communications, 10(1): 4342. doi: 10.1038/s41467-019-12357-5

    [28]

    Da J, Zhang Y G, Li G, Meng X, Ji J. 2020. Aridity−driven decoupling of δ13C between pedogenic carbonate and soil organic matter[J]. Geology, 48(10): 981−985. doi: 10.1130/G47241.1

    [29]

    Da Jiawei. 2020. Quantitative Reconstruction of Paleoatmospheric CO2 Levels Using Pedogenic Carbonates from the Chinese Loess Plateau[D]. Nanjing: Nanjing University (in Chinese with English abstract).

    [30]

    Dart R C, Barovich K M, Chittleborough D J, Hill S M. 2007. Calcium in regolith carbonates of central and southern Australia: Its source and implications for the global carbon cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3/4): 322−334.

    [31]

    Demoling F, Figueroa D, Bååth E. 2007. Comparison of factors limiting bacterial growth in different soils[J]. Soil Biology and Biochemistry, 39(10): 2485−2495. doi: 10.1016/j.soilbio.2007.05.002

    [32]

    Dı́az−Hernández J L, Fernández E B, González J L. 2003. Organic and inorganic carbon in soils of semiarid regions: A case study from the Guadix–Baza basin (Southeast Spain)[J]. Geoderma, 114(1/2): 65−80. doi: 10.1016/S0016-7061(02)00342-7

    [33]

    Dietrich F, Diaz N, Deschamps P, Ngatcha B N, Sebag D, Verrecchia E P. 2017. Origin of calcium in pedogenic carbonate nodules from silicate watersheds in the Far North Region of Cameroon: Respective contribution of in situ weathering source and dust input[J]. Chemical Geology, 460: 54−69. doi: 10.1016/j.chemgeo.2017.04.015

    [34]

    Du C, Gao Y. 2020. Opposite patterns of soil organic and inorganic carbon along a climate gradient in the alpine steppe of northern Tibetan Plateau[J]. Catena, 186: 104366. doi: 10.1016/j.catena.2019.104366

    [35]

    Durand N, Ahmad S M, Hamelin B, Gunnell Y, Curmi P. 2006. Origin of Ca in South Indian calcretes developed on metamorphic rocks[J]. Journal of Geochemical Exploration, 88(1/3): 275−278. doi: 10.1016/j.gexplo.2005.08.055

    [36]

    Eisenlohr L, Meteva K, Gabrovšek F, Dreybrodt W. 1999. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O−CO2 solutions[J]. Geochimica et Cosmochimica Acta, 63(7/8): 989−1001. doi: 10.1016/S0016-7037(98)00301-9

    [37]

    Emmerich W E. 2003. Carbon dioxide fluxes in a semiarid environment with high carbonate soils[J]. Agricultural and Forest Meteorology, 116(1−2): 91−102. doi: 10.1016/S0168-1923(02)00231-9

    [38]

    Entry J A, Sojka R E, Shewmaker G E. 2004. Irrigation increases inorganic carbon in agricultural soils[J]. Environmental Management, 33: S309−S317.

    [39]

    Eswaran H. 2000. Global carbon stock[J]. Global Climate Change and Pedogenic Carbonates, 15−25.

    [40]

    Fa K Y, Liu J B, Zhang Y Q, Wu B, Qin S G, Feng W, Lai Z R. 2015. CO2 absorption of sandy soil induced by rainfall pulses in a desert ecosystem[J]. Hydrological Processes, 29(8): 2043−2051. doi: 10.1002/hyp.10350

    [41]

    Fa Keyu, Lei Guangchun, Zhang Yuqing, Liu Jiabin. 2018. Carbon exchange process between atmosphere and soil in desert soils[J]. Advances in Earth Science, 33(5): 464 (in Chinese with English abstract).

    [42]

    Fa K, Xie E, Zhao X, Wang C. 2021. Natural water input deposits little atmospheric carbon into groundwater in a desert[J]. Catena, 199: 105097. doi: 10.1016/j.catena.2020.105097

    [43]

    Fang Jingyun, Guo Zhaodi. 2007. Looking for missing carbon sinks from terrestrial ecosystems[J]. Chinese Journal of Nature, 29(1): 1−6 (in Chinese with English abstract).

    [44]

    Ferdush J, Paul V. 2021. A review on the possible factors influencing soil inorganic carbon under elevated CO2[J]. Catena, 204: 105434. doi: 10.1016/j.catena.2021.105434

    [45]

    Fernández−Ugalde O, Virto I, Barré P, Apesteguía M, Enrique A, Imaz M J, Bescansa P. 2014. Mechanisms of macroaggregate stabilisation by carbonates: implications for organic matter protection in semi−arid calcareous soils[J]. Soil Research, 52(2): 180−192. doi: 10.1071/SR13234

    [46]

    Finneran D W, Morse J W. 2009. Calcite dissolution kinetics in saline waters[J]. Chemical Geology, 268(1/2): 137−146. doi: 10.1016/j.chemgeo.2009.08.006

    [47]

    Gabitov R I, Gaetani G A, Watson E B, Cohen A L, Ehrlich H L. 2008. Experimental determination of growth rate effect on U6+ and Mg2+ partitioning between aragonite and fluid at elevated U6+ concentration[J]. Geochimica et Cosmochimica Acta, 72(16): 4058−4068. doi: 10.1016/j.gca.2008.05.047

