Research progress of interaction of fluid with rock in the ductile shear zone
-
摘要:
构造变形与流体联合控制成矿作用的机制是矿床学界关注的热点问题之一。作为大陆岩石圈中的应变局部化带,剪切带中一般都渗透着大量流体,流体与岩石的相互作用及其化学效应和物理效应,导致了矿物化学不平衡和组分的迁移,引起岩石化学成分重新调整。文章通过对韧性剪切带内的流体作用、剪切带内的成分与体积变化、剪切变形与成矿模拟实验总结,讨论了剪切变形过程中的力学-化学作用、剪切构造应力和流体在构造成岩成矿过程中的行为。因此,要加强构造应力对温度、岩石物理性质、地球化学相平衡和水岩体系的相关参量方面影响的综合研究。
Abstract:The jointly controlling mechanism of tectonic deformation process and fluid mineralization is one of the hot issues of mineral deposits. As a strain localization zone in the continental lithosphere, a large amount of fluid is generally permeated in the shear zone. In the ductile shear zone, the interaction between fluid and rock, the localization of its chemical and physical effects lead to chemical unbalances and component migrations of minerals, causing re-adjustment of chemical composition of rocks. The action of the fluid, the change of composition and volume in the shear zone, the deformation and mineralization simulation experiments in the shear zone are summarized and analyzed. The mechanical-chemical action during shear deformation and the behavior of shear structural stresses and fluids during the process of tectonogenesis are discussed. Therefore, comprehensive research on the influence of tectonic forces on temperature, petrophysical properties, geochemical phase balance, and coherent parameters of water-rock systems should be strengthened.
-
-
图 1 水力压裂摩尔图解及断层阀模式中流体压力和剪应力的波动(Phillips,1972)
Figure 1.
图 2 流体对裂隙的发育的影响,矿物的沉淀充填裂隙(Sibson and Scott, 1998)
Figure 2.
图 4 裂隙愈合的各种机制(Gratier et al., 2009; 张媛媛和周永胜,2012)
Figure 4.
图 6 不同压力条件下温度对金溶解度的影响(Benning and Seward, 1996)
Figure 6.
表 1 流体作用下糜棱岩中的矿物体积发生变化
Table 1. Changes of mineral volume in mylonite under fluid action
反应式 ΔV(反应固体体积
变化值)/(cm3/mol)ΔV(反应固体体积
变化百分率)/%1 K-feldspar+Na+=Albite+K+ -9 -8 2 3Albite+2H++K+=muscovite+6SiO2+3Na+ -23 -8 3 3K-feldspar+2H +=muscovite+6SiO2+2K+ -49 -8 4 2Phlogopite+4H++H2O=clinochlore+3SiO2+Mg+++2K+ -25 -8 5 Phlogopite+6H+=K-feldspar+3Mg+++4H2O -41 -27 6 2K-feldspar+5Mg+++8H2O=clinochlore+3SiO2+2K++8H+ 61 30 7 3clinochlore+2K++28H+=2muscovite+3SiO2+Mg+++24H2O -272 -44 8 3muscovite+5biotite+9SiO2+4H2O=8K-feldspar+3clinochlore -41 -2.7 -
ALLIBONE A H, CORDERY G R, MORRISON G W, et al., 1995. Synchronous advanced argillic alteration and deformation in a shear zone-hosted magmatic hydrothermal Au-Ag deposit at the Temora (Gidginburg) mine, new south Wales, Australia[J]. Economic Geology, 90(6): 1570-1603. doi: 10.2113/gsecongeo.90.6.1570
AUDÉTAT A, GVNTHER D, HEINRICH C A, 1998. Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions[J]. Science, 279(5359): 2091-2094. doi: 10.1126/science.279.5359.2091
BELLOT J P, 2007. Extensional deformation assisted by mineralised fluids within the brittle-ductile transition: insights from the southwestern massif central, France[J]. Journal of Structural Geology, 29(2): 225-240. doi: 10.1016/j.jsg.2006.09.004
BENNING L G, SEWARD T M, 1996. Hydrosulphide complexing of Au (Ⅰ) in hydrothermal solutions from 150-400 ℃ and 500-1500 bar[J]. Geochimica et Cosmochimica Acta, 60(11): 1849-1871. doi: 10.1016/0016-7037(96)00061-0
CHAI P, SUN J G, XING S W, et al., 2016. Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern heilongjiang province, NE China[J]. Ore Geology Reviews, 72: 1022-1036. doi: 10.1016/j.oregeorev.2015.09.026
CHEN B L, 2000. Relation between types of structural deformation and gold mineralization[J]. World Geology, 19(3): 217-223, 239. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz200003002
CHEN S H, HAN R S, SHENTU L Y, et al., 2016. Alteration zoning and geochemical element migration in alteration rock of Zhaotong lead-zinc deposit in northeastern Yunnan mineralization concentration Area[J]. Journal of Jilin University (Earth Science Edition), 46(3): 711-721. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201603009
CHEN X B, 1994. A high T-p model experiment of granodiorte porphyry and its metallogentic significance to metallization[J]. Geological Science and Technology Information, 13(2): 63-69. (in Chinese with English abstract)
