中国地质调查局 中国地质科学院主办
科学出版社出版

地质灾害危险性评价中不同机器学习方法优劣对比:以宁强县大安镇为例

冯旻譞, 毛伊敏, 贾俊, 齐琦, 孟晓捷, 刘港, 高波, 高满新. 2025. 地质灾害危险性评价中不同机器学习方法优劣对比:以宁强县大安镇为例[J]. 中国地质, 52(1): 205-214. doi: 10.12029/gc20231018003
引用本文: 冯旻譞, 毛伊敏, 贾俊, 齐琦, 孟晓捷, 刘港, 高波, 高满新. 2025. 地质灾害危险性评价中不同机器学习方法优劣对比:以宁强县大安镇为例[J]. 中国地质, 52(1): 205-214. doi: 10.12029/gc20231018003
FENG Minxuan, MAO Yimin, JIA Jun, QI Qi, MENG Xiaojie, LIU Gang, GAO Bo, GAO Manxin. 2025. Comparison of the advantages and disadvantages of different machine learning methods in geohazard risk assessment: Taking Da'an Town, Ningqiang County as an example[J]. Geology in China, 52(1): 205-214. doi: 10.12029/gc20231018003
Citation: FENG Minxuan, MAO Yimin, JIA Jun, QI Qi, MENG Xiaojie, LIU Gang, GAO Bo, GAO Manxin. 2025. Comparison of the advantages and disadvantages of different machine learning methods in geohazard risk assessment: Taking Da'an Town, Ningqiang County as an example[J]. Geology in China, 52(1): 205-214. doi: 10.12029/gc20231018003

地质灾害危险性评价中不同机器学习方法优劣对比:以宁强县大安镇为例

  • 基金项目: 中国地质调查局项目(DD20230436、DD20221739)和陕西省卫星应用技术中心项目(SCZK2022–CS–1645/001)联合资助。
详细信息
    作者简介: 冯旻譞,女,1990年生,助理研究员,主要从事地质灾害调查、InSAR技术应用等研究;E-mail: fengminxuan@mail.cgs.gov.cn
    通讯作者: 齐琦,男,1989年生,工程师,主要从工程地质、构造地质等方面的研究工作;E-mail: xqq8901@163.com
  • 中图分类号: P694

Comparison of the advantages and disadvantages of different machine learning methods in geohazard risk assessment: Taking Da'an Town, Ningqiang County as an example

  • Fund Project: Supported by the projects of China Geological Survey (No.20230436, No.DD20221739) and Natural Resources Shaanxi Satellite Application Technology Center (No.SCZK2022–CS–1645/001).
More Information
    Author Bio: FENG Minxuan, female, born in 1990, assistant researcher, mainly engaged in geological survey and InSAR technology application; E-mail: fengminxuan@mail.cgs.gov.cn .
    Corresponding author: QI Qi, male, born in 1989, engineer, mainly engaged in the research work of engineering geology, structural geology and other aspects; E-mail: xqq8901@163.com.
  • 研究目的

    地质灾害的孕育和发生受多种因素的影响,具有不确定性和复杂性,给地质灾害的危险性评价带来一定困难。随着AI技术的发展,智能算法能更准确地计算地质灾害孕育与诱发因素之间的多元复杂非线性关系,大大提高了地质灾害危险性模型的准确性,在区域地质灾害危险性评价中逐步得到应用。

    研究方法

    本文结合宁强县大安镇野外地质调查数据,挑选与地质灾害发生密切相关的12种致灾因子,即高程、坡度、坡高、坡向、坡型、工程地质岩组、断裂距离、水系距离、道路距离、植被覆盖、降雨及地震动峰值等作为危险性分区评价因子。通过构建样本集,运用贝叶斯、随机森林、策略梯度神经网络、KNN和神经网络算法这5种模型进行宁强县大安镇地质灾害危险性建模并进行比较。

    研究结果

    贝叶斯模型(AUC 0.894)表现最好,绝大多数已发生的地质灾害点位于评价的极高和高危险区,且贝叶斯模型计算结果达到预测精度评价要求。

    结论

    在宁强县大安镇地质灾害样本数目很少的情况下选择贝叶斯算法模型进行地质灾害危险性评价,是具有可行性的。

  • 加载中
  • 图 1  研究区地理位置(a)、宁强县构造图(b)与大安镇地质灾害空间分布情况(c)

    Figure 1. 

    图 2  各评价因子图

    Figure 2. 

    图 3  不同算法准确率、召回率、回归分析精确率及卡帕系数的比较

    Figure 3. 