    [48]

    Gao Y, Zhang P, Liu J. 2020. One third of the abiotically−absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 374: 114448. doi: 10.1016/j.geoderma.2020.114448

    [49]

    Gile L H, Peterson F F, Grossman R B. 1966. Morphological and genetic sequences of carbonate accumulation in desert soils[J]. Soil Science, 101(5): 347−360. doi: 10.1097/00010694-196605000-00001

    [50]

    Gocke M, Pustovoytov K, Kuzyakov Y. 2011. Carbonate recrystallization in root−free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling[J]. Biogeochemistry, 103: 209−222. doi: 10.1007/s10533-010-9456-z

    [51]

    Grossman R B, Ahrens R J, Gile L H, Montoya C E, Chadwick O A. 1995. Areal evaluation of organic and carbonate carbon in a desert area of southern New Mexico[C]//Lal R et al.(eds.). Soils and Global Change: Boca Raton. Florida: Lewis Publishers, 81−92.

    [52]

    Guo Y, Wang X, Li X, Wang J, Xu M, Li D. 2016. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China[J]. Scientific Reports, 6(1): 36105. doi: 10.1038/srep36105

    [53]

    Hamada Y, Tanaka T. 2001. Dynamics of carbon dioxide in soil profiles based on long−term field observation[J]. Hydrological Processes, 15(10): 1829−1845. doi: 10.1002/hyp.242

    [54]

    Hamerlynck E P, Scott R L, Sánchez−Cañete E P, Barron−Gafford G A. 2013. Nocturnal soil CO2 uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland[J]. Journal of Geophysical Research: Biogeosciences, 118(4): 1593−1603. doi: 10.1002/2013JG002495

    [55]

    Hamidi E M, Colin F, Michard A, Boulangé B, Nahon D. 2001. Isotopic tracers of the origin of Ca in a carbonate crust from the Middle Atlas, Morocco[J]. Chemical Geology, 176(1−4): 93−104. doi: 10.1016/S0009-2541(00)00373-9

    [56]

    Hamilton S K, Kurzman A L, Arango C, Jin L, Robertson G P. 2007. Evidence for carbon sequestration by agricultural liming[J]. Global Biogeochemical Cycles, 21(2).

    [57]

    Han Min, Xu Changchun, Long Yunxia, Liu Fang. 2022. Simulation and prediction of changes in carbon storage and carbon source/sink under different land use scenarios in arid region of Northwest China[J]. Bulletin of Soil and Water Conservation, 42(3): 335−344 (in Chinese with English abstract).

    [58]

    Hastings S J, Oechel W C, Muhlia−Melo A. 2005. Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico[J]. Global Change Biology, 11(6): 927−939. doi: 10.1111/j.1365-2486.2005.00951.x

    [59]

    Hoefs J, Hoefs J. 1997. Stable Isotope Geochemistry[M]. Berlin: Springer.

    [60]

    Hoegberg P, Fan H, Quist M, Binkley D A N, Tamm C O. 2006. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest[J]. Global Change Biology, 12(3): 489−499. doi: 10.1111/j.1365-2486.2006.01102.x

    [61]

    Huang B, Wang J. 2006. Effects of long−term application fertilizer on carbon storage in calcareous meadow soil[J]. Journal of Agro−Environment Science, 25(1).

    [62]

    Huang Qiaoyun, Lin Qimei, Xu Jianming. 2015. Soil Biochemistry[M]. Beijing: Higher Education Press (in Chinese).

    [63]

    Huerta P, Rodríguez−Berriguete Á, Martín−García R, Martín−Pérez A, Fernández Á L I, Alonso−Zarza A M. 2015. The role of climate and aeolian dust input in calcrete formation in volcanic islands (Lanzarote and Fuerteventura, Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 417: 66−79.

    [64]

    Jacobson A D, Blum J D, Chamberlain C P, Poage M A, Sloan V F. 2002. Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: carbonate versus silicate weathering rates as a function of landscape surface age[J]. Geochimica et Cosmochimica Acta, 66(1): 13−27. doi: 10.1016/S0016-7037(01)00755-4

    [65]

    Jasoni R L, Smith S D, Arnone III J A. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2[J]. Global Change Biology, 11(5): 749−756.

    [66]

    Jia X, Zha T S, Wu B, Zhang Y Q, Gong J N, Qin S G, Chen G P, Qian D, Kellomäki S, Peltola H. 2014. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 1(17): 4679−4693.

    [67]

    Joos F. 1994. Imbalance in the budget[J]. Nature, 370(6486): 18l−182.

    [68]

    Khalidy R, Arnaud E, Santos R M. 2022. Natural and human−induced factors on the accumulation and migration of pedogenic carbonate in soil: A review[J]. Land, 11(9): 1448. doi: 10.3390/land11091448

    [69]

    Kim J H, Jobbágy E G, Richter D D, Trumbore S E, Jackson R B. 2020. Agricultural acceleration of soil carbonate weathering[J]. Global Change Biology, 26(10): 5988−6002. doi: 10.1111/gcb.15207

    [70]

    Kraimer R A, Monger H C. 2009. Carbon isotopic subsets of soil carbonate—A particle size comparison of limestone and igneous parent materials[J]. Geoderma, 150(1/2): 1−9. doi: 10.1016/j.geoderma.2008.11.042

    [71]

    Kuzyakov Y, Domanski G. 2002. Model for rhizodeposition and CO2 efflux from planted soil and its validation by 14C pulse labelling of ryegrass[J]. Plant and Soil, 239: 87−102. doi: 10.1023/A:1014939120651

    [72]

    Kuzyakov Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry, 38(3): 425−448. doi: 10.1016/j.soilbio.2005.08.020

    [73]

    Lal R, Kimble J M, Stewart B A, Eswaran H. 1999. Global Climate Change and Pedogenic Carbonates[M]. United States: CRC Press.