CHEN Z L, ZHOU X Q, YANG N, et al., 1996. Modeling the migration and accumulation of ore-forming elements under high temperatures and pressures[J]. Journal of Geomechanics, 2(2): 90-93. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600065186
DAI T G, LIU C Z, 1990. A primary approach to the relationship between structural stress and migration of elements[J]. Journal of Guilin College of Geology, 10(3): 247-250. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX199003004.htm
FU S L, HU B, 2010. Discuss metallogenic model of ductile shear zone type gold deposit from microcosmic scale[J]. Gold Science and Technology, 18(2): 31-34. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxjs201002007
GHISETTI F, KIRSCHNER D, VEZZANI L, 2000. Tectonic controls on large-scale fluid circulation in the Apennines (Italy)[J]. Journal of Geochemical Exploration, 69-70: 533-537. doi: 10.1016/S0375-6742(00)00087-X
GLAZNER A F, BARTLEY J M, 1991. Volume loss, fluid flow and state of strain in extensional mylonites from the central mojave desert, California[J]. Journal of Structural Geology, 13(5): 587-594. doi: 10.1016/0191-8141(91)90045-K
GRATIER J P, GUIGUET R, RENARD F, et al., 2009. A pressure solution creep law for quartz from indentation experiments[J]. Journal of Geophysical Research, 114(B3): B03403. https://ui.adsabs.harvard.edu/abs/2009JGRB..114.3403G/abstract
HEDENQUIST J W, LOWENSTERN J B, 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370(6490): 519-527. doi: 10.1038/370519a0
HU R Z, WEN H J, SU W C, et al., 2014. Some advances in ore deposit geochemistry in last decade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 127-144. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201402001
KISTERS A F M, KOLB J, MEYER M F, 1998. Gold mineralization in high-grade metamorphic shear zones of the renco mine, southern Zimbabwe[J]. Economic Geology, 93(5): 587-601. doi: 10.2113/gsecongeo.93.5.587
KOONS P O, CRAW D, COX S C, et al., 1998. Fluid flow during active oblique convergence: a southern Alps model from mechanical and geochemical observations[J]. Geology, 26(2): 159-162. http://www.researchgate.net/publication/249520525_Fluid_flow_during_active_oblique_convergence_A_Southern_Alps_model_from_mechanical_and_geochemical_observations
LAWLEY C, IMBER J, SELBY D, 2013. Structural controls on orogenic Au mineralization during transpression: Lupa goldfield, southwestern Tanzania[J]. Economic Geology, 108(7): 1615-1640. doi: 10.2113/econgeo.108.7.1615
LI X F, HUA R M, 2000. A study on fluid action in the ductile shear zone: a review[J]. Acta Petrologica et Mineralogica, 19(4): 333-340. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200004005.htm
LI Z W, TIAN M, 2015. The sum up of some basic problems in tectonic dynamic metallogenesis study[J]. Yunnan Geology, 34(4): 485-491. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yndz201504001
LIN C Y, HE Y N, CHEN X D, et al., 1994. Relationship between ductile shear zone and gold mineralization——Taking Jinchangyu gold mine, Eastern Hebei Province, China[J]. Science in China Series B, 24(11): 1223-1232. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02297056/
LIU K H, 1997. High pressure and temperature experiment study on halo-forming and metallogenic mechanism of gold[J]. Geotectonica et Metallogenia, 21(3): 213-220. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700038829
LIU Z M, ZHANG W P, HUANG G P, et al., 2001. Fluid in shear zones of metamorphic rock and its relation with alteration and gold[J]. Hubei Geology & Mineral Resources, 15(4): 45-49. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk200104008
LV G X, DENG J, LI X B, et al., 2006. Study and problems of tectophysicochemistry[J]. Acta Geologica Sinica, 80(10): 1616-1626. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200610017
LV G X, 1997. The studies and application of tectonic physicochemistry[J]. Chinese Geology, (10): 45-48. (in Chinese)