    图 4  基于不同算法危险性评价图

    Figure 4. 

    图 5  五种模型的ROC曲线图

    Figure 5. 

    表 1  地质灾害影响因子多重共线性分析结果

    Table 1.  Multicollinearity analysis results of geohazards influencing factors

    序列地质灾害影响因子统计值
    TOLVIF
    1高程0.8231.256
    2坡型0.6741.765
    3坡度0.7861.453
    4坡高0.8871.125
    5坡向0.7631.543
    6地质岩组0.3452.765
    7断裂距离0.2783.121
    8水系距离0.7671.324
    9公路距离0.2433.988
    10植被0.1824.167
    11雨量0.4681.892
    12地震动峰值加速度0.1134.984
    下载: 导出CSV
  • [1]

    Cao W G, Fu Y, Dong Q Y, Wang H G, Ren Y, Li Z Y, Du Y Y. 2023. Landslide susceptibility assessment in Western Henan Province based on a comparison of conventional and ensemble machine learning[J]. China Geology, 6(3): 409−419.

    [2]

    Cao Puyuan, Qiu Haijun, Hu Sheng, Yang Dongdong. 2017. Research on scale parameter frequency distribution of regional collapse and landslide in Ningqiang County[J]. Journal of Catastrophology, 32(4): 126−131 (in Chinese with English abstract).

    [3]

    Chen Shuiman, Zhao Huilong, Xu Zhen, Xie Wei, Liu Liang, Li Quanyue. 2022. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 33(2): 133−140 (in Chinese with English abstract).

    [4]

    Dou Jie, Xiang Zilin, Xu Qiang, Zheng Penglin, Wang Xiekang. Su Aijun, Liu Junqi, Luo Wanqi. 2023. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science, 48(5): 1657−1674 (in Chinese with English abstract).

    [5]

    Fawcett T. 2006. An introduction to ROC analysis[J]. Pattern Recognition Letters, 27(8): 861−874. doi: 10.1016/j.patrec.2005.10.010

    [6]

    Fang Ranke, Liu Yanhui, Huang Zhiquan. 2021. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 32(4): 1−8 (in Chinese with English abstract).

    [7]

    Li Guanghui, Tie Yongbo. 2023. Comparative study on modeling methods of comprehensive geological hazard susceptibility based on information model[J]. Journal of Catastrophology, 38(3): 212−221 (in Chinese with English abstract).

    [8]

    Li Jiahao, Xie Wanli, Yan Ming, Liu Qiqi, He Gaorui. 2023. Research on geological hazard risk assessment based on PCA and improved AHP–CRITIC method: A case study of Shenmu, Shaanxi Province[J]. Journal of Earth Environment, 14(4): 472−487 (in Chinese with English abstract).

    [9]

    Li Ming, Jiang Weijun, Dong Jiahui, Jin Shaofeng, Zhang Chenwei, Niu Ruiqing. 2023. Evaluation of landslide hazards susceptibility based on machine learning: Taking the Three Gorges reservoir area as an example[J]. South China Geology, 39(3): 413−427 (in Chinese with English abstract).

    [10]

    Li Xin, Xue Guicheng, Liu Changzhu, Xia Nan, Yang Yongpeng, Yang Feng, Wang Xiaolin, Chang Zhenyu. 2022. Evaluation of geohazard susceptibility based on information value model and information value–logistic regression model: A case study of the central mountainous area of Hainan Island[J]. Journal of Geomechanics, 28(2): 294−305 (in Chinese with English abstract).

    [11]

    Ma Xiao, Wang Nianqin, Li Xiaokang, Yan Dong, Li Jialin. 2022. Assessment of landslide susceptibility based on RF–FR model: Taking Lueyang County as an example[J]. Northwestern Geology, 55(3): 335−344 (in Chinese with English abstract).

    [12]

    Meng Xiaojie, Zhang Xinshe, Zeng Qingming, Wang Dong. 2022. The susceptibility evaluation of loess landslide based on weighted information value method—Taking 1: 50000 map of Maiji District of Tianshui City as an example[J]. Northwestern Geology, 55(2): 249−259 (in Chinese with English abstract).