    [74]

    Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623−1627. doi: 10.1126/science.1097396

    [75]

    Lal R. 2008. Sequestration of atmospheric CO2 in global carbon pools[J]. Energy & Environmental Science, 1(1): 86−100.

    [76]

    Lal R. 2019. Carbon Cycling in Global Drylands[J]. Current Climate Change Reports, 5: 221−232. doi: 10.1007/s40641-019-00132-z

    [77]

    Landi A, Mermut A R, Anderson D W. 2003. Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada[J]. Geoderma, 117(1/2): 143−156. doi: 10.1016/S0016-7061(03)00161-7

    [78]

    Li Fushan, Han Guilin. 2012. Strontium isotopes in forest ecosystem study: A review[J]. Chinese Journal of Ecology, 31(11): 2935−2942(in Chinese with English abstract).

    [79]

    Li S, Li H, Yang C, Wang Y, Xue H, Niu Y. 2016. Rates of soil acidification in tea plantations and possible causes[J]. Agriculture, Ecosystems & Environment, 233: 60−66.

    [80]

    Li Y, Wang Y G, Houghton R A, Tang L S. 2015. Hidden carbon sink beneath desert[J]. Geophysical Research Letters, 42(14): 5880−5887. doi: 10.1002/2015GL064222

    [81]

    Li Yan, Wang Yugang, Tang Lisong. 2016. The effort to re−activate the inorganic carbon in soil[J]. Acta Pedologica Sinica, 53(4): 845−849 (in Chinese with English abstract).

    [82]

    Li Yangmei, Gong Lu, An Shenqun, Sun Li, Chen Xin. 2018. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science, 39(8): 3867−3875 (in Chinese with English abstract).

    [83]

    Li Z P, Han F X, Su Y, Zhang T L, Sun B, Monts D L, Plodinec M J. 2007. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma, 138(1/2): 119−126. doi: 10.1016/j.geoderma.2006.11.007

    [84]

    Lintern M J, Sheard M J, Chivas A R. 2006. The source of pedogenic carbonate associated with gold−calcrete anomalies in the western Gawler Craton, South Australia[J]. Chemical Geology, 235(3/4): 299−324. doi: 10.1016/j.chemgeo.2006.08.001

    [85]

    Liu J, Fa K, Zhang Y, Wu B, Qin S, Jia X. 2015a. Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 42(14): 5779−5785. doi: 10.1002/2015GL064689

    [86]

    Liu J, Feng W, Zhang Y, Jia X, Wu B, Qin S, Fa K, Lai Z. 2015b. Abiotic CO2 exchange between soil and atmosphere and its response to temperature[J]. Environmental Earth Sciences, 73: 2463−2471. doi: 10.1007/s12665-014-3595-9

    [87]

    Liu Lian, Yin Qiuzhen, Wu Haibin, Guo Zhengtang. 2010. Carbon isotopic compositions of pore and matrix carbonates in carbonate nodules, and origin of carbonate formation[J]. Chinese Science Bulletin, 55(26): 2647−2650 (in Chinese).

    [88]

    Liu R, Li Y, Wang Q X. 2012. Variations in water and CO2 fluxes over a saline desert in western China[J]. Hydrological Processes, 26(4): 513−522.

    [89]

    Liu T, Wang L, Feng X, Zhang J, Ma T, Wang X, Liu Z. 2018. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands[J]. Biogeosciences, 15(5): 1627−1641. doi: 10.5194/bg-15-1627-2018

    [90]

    Liu W, Wei J, Cheng J, Li W. 2014. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22−year scale in the Chinese Loess Plateau[J]. Catena, 121: 321−329. doi: 10.1016/j.catena.2014.05.019

    [91]

    Liu Z, Dreybrodt W, Wang H. 2010. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth−Science Reviews, 99(3/4): 162−172. doi: 10.1016/j.earscirev.2010.03.001

    [92]

    Liu Z H. 2011. Is pedogenic carbonate an important atmospheric CO2 sink?[J]. Chinese Science Bulletin, 56(35): 3794−3796. doi: 10.1007/s11434-010-4288-8

    [93]

    López−Ballesteros A, Serrano−Ortiz P, Kowalski A S, Sánchez−Canete E P, Scott R L, Domingo F. 2017. Subterranean ventilation of allochthonous CO2 governs net CO2 exchange in a semiarid Mediterranean grassland[J]. Agricultural and Forest Meteorology, 234: 115−126.

    [94]

    Lu T, Wang X, Xu M, Yu Z, Luo Y, Smith P. 2020. Dynamics of pedogenic carbonate in the cropland of the North China Plain: Influences of intensive cropping and salinization[J]. Agriculture, Ecosystems & Environment, 292: 106820.