LV G X, 2003. Advances in tectonic physico chemistry[J]. Chinese Science Bulletin, 48(2): 101-109. (in Chinese) doi: 10.1360/03tb9021
LYU G X, 2019. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics, 25(5): 962-980. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201905024
O'HARA K D, 1994. Fluid-rock interaction in crustal shear zones: a directed percolation approach[J]. Geology, 22(9): 843-846. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-0091-7613(1994)022-0843-FRIICS-2.3.CO%3b2/
PHILLIPS W J, 1972. Hydraulic fracturing and mineralization[J]. Journal of the Geological Society, 128(4): 337-359. doi: 10.1144/gsjgs.128.4.0337
QIU X P, 1999. Deep ductile shear deformation and gold metallogenesis[J]. Gold Geology, 5(3): 6-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HJDZ199903001.htm
RING U. 1999. Volume loss, fluid flow, and coaxial versus noncoaxial deformation in retrograde, amphibolite facies shear zones, northern Malawi, east-central Africa[J]. Geological Society of America Bulletin, 111(1): 123-142. doi: 10.1130/0016-7606(1999)111<0123:VLFFAC>2.3.CO;2
ROBL J, FRITZ H, STVWE K, et al., 2004. Cyclic fluid infiltration in structurally controlled Ag-Pb-Cu occurrences (Schladming, Eastern Alps)[J]. Chemical Geology, 205(1-2): 17-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca43edaf454bbab155bc3e74eeba800d
SIBSON R H, SCOTT J, 1998. Stress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand[J]. Ore Geology Reviews, 13(1-5): 293-306. doi: 10.1016/S0169-1368(97)00023-1
SUN S L, 1995. The metallization of gold deposit in shear zone[J]. Geotectonica et Metallogenia, 19(4): 375-381. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500036856
SUN X M, WEI H X, ZHAI W, et al., 2016. Fluid inclusion geochemistry and Ar-Ar geochronology of the cenozoic Bangbu orogenic gold deposit, southern Tibet, China[J]. Ore Geology Reviews, 74: 196-210. doi: 10.1016/j.oregeorev.2015.11.021
SUN X M, XU K Q, REN Q J, et al., 1996. Fluid rock interactions and chemical components variations during ductile deformation in the Jiapigou gold belt[J]. Mineral Deposits, 15(4): 308-317. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ604.002.htm
WAN T F, 2008. Some problems in the study of structural geology and tectonics in China[J]. Geological Bulletin of China, 27(9): 1441-1450. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200809006
WANG C Z, LI X F, YI X K, 2009. Gold mineralization during progressive deformation in Jinshan ductile shear zone, Jinshan gold deposit, Jiangxi province: evidence from microscopic deformation structures[J]. Journal of Guilin University of Technology, 29(2): 169-182. (in Chinese with English abstract)
WANG J C, WANG F L, TANG J R, et al., 2015. Mineralization and its geological significance in weak deformational domains[J]. Geotectonica et Metallogenia, 39(2): 280-285. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201502008
WANG Y T, MAO J W, LI X F, et al., 2004. Gold mineralization related to the shear zone[J]. Earth Science Frontiers, 11(2): 393-400. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzykt200906004
WANG Z C, WANG Y N, 1987. Structural deformation and hydrothermal mineralization[J]. Acta Geological Sinica, 61(2): 126-137. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201602016
WEATHERLEY D K, HENLEY R W, 2013. Flash vaporization during earthquakes evidenced by gold deposits[J]. Nature Geoscience, 6(4): 294-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23c4a9018997832f3d83d83ea10cf759
WEI J J, ZHANG D H, WANG S Y, et al., 1999. Discrimination study on fluid/rock interaction within metallogenic and non-metallogenic sections in shear zone[J]. Chinese Journal of Geology, 34(4): 473-484. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX199904008.htm
WHITMEYER S J, WINTSCH R P, 2005. Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central Argentina[J]. Journal of Metamorphic Geology, 23(6): 411-424. doi: 10.1111/j.1525-1314.2005.00588.x