    [13]

    Mao Y M, Mwakapesa D S, Wang G L, Nanehkaran Y A, Zhang M S. 2021. Landslide susceptibility modelling based on AHC–OLID clustering algorithm[J]. Advances in Space Research, 68(1): 301−316. doi: 10.1016/j.asr.2021.03.014

    [14]

    Pourghasemi H R, Rahmati O. 2018. Prediction of the landslide susceptibility: Which algorithm, which precision?[J]. Catena, 162: 177−192. doi: 10.1016/j.catena.2017.11.022

    [15]

    Qiu Haijun, Cao Mingming, Liu Wen, Hao Junqing, Wang Yanlin. 2014. Research on the spatial point pattern of geohazard: A case of Ningqiang County[J]. Journal of Arid Land Resources and Environment, 28(3): 107−111 (in Chinese with English abstract).

    [16]

    Shirzadi A, Solaimani K, Roshan M H, Kavian A, Chapi K, Shahabi H, Keesstra S, Ahmad B B, Bui D T. 2019. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution[J]. Catena, 178: 172−188. doi: 10.1016/j.catena.2019.03.017

    [17]

    Sun Jianfeng, Ma Chao, Hu Jinshu, Yan Tiesheng, Gao Jiajun, Xu Hui. 2023. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: A case of Chongtou Town, Yunhe County, Zhejiang Province[J]. Journal of Engineering Geology, 31(2): 538−551 (in Chinese with English abstract).

    [18]

    Tang Yaming, Zhang Maosheng. 2011. Landslide risk assessment difficulties and methods: A review[J]. Hydrogeology and Engineering Geology, 38(2): 130−134 (in Chinese with English abstract).

    [19]

    Tamura R, Kobayashi K, Takano Y, Miyashiro R, Nakata K, Matsui T. 2019. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor[J]. Journal of Global Optimization, 73: 431−446. doi: 10.1007/s10898-018-0713-3

    [20]

    Wang Bendong, Li Siquan, Xu Wanzhong, Yang Yong, Li Yongyun. 2024. A comparative study of landslide susceptibility evaluation based on three different machine learning algorithms[J]. Northwestern Geology, 57(1): 34−43 (in Chinese with English abstract).

    [21]

    Wu Shuren, Shi Jusong, Wang Tao, Zhang Chunshan, Shi Ling. 2012. The Theory and Technology of Landslide Risk Assessment[M]. Beijing: Science Press (in Chinese).

    [22]

    Xue Qiang, Zhang Maosheng, Dong Ying, Meng Xiaojie, Guo Xiaopeng, Feng Wei, Hong Bo, Wang Tao, Liu Wenhui, Tian Zhongying, Zhang Ge, Lu Na. 2023. Refinement risk identification of loess geo–hazards based on DEM and remote sensing—Taking Mizhi County in the Loess Plateau of Northern Shaanxi as an example[J]. Geology in China, 50(3): 926−942 (in Chinese with English abstract).

    [23]

    Yao Xiaoyue, Su Wenji, Li Xiujuan, Zheng Zhiwen, Mei Weibiao. 2023. Risk assessment of geological disasters in low mountain and hilly regions based on multiple combined models and its accuracy analysis[J]. South China Journal of Seismology, 43(3): 95−109 (in Chinese with English abstract).

    [24]

    Zhang Linfan, Wang Jiayun, Zhang Maosheng, Chen Shebin, Wang Tao. 2022. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 55(2): 260−270 (in Chinese with English abstract).

    [25]

    Zhang Maosheng, Xue Qiang, Jia Jun, Xu Jiwei, Gao Bo, Wang Jiayun. 2019. Methods and practices for the investigation and risk assessment of geo–hazards in mountainous towns[J]. Northwestern Geology, 52(2): 125−135 (in Chinese with English abstract).

    [26]

    Zhang Wenlong, Zhang Zhenkai, Yang Shuai. 2023. Study on intelligent evaluation and zoning of geohazards risk in Mianluening area[J]. Northwestern Geology, 56(1): 276−283 (in Chinese with English abstract).

    [27]

    Zhang A, Zhao X W, Zhao X Y, Zheng X Z, Zeng M, Huang X, Wu P, Jiang T, Wang S C, He J, Li Y Y. 2024. Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China[J]. China Geology, 7(1): 104−115.

    [28]

    Zhou Jingjing, Zhang Xiaomin, Zhao Fasuo, Li Hui, Liu Hainan. 2019. Research on risk assessment of geological hazards in Qinling–Daba mountain area, south Shaanxi Province[J]. Journal of Geomechanics, 25(4): 544−553 (in Chinese with English abstract).

    [29]

    曹璞源, 邱海军, 胡胜, 杨冬冬. 2017. 区域崩塌和滑坡规模参数频率分布研究—以秦巴山地宁强县为例[J]. 灾害学, 32(4): 126−131.