    [95]

    Lucas R W, Klaminder J, Futter M N, Bishop K H, Egnell G, Laudon H, Högberg P. 2011. A meta−analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams[J]. Forest Ecology and Management, 262(2): 95−104. doi: 10.1016/j.foreco.2011.03.018

    [96]

    Ma J, Liu R, Tang L S, Lan Z D, Li Y. 2014. A downward CO2 flux seems to have nowhere to go[J]. Biogeosciences, 11(22): 6251−6262. doi: 10.5194/bg-11-6251-2014

    [97]

    Ma J, Wang Z Y, Stevenson B A, Zheng X J, Li Y. 2013. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils[J]. Scientific Reports, 3(1): 2025. doi: 10.1038/srep02025

    [98]

    Ma Y F, Gao Y H, Feng Q L. 2010. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls[J]. Journal of Crystal Growth, 312(21): 3165−3170. doi: 10.1016/j.jcrysgro.2010.07.053

    [99]

    Magaritz M, Amiel A J. 1980. Calcium carbonate in a calcareous soil from the Jordan Valley, Israel: Its origin as revealed by the stable carbon isotope method[J]. Soil Science Society of America Journal, 44(5): 1059−1062. doi: 10.2136/sssaj1980.03615995004400050037x

    [100]

    Marchant B P, Villanneau E J, Arrouays D, Saby N P A, Rawlins B G. 2015. Quantifying and mapping topsoil inorganic carbon concentrations and stocks: Approaches tested in France[J]. Soil Use and Management, 31(1): 29−38. doi: 10.1111/sum.12158

    [101]

    Marion G M, Introne D S, Van Cleve K. 1991. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, USA: composition and mechanisms of formation[J]. Chemical Geology: Isotope Geoscience Section, 86(2): 97−110. doi: 10.1016/0168-9622(91)90056-3

    [102]

    Markewitz D, Richter D D, Allen H L, Urrego J B. 1998. Three decades of observed soil acidification in the Calhoun Experimental Forest: Has acid rain made a difference?[J]. Soil Science Society of America Journal, 62(5): 1428−1439. doi: 10.2136/sssaj1998.03615995006200050040x

    [103]

    Martin J B. 2017. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 449: 58−72. doi: 10.1016/j.chemgeo.2016.11.029

    [104]

    Meng X, Liu L, Balsam W, Li S, He T, Chen J, Ji J. 2015. Dolomite abundance in Chinese loess deposits: A new proxy of monsoon precipitation intensity[J]. Geophysical Research Letters, 42(23): 10391−10398.

    [105]

    Meng X, Liu L, Wang X T, Balsam W, Chen J, Ji J. 2018. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 486: 61−69. doi: 10.1016/j.jpgl.2017.12.048

    [106]

    Mi N A, Wang S, Liu J, Yu G, Zhang W, Jobbagy E. 2008. Soil inorganic carbon storage pattern in China[J]. Global Change Biology, 14(10): 2380−2387. doi: 10.1111/j.1365-2486.2008.01642.x

    [107]

    Mikhailova E A, Post C J. 2006. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem[J]. Journal of Environmental Quality, 35(4): 1384−1388. doi: 10.2134/jeq2005.0151

    [108]

    Monger H C, Daugherty L A, Lindemann W C, Liddell C M. 1991. Microbial precipitation of pedogenic calcite[J]. Geology, 19(10): 997−1000. doi: 10.1130/0091-7613(1991)019<0997:MPOPC>2.3.CO;2

    [109]

    Monger H C, Gallegos R A. 2000. Biotic and abiotic processes and rates of pedogenic carbonate accumulation in the southwestern United States—relationship to atmospheric CO2 sequestration[C]// Lal R, Kimble J M, Eswaran H, Stewart B A (eds. ). Global Climate Change and Pedogenic Carbonates. Boca Raton: Lewis Publishers, 273–290.

    [110]

    Monger H C, Kraimer R A, Khresat S E, Cole D R, Wang X, Wang J. 2015. Sequestration of inorganic carbon in soil and groundwater[J]. Geology, 43(5): 375−378. doi: 10.1130/G36449.1

    [111]

    Monger, H. C. 2014. Soils as generators and sinks of inorganic carbon in geologic time[J]. Soil Carbon, 27−36.

    [112]

    Morgun E G, Kovda I V, Ryskov Y G, Oleinik S A. 2008. Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies[J]. Eurasian Soil Science, 41(3): 265−275. doi: 10.1134/S1064229308030046

    [113]

    Naiman Z, Quade J, Patchett P J. 2000. Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the southwest United States[J]. Geochimica et Cosmochimica Acta, 64(18): 3099−3109. doi: 10.1016/S0016-7037(00)00410-5

    [114]

    Naorem A, Jayaraman S, Dalal R C, Patra A, Rao C S, Lal R. 2022. Soil inorganic carbon as a potential sink in carbon storage in dryland soils—A review[J]. Agriculture, 12(8): 1256. doi: 10.3390/agriculture12081256

    [115]

    Neira J, Ortiz M, Morales L, Acevedo E. 2015. Oxygen diffusion in soils: understanding the factors and processes needed for modeling[J]. Chilean Journal of Agricultural Research, 75: 35−44.