WINTSCH R P, YEH M W, 2013. Oscillating brittle and viscous behavior through the earthquake cycle in the red river shear zone: monitoring flips between reaction and textural softening and hardening[J]. Tectonophysics, 587(2): 46-62. http://www.sciencedirect.com/science/article/pii/S0040195112005951
WU X Y, SHANG J H, ZHANG K P, 2007. The characteristics of ore-controlling structures and simulating experiments of Jinshan gold deposit[J]. Acta Mineralogica Sinica, 27(2): 143-152. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200702009
WU X Y, YANG Y G, XIAO H Y, et al., 1999. Coupling in ore-controlling factors of Cu and Au in the northeast Jiangxi fracture zone and simulating experiments[J]. Geotectonica et Metallogenia, 23(1): 3-15. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx199901002
XIAO H Y, WU X Y, 1997. Tectonic deformation features of Jinshan gold orefield:A simulating experiment[J]. Geology-Geochemistry, (3): 80-86. (in Chinese with English abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dzdq199703012.htm
XIONG D X, SUN X M, ZHAI W, et al., 2007. CO2-Rich fluid inclusions in auriferous quartz veins from the Daping ductile shear zone hosted gold deposit in Yunnan province, China, and its implications for gold mineralization[J]. Acta Geologica Sinica, 81(5): 640-653. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200705008
XU D R, 2002. Study on the experimentation of Baoban group under high pressure and high temperature and the metallogenic mechanisms of gold deposits on Hainan island[J]. Geotectonic et Metallogenia, 26(2): 207-215. (in Chinese with English abstract)
XU D R, WU C J, LV G X, et al., 2015. Application of lithospheric rheology in structural metallogenesis: taking BIF-type iron-rich ore deposits as an example[J]. Geotectonica et Metallogenia, 39(1): 93-109. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201501010.htm
XU X W, NIU L, HONG T, et al., 2019. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 25(1): 1-8. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201901002
YANG W R, ZHANG W H, 1996. Tectonic fluids a new research domain[J]. Earth Science Frontiers, 3(3-4): 124-130. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY603.015.htm
YANG X Y, 2005. On the studies of ductile shear zones: their geological significance[J]. Advances in Earth Science, 20(7): 765-771. (in Chinese with English abstract)
YARDLEY B W D, VALLEY J W, 1997. The petrologic case for a dry lower crust[J]. Journal of Geophysical Research, 102(B6): 12173-12185. doi: 10.1029/97JB00508
YUE S, MA R, WANG Z C, 1990. Experimental achievements on ductile deformation structures and metallization[J]. Contributions to Geology and Mineral Resources Research, 5(4): 30-36. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0026271412005434
ZHANG B Y, ZHANG A P, YU H N, et al., 1992. Retrogressive metamorphic process in Huangshan ductile shear zone and its relationship to gold mineralization, Zhejiang province[J]. Contributions to Geology and Mineral Resources Research, 7(1): 1-9. (in Chinese with English abstract)
ZHANG L C, ZENG Z R, YANG X K, et al., 1997. Tectono geochemical characteristics of the ductile shear zone type gold deposit in Kanggul, Xinjiang[J]. Journal of Precious Metallic Geology, 6(1): 13-21. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700948243
ZHANG Y Y, ZHOU Y S, 2012. The strength and deformation mechanisms of brittle-plastic transition zone, and the effects of strain rate and fluids[J]. Seismology and Geology, 34(1): 172-194. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201201016
ZHONG Z Q, 1996. Fluid rock interaction in shear zone[J]. Earth Science Frontiers, 3(3-4): 209-215. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-0091-7613(1994)022-0843-FRIICS-2.3.CO%3b2/
ZHONG Z Q, YOU Z D, 1995. Compositional variation and volume loss of a shear zone:Hetai shear zone as a case History[J]. Chinese Science Bulletin, 40(19): 1638-1641.