    [30]

    陈水满, 赵辉龙, 许震, 谢伟, 刘亮, 李全悦. 2022. 基于人工神经网络模型的福建南平市滑坡危险性评价[J]. 中国地质灾害与防治学报, 33(2): 133−140.

    [31]

    窦杰, 向子林, 许强, 郑鹏麟, 王协康, 苏爱军, 刘军旗, 罗万祺. 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 48(5): 1657−1674.

    [32]

    方然可, 刘艳辉, 黄志全. 2021. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报, 32(4): 1−8.

    [33]

    李光辉, 铁永波. 2023. 基于信息量模型的综合地质灾害易发性[J]. 灾害学, 38(3): 212−221.

    [34]

    李嘉昊, 谢婉丽, 严明, 刘琦琦, 何高锐. 2023. 基于PCA与改进AHP–CRITIC法的地质灾害风险评价研究—以神木市为例[J]. 地球环境学报, 14(4): 472−487.

    [35]

    李明, 蒋委君, 董佳慧, 金少锋, 张宸伟, 牛瑞卿. 2023. 基于机器学习的滑坡灾害易发性评价—以三峡库区为例[J]. 华南地质, 39(3): 413−427.

    [36]

    李信, 薛桂澄, 柳长柱, 夏南, 杨永鹏, 杨峰, 王晓林, 常振宇. 2022. 基于信息量模型和信息量–逻辑回归模型的海南岛中部山区地质灾害易发性研究[J]. 地质力学学报: 28(2): 294–305.

    [37]

    马啸, 王念秦, 李晓抗, 严冬, 李嘉琳. 2022. 基于RF–FR模型的滑坡易发性评价—以略阳县为例[J]. 西北地质, 55(3): 335−344.

    [38]

    孟晓捷, 张新社, 曾庆铭, 王冬. 2022. 基于加权信息量法的黄土滑坡易发性评价—以1∶5万天水市麦积幅为例[J]. 西北地质, 55(2): 249−259.

    [39]

    邱海军, 曹明明, 刘闻, 郝俊卿, 王雁林. 2014. 区域地质灾害的空间点格局分析研究—以宁强县为例[J]. 干旱区资源与环境, 28(3): 107−111. doi: 10.3969/j.issn.1003-7578.2014.03.019

    [40]

    孙剑锋, 马超, 胡金树, 闫铁生, 杲加俊, 徐辉. 2023. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价—以浙江省云和县崇头镇为例[J]. 工程地质学报, 31(2): 538−551.

    [41]

    唐亚明, 张茂省. 2011. 滑坡风险评价难点及方法综述[J]. 水文地质工程地质, 38(2): 130−134.

    [42]

    王本栋, 李四全, 许万忠, 杨勇, 李永云. 2024. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质, 57(1): 34−43.

    [43]

    吴树仁, 石菊松, 王涛, 张春山, 石玲. 2012. 滑坡风险评估理论与技术[M]. 北京: 科学出版社.

    [44]

    薛强, 张茂省, 董英, 孟晓捷, 郭小鹏, 冯卫, 洪勃, 王涛, 刘文辉, 田中英, 张戈, 卢娜. 2023. 基于DEM和遥感的黄土地质灾害精细化风险识别—以陕北黄土高原区米脂县为例[J]. 中国地质, 50(3): 926−942. doi: 10.12029/gc20220801001

    [45]

    姚小月, 宿文姬, 李秀娟, 郑志文, 梅伟标. 2023. 基于多种组合模型的低山丘陵区地质灾害危险性评价及精度分析[J]. 华南地震, 43(3): 95−109.

    [46]

    张林梵, 王佳运, 张茂省, 陈社斌, 王涛. 2022. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 55(2): 260−270.

    [47]

    张茂省, 薛强, 贾俊, 徐继维, 高波, 王佳运. 2019. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质, 52(2): 125−135.

    [48]

    张文龙, 张振凯, 杨帅. 2023. 勉略宁地区地质灾害危险性智能评价和区划研究[J]. 西北地质, 56(1): 276−282.

    [49]

    周静静, 张晓敏, 赵法锁, 李辉. 2019. 陕南秦巴山区地质灾害危险性评价研究[J]. 地质力学学报, 25(4): 544−553. doi: 10.12090/j.issn.1006-6616.2019.25.04.053

  • 加载中

(5)

(1)

计量
  • 文章访问数:  59
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2023-10-18
修回日期:  2024-02-20
刊出日期:  2025-01-25

目录