    [116]

    Nordt L C, Hallmark C T, Wilding L P, Boutton T W. 1998. Quantifying pedogenic carbonate accumulations using stable carbon isotopes[J]. Geoderma, 82(1/3): 115−136. doi: 10.1016/S0016-7061(97)00099-2

    [117]

    Nyachoti S, Jin L, Tweedie C E, Ma L. 2019. Insight into factors controlling formation rates of pedogenic carbonates: A combined geochemical and isotopic approach in dryland soils of the US Southwest[J]. Chemical Geology, 527: 118503. doi: 10.1016/j.chemgeo.2017.10.014

    [118]

    Oh N H, Richter D D, Jr D D R. 2004. Soil acidification induced by elevated atmospheric CO2[J]. Global Change Biology, 10(11): 1936−1946. doi: 10.1111/j.1365-2486.2004.00864.x

    [119]

    Ouyang X, Zhou G, Huang Z, Liu J, Zhang D, Jiong L. 2008. Effect of simulated acid rain on potential carbon and nitrogen mineralization in forest soils[J]. Pedosphere, 18(4): 503−514. doi: 10.1016/S1002-0160(08)60041-7

    [120]

    Pan Genxing. 1999. Pedogenic carbonates in aridic soils of China and the significance in terrestrial carbon transfer[J]. Journal of Nanjing Agricultural University, 22(1): 51(in Chinese with English abstract).

    [121]

    Parsons A N, Barrett J E, Wall D H, Virginia R A. 2004. Soil carbon dioxide flux in Antarctic dry valley ecosystems[J]. Ecosystems, 7: 286−295.

    [122]

    Pustovoytov K. 2003. Growth rates of pedogenic carbonate coatings on coarse clasts[J]. Quaternary International, 106: 131−140.

    [123]

    Quade J, Cerling T E, Bowman J R. 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States[J]. Geological Society of America Bulletin, 101(4): 464−475. doi: 10.1130/0016-7606(1989)101<0464:SVITCA>2.3.CO;2

    [124]

    Raheb A, Heidari A, Mahmoodi S. 2017. Organic and inorganic carbon storage in soils along an arid to dry sub−humid climosequence in northwest of Iran[J]. Catena, 153: 66−74. doi: 10.1016/j.catena.2017.01.035

    [125]

    Raza S, Miao N, Wang P Z, Ju X T, Chen Z J, Zhou J B, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands[J].Global Change Biology, 26(6): 3738−3751.

    [126]

    Raza S, Zamanian K, Ullah S, Kuzyakov Y, Virto I, Zhou J. 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation[J]. Journal of Cleaner Production, 315: 128036. doi: 10.1016/j.jclepro.2021.128036

    [127]

    Rech J A, Quade J, Hart W S. 2003. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile[J]. Geochimica et Cosmochimica Acta, 67(4): 575−586. doi: 10.1016/S0016-7037(02)01175-4

    [128]

    Rengel Z. 2003. Handbook of Soil Acidity[M]. Panama: CRC Press.

    [129]

    Rousk J, Bååth E, Brookes P C, Lauber C L, Lozupone C, Caporaso J G, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 4(10): 1340−1351. doi: 10.1038/ismej.2010.58

    [130]

    Rovira P, Vallejo V R. 2008. Changes in δ13C composition of soil carbonates driven by organic matter decomposition in a Mediterranean climate: A field incubation experiment[J]. Geoderma, 144(3/4): 517−534. doi: 10.1016/j.geoderma.2008.01.006

    [131]

    Ryskov Y G, Demkin V A, Oleynik S A, Ryskova E A. 2008. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia[J]. Global and Planetary Change, 61(1/2): 63−69. doi: 10.1016/j.gloplacha.2007.08.006

    [132]

    Salomons W, Goudie A, Mook W G. 1978. Isotopic composition of calcrete deposits from Europe, Africa and India[J]. Earth Surface Processes, 3(1): 43−57. doi: 10.1002/esp.3290030105

    [133]

    Sanderman J. 2012. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia[J]. Agriculture, Ecosystems & Environment, 155: 70−77.

    [134]

    Scharpenseel H W, Mtimet A, Freytag J. 2000. Global Climate Change and Pedogenic Carbonates[M]. Boca Raton, Florida: CRC Press, 27–42.

    [135]

    Schindlbacher A, Beck K, Holzheu S, Borken W. 2019. Inorganic carbon leaching from a warmed and irrigated carbonate forest soil[J]. Frontiers in Forests and Global Change, 2: 40. doi: 10.3389/ffgc.2019.00040

    [136]

    Schindler D W. 1999. Carbon cycling: The mysterious missing sink[J]. Nature, 398(6723): 105−106. doi: 10.1038/18111

    [137]

    Schlesinger W H, Belnap J, Marion G. 2009. On carbon sequestration in desert ecosystems[J]. Global Change Biology, 15(6): 1488−1490. doi: 10.1111/j.1365-2486.2008.01763.x

    [138]

    Schlesinger W H, Marion G M, Fonteyn P J. 1989. Stable isotope ratios and the dynamics of caliche in desert soils[C]//Stable Isotopes in Ecological Research. Springer New York, 309−317.

    [139]

    Schlesinger W H. 1982. Carbon storage in the caliche of arid soils: A case study from Arizona[J]. Soil Science, 133(4): 247−255. doi: 10.1097/00010694-198204000-00008

    [140]

    Schlesinger W H. 1985. The formation of caliche in soils of the Mojave Desert, California[J]. Geochimica et Cosmochimica Acta, 49(1): 57−66. doi: 10.1016/0016-7037(85)90191-7

    [141]

    Schlesinger W H. 1999. Carbon sequestration in soils[J]. Science, 284(5423): 2095−2095. doi: 10.1126/science.284.5423.2095

    [142]

    Schlesinger W H. 2000. Carbon sequestration in soils: Some cautions amidst optimism[J]. Agriculture, Ecosystems & Environment, 82(1/3): 121−127.