ZHOU L M, ZHANG D H, XI B B, 2008. Rock permeability, fluid flow and hydrothermal ore-forming processes[J]. Earth Science Frontiers, 15(3): 299-310. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy200803027
陈柏林, 2000.构造形变类型与金矿化类型的关系[J].世界地质, 19(3): 217-223, 239. doi: 10.3969/j.issn.1004-5589.2000.03.002
陈随海, 韩润生, 申屠良义, 等, 2016.滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J].吉林大学学报(地球科学版), 46(3): 711-721. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201603009
陈先兵, 1994.花岗闪长斑岩高温高压实验及其成矿地质意义[J].地质科技情报, 13(2): 63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400804792
陈正乐, 周显强, 杨农, 等, 1996.高温高压下成矿元素运移聚集模拟实验[J].地质力学学报, 2(2): 90-93. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19960225&journal_id=dzlxxb
戴塔根, 刘成湛, 1990.构造应力与元素迁移关系初探[J].桂林冶金地质学院学报, 10(3): 247-250. http://www.cqvip.com/Main/Detail.aspx?id=257163
付山岭, 胡斌, 2010.从微观尺度探讨韧性剪切带型金矿的成矿模式[J].黄金科学技术, 18(2): 31-34. doi: 10.3969/j.issn.1005-2518.2010.02.007
胡瑞忠, 温汉捷, 苏文超, 等, 2014.矿床地球化学近十年若干研究进展[J].矿物岩石地球化学通报, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016
李晓峰, 华仁民, 2000.韧性剪切带内流体作用的研究[J].岩石矿物学杂志, 19(4): 333-340. doi: 10.3969/j.issn.1000-6524.2000.04.006
李志伟, 田敏, 2015.构造动力成矿作用研究的某些基本问题综述[J].云南地质, 34(4): 485-491. doi: 10.3969/j.issn.1004-1885.2015.04.001
林传勇, 何永年, 陈孝德, 等, 1994.韧性剪切带与金矿化的关系:以冀东金厂峪金矿床为例[J].中国科学(B辑), 24(11): 1223-1232. http://d.old.wanfangdata.com.cn/Periodical/kwys200102003
刘康怀, 1997.高温高压实验研究与金的成矿成晕机理探讨[J].大地构造与成矿学, 21(3): 213-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700038829
刘忠明, 张万平, 黄国平, 等, 2001.变质岩区剪切带流体与蚀变和金的成矿作用[J].湖北地矿, 15(4): 45-49. doi: 10.3969/j.issn.1671-1211.2001.04.008
吕古贤, 1997.构造物理化学的研究与应用[J].中国地质(10): 45-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700039837
吕古贤, 2003.构造物理化学的研究进展[J].科学通报, 48(2): 101-109. doi: 10.3321/j.issn:0023-074X.2003.02.001
吕古贤, 邓军, 李晓波, 等, 2006.构造物理化学的思路、研究和问题[J].地质学报, 80(10): 1616-1626. doi: 10.3321/j.issn:0001-5717.2006.10.017
吕古贤, 2019.构造动力成岩成矿和构造物理化学研究[J].地质力学学报, 25(5): 962-980. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190523&journal_id=dzlxxb
邱小平, 1999.深部韧性剪切变形与金矿成矿作用[J].黄金地质, 5(3): 6-12. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s11095-010-0070-5/
孙胜龙, 1995.韧性剪切带中金成矿机理浅析[J].大地构造与成矿学, 19(4): 375-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500036856
孙晓明, 徐克勤, 任启江, 等, 1996.夹皮沟金矿带韧性剪切变形中的水岩反应及物质组分变化规律[J].矿床地质, 15(4): 308-317. http://www.cqvip.com/Main/Detail.aspx?id=2379060
万天丰, 2008.关于中国构造地质学研究中几个问题的探讨[J].地质通报, 27(9): 1441-1450. doi: 10.3969/j.issn.1671-2552.2008.09.006
王春增, 李晓峰, 易先奎, 2009.江西金山金矿控矿韧性剪切带的递进变形成矿机理:显微构造证据[J].桂林工学院学报, 29(2): 169-182. doi: 10.3969/j.issn.1674-9057.2009.02.002
汪劲草, 王方里, 汤静如, 等, 2015.弱变形域成矿及其地质意义[J].大地构造与成矿学, 39(2): 280-285. doi: 10.3969/j.issn.1001-1552.2015.02.008
王义天, 毛景文, 李晓峰, 等, 2004.与剪切带相关的金成矿作