    [143]

    Schlesinger W H. 2017. An evaluation of abiotic carbon sinks in deserts[J]. Global Change Biology, 23(1): 25−27. doi: 10.1111/gcb.13336

    [144]

    Shanhun F L, Almond P C, Clough T J, Smith C M. 2012. Abiotic processes dominate CO2 fluxes in Antarctic soils[J]. Soil Biology and Biochemistry, 53: 99−111. doi: 10.1016/j.soilbio.2012.04.027

    [145]

    Shi Y, Baumann F, Ma Y, Song C, Kühn P, Scholten T, He J S. 2012. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 9(6): 2287−2299. doi: 10.5194/bg-9-2287-2012

    [146]

    Soltanian M R, Dai Z. 2017. Geologic CO2 sequestration: Progress and challenges[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 3: 221−223. doi: 10.1007/s40948-017-0066-2

    [147]

    Sombroek W G, Nachtergaele F O, Hebel A. 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. AMBIO: A Journal of the Human Environment, 22(7): 417

    [148]

    Song X, Yang F, Wu H, Zhang J, Li D, Liu F, Zhao Y, Yang J, Ju B, Cai C, Huang B, Long H, Lu Y, Sui Y, Wang Q, Wu K, Zhang F, Zhang M, Shi Z, Ma W, Xin G, Qi Z, Chang Q, Ci E, Yuan D, Zhang Y, Bai J, Chen J, Chen J, Chen Y, Dong Y, Han C, Li L, Liu L, Pan J, Song F, Sun F, Wang D, Wang T, Wei X, Wu H, Zhao X, Zhou Q, Zhang G. 2022. Significant loss of soil inorganic carbon at the continental scale[J]. National Science Review, 9(2): nwab120. doi: 10.1093/nsr/nwab120

    [149]

    Soper F M, McCalley C K, Sparks K, Sparks J P. 2017. Soil carbon dioxide emissions from the Mojave desert: Isotopic evidence for a carbonate source[J]. Geophysical Research Letters, 44(1): 245−251. doi: 10.1002/2016GL071198

    [150]

    Stevenson B A, Kelly E F, McDonald E V, Busacca A J. 2005. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA[J]. Geoderma, 124(1/2): 37−47. doi: 10.1016/j.geoderma.2004.03.006

    [151]

    Stone R. 2008. Have desert researchers discovered a hidden loop in the carbon cycle?[J]. Science, 320(5882): 1409−1410 doi: 10.1126/science.320.5882.1409

    [152]

    Su Y, Wang X, Yang R, Lee J. 2010. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China[J]. Journal of Environmental Management, 91(11): 2109−2116. doi: 10.1016/j.jenvman.2009.12.014

    [153]

    Takle E S, Massman W J, Brandle J R, Schmidt R A, Zhou X, Litvina I V, Garcia R, Doyle G, Rice C W. 2004. Influence of high−frequency ambient pressure pumping on carbon dioxide efflux from soil[J]. Agricultural and Forest Meteorology, 124(3/4): 193−206. doi: 10.1016/j.agrformet.2004.01.014

    [154]

    Tamir G, Shenker M, Heller H, Bloom P R, Fine P, Bar−Tal A. 2012. Dissolution and re‐crystallization processes of active calcium carbonate in soil developed on tufa[J]. Soil Science Society of America Journal, 76(5): 1606−1613. doi: 10.2136/sssaj2012.0041

    [155]

    Tan W F, Zhang R, Cao H, Huang C Q, Yang Q K, Wang M K, Koopal L K. 2014. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China[J]. Catena, 121: 22−30. doi: 10.1016/j.catena.2014.04.014

    [156]

    Tong L S, Fang N F, Xiao H B, Shi Z H. 2020. Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau[J]. Agriculture, Ecosystems & Environment, 302: 107076.

    [157]

    Violette A, Riotte J, Braun J J, Oliva P, Marechal J C, Sekhar M, Jeandel C, Subramanian S, Prunier J, Barbiero L, Dupre B. 2010. Formation and preservation of pedogenic carbonates in South India, links with paleo−monsoon and pedological conditions: Clues from Sr isotopes, U–Th series and REEs[J]. Geochimica et Cosmochimica Acta, 74(24): 7059−7085. doi: 10.1016/j.gca.2010.09.006

    [158]

    Wang C, Li W, Yang Z, Chen Y, Shao W, Ji J. 2015a. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability[J]. Scientific Reports, 5(1): 12735. doi: 10.1038/srep12735

    [159]

    Wang J P, Wang X J, Zhang J, Zhao C Y. 2015b. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of northwestern China[J]. European Journal of Soil Science, 66(1): 95−103. doi: 10.1111/ejss.12188

    [160]

    Wang J, Monger C, Wang X, Serena M, Leinauer B. 2016. Carbon sequestration in response to grassland–shrubland–turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA[J]. Soil Science Society of America Journal, 80(6): 1591−1603. doi: 10.2136/sssaj2016.03.0061

    [161]

    Wang Jianxiu, Wu Yuanbin, Yu Haipeng. 2013. Review of the technology for sequestration of carbon dioxide[J]. Chinese Journal of Underground Space and Engineering, 9(1): 81−90 (in Chinese with English abstract).

    [162]

    Wang X, Wang J, Shi H, Guo Y. 2018. Carbon sequestration in arid lands: A mini review[J]. Carbon Cycle in the Changing Arid Land of China, 133−141.

    [163]

    Wang X, Wang J, Xu M, Zhang W, Fan T, Zhang J. 2015c. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon[J]. Scientific Reports, 5(1): 11439. doi: 10.1038/srep11439

    [164]

    Wang X, Xu M, Wang J, Zhang W, Yang X, Huang S, Liu H. 2014. Fertilization enhancing carbon sequestration as carbonate in arid cropland: assessments of long−term experiments in northern China[J]. Plant and Soil, 380: 89−100. doi: 10.1007/s11104-014-2077-x

    [165]

    Wang Y, Hsieh Y P. 2002. Uncertainties and novel prospects in the study of the soil carbon dynamics[J]. Chemosphere, 49(8): 791−804. doi: 10.1016/S0045-6535(02)00381-8

    [166]

    Wang Y, Li Y, Ye X, Chu Y, Wang X. 2010. Profile storage of organic/inorganic carbon in soil: From forest to desert[J]. Science of the Total Environment, 408(8): 1925−1931. doi: 10.1016/j.scitotenv.2010.01.015

    [167]

    Wang Y, Wang Z, Li Y. 2013a. Storage/turnover rate of inorganic carbon and its dissolvable part in the profile of saline/alkaline soils[J]. PloS Ones, 8(11): e82029. doi: 10.1371/journal.pone.0082029

    [168]

    Wang Z P, Han X G, Chang S X, Wang B, Yu Q, Hou L Y, Li L H. 2013b. Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia[J]. Catena, 109: 110−117. doi: 10.1016/j.catena.2013.04.008

    [169]

    Whipkey C E, Capo R C, Chadwick O A, Stewart B W. 2000. The importance of sea spray to the cation budget of a coastal Hawaiian soil: a strontium isotope approach[J]. Chemical Geology, 168(1−2): 37−48. doi: 10.1016/S0009-2541(00)00187-X

    [170]

    Wofsy S C. 2001. Where has all the carbon gone?[J]. Science, 292(5525): 2261−2263. doi: 10.1126/science.1061077

    [171]

    Wohlfahrt G, Fenstermaker L F, Arnone III J A. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 14(7): 1475−1487. doi: 10.1111/j.1365-2486.2008.01593.x

    [172]

    Wu H, Guo Z, Gao Q, Peng C. 2009. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture, Ecosystems & Environment, 129(4): 413−421.

    [173]

    Wu L, Wood Y, Jiang P, Li L, Pan G, Lu J, Chang A C, Enloe H A. 2008. Carbon sequestration and dynamics of two irrigated agricultural soils in California[J]. Soil Science Society of America Journal, 72(3): 808−814. doi: 10.2136/sssaj2007.0074

    [174]

    Xia Xueqi, Yang Zhongfang, Yu Tao, Hou Qingye, Cheng Hangxin, Zhou Guohua. 2018. Series Parameters of Soil Carbon Density in China[M]. Beijing: Geological Publishing House (in Chinese).

    [175]

    Xie J, Li Y, Zhai C, Li C, Lan Z. 2009. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 56: 953−961. doi: 10.1007/s00254-008-1197-0

    [176]

    Yang F, Huang L, Yang R, Yang F, Li D, Zhao Y, Yang J, Zhang, G. 2018. Vertical distribution and storage of soil organic and inorganic carbon in a typical inland river basin, Northwest China[J]. Journal of Arid Land, 10: 183−201. doi: 10.1007/s40333-018-0051-9

    [177]

    Yang S, Ding Z, Gu Z. 2014. Acetic acid−leachable elements in pedogenic carbonate nodules and links to the East−Asian summer monsoon[J]. Catena, 117: 73−80. doi: 10.1016/j.catena.2013.06.030

    [178]

    Yang Y, Fang J, Ji C, Ma W, Mohammat A, Wang S F, Wang S P, Datta A, Robinson D, Smith P. 2012. Widespread decreases in topsoil inorganic carbon stocks across C hina's grasslands during 1980s–2000s[J]. Global Change Biology, 18(12): 3672−3680. doi: 10.1111/gcb.12025

    [179]

    Yang Y, Fang J, Ji C, Ma W, Su S, Tang Z. 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands[J]. Global Biogeochemical Cycles, 24(4).

    [180]

    Yates E L, Detweiler A M, Iraci L T, Bebout B M, McKay C P, Schiro K, Sheffner E, Kelley C, Tadić J, Loewenstein M. 2013. Assessing the role of alkaline soils on the carbon cycle at a playa site[J]. Environmental Earth Sciences, 70(3): 1047−1056. doi: 10.1007/s12665-012-2194-x

    [181]

    Yi Chenggong. 2022. Temporal and spatial Variation of Soil Moisture and Its Influencing Factors in Arid And Semi-Arid Areas of China from 2000 to 2020[D]. Xinyang: Xinyang Normal University (in Chinese with English abstract).

    [182]

    Zamanian K, Kuzyakov Y. 2019. Contribution of soil inorganic carbon to atmospheric CO2: More important than previously thought[J]. Glob. Change Biol, 25: E1−E3. doi: 10.1111/gcb.14437

    [183]

    Zamanian K, Pustovoytov K, Kuzyakov Y. 2016. Pedogenic carbonates: Forms and formation processes[J]. Earth−Science Reviews, 157: 1−17. doi: 10.1016/j.earscirev.2016.03.003

    [184]

    Zamanian K, Zarebanadkouki M, Kuzyakov Y. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment[J]. Global Change Biology, 24(7): 2810−2817. doi: 10.1111/gcb.14148

    [185]

    Zamanian K. 2005. Study of Fashand-Hashtgerd Soils and Investigation on the Mechanisms of Petrocalcic Horizon Formation in These Soils[D]. Iran: Tehran University.

    [186]

    Zamanian K, Zhou J, Kuzyakov Y. 2021. Soil carbonates: The unaccounted, irrecoverable carbon source[J]. Geoderma, 384: 114817. doi: 10.1016/j.geoderma.2020.114817

    [187]

    Zhang F, Wang X, Guo T, Zhang P, Wang J. 2015. Soil organic and inorganic carbon in the loess profiles of Lanzhou area: Implications of deep soils[J]. Catena, 126: 68−74. doi: 10.1016/j.catena.2014.10.031

    [188]

    Zhang Lin, Sun Xiangyang, Cao Jixin, Gao Chengda, Bao Yin. 2010. Transfer of organic carbon to inorganic carbonates in carbonate soil of desert grassland[J]. Arid Land Geography, 33(5): 732−739 (in Chinese).

    [189]

    Zhao W, Zhang R, Huang C, Wang B, Cao H, Koopal L K, Tan W. 2016. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau[J]. Catena, 139: 191−198. doi: 10.1016/j.catena.2016.01.003

    [190]

    Zhao X, Zhao C, Stahr K, Kuzyakov Y, Wei X. 2020. The effect of microorganisms on soil carbonate recrystallization and abiotic CO2 uptake of soil[J]. Catena, 192: 104592. doi: 10.1016/j.catena.2020.104592

    [191]

    Zheng Jufeng, Cheng Kun, Pan Genxing, Smith Pete, Li Lianqing, Zhang Xuhui, Zheng Jinwei, Han Xiaojun, Du Yanling. 2011. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China[J]. Chinese Science Bulletin, 56(26): 2162−2173 (in Chinese).

    [192]

    达佳伟. 2020. 基于黄土高原成壤碳酸盐的古大气二氧化碳浓度定量重建研究[D]. 南京: 南京大学.

    [193]

    法科宇, 雷光春, 张宇清, 刘加彬. 2018. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 33(5): 464−472.

    [194]

    方精云, 郭兆迪. 2007. 寻找失去的陆地碳汇[J]. 自然杂志, 29(1): 1−6.

    [195]

    韩敏, 徐长春, 隆云霞, 刘芳. 2022. 西北干旱区不同土地利用情景下的碳储量及碳源/汇变化模拟与预估[J]. 水土保持通报, 42(3): 335−344.

    [196]

    黄巧云, 林启美, 徐建明. 2015. 土壤生物化学[M]. 北京: 高等教育出版社.

    [197]

    李富山, 韩贵琳. 2012. 锶同位素在森林生态系统研究中的进展[J]. 生态学杂志, 31(11): 2935−2942.

    [198]

    李彦, 王玉刚, 唐立松. 2016. 重新被 “激活” 的土壤无机碳研究[J]. 土壤学报, 53(4): 845−849.

    [199]

    李杨梅, 贡璐, 安申群, 孙力, 陈新. 2018. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J]. 环境科学, 39(8): 3867−3875.

    [200]

    刘恋, 尹秋珍, 吴海斌, 郭正堂. 2010. 成壤钙结核孔隙和基质碳酸盐碳同位素对比及其对碳酸盐成因的指示意义[J]. 科学通报, 55(26): 2647−2650.

    [201]

    潘根兴. 1999. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移的意义[J]. 南京农业大学学报, 22(1): 54−60.

    [202]

    王建秀, 吴远斌, 于海鹏. 2013. 二氧化碳封存技术研究进展[J]. 地下空间与工程学报, 9(1): 81−90.

    [203]

    夏学齐, 杨忠芳, 余涛, 侯青叶, 成杭新, 周国华. 2018. 中国土壤碳密度系列参数[M]. 北京: 地质出版社.

    [204]

    易成功. 2022. 2000−2020年中国干旱半干旱区土壤湿度时空变化及影响因素[D]. 信阳: 信阳师范学院.

    [205]

    张林, 孙向阳, 曹吉鑫, 高程达, 宝音贺希格. 2010. 荒漠草原碳酸盐岩土壤有机碳向无机碳酸盐的转移[J]. 干旱区地理, 33(5): 732−739.

    [206]

    郑聚锋, 程琨, 潘根兴, Smith Pete, 李恋卿, 张旭辉, 郑金伟, 韩晓君, 杜彦玲. 2011. 关于中国土壤碳库及固碳潜力研究的若干问题[J]. 科学通报, 56(26): 2162−2173.

  • 加载中

(14)

(7)

计量
  • 文章访问数:  1849
  • PDF下载数:  101
  • 施引文献:  0
出版历程
收稿日期:  2023-08-14
修回日期:  2023-12-08
刊出日期:  2024-07-25

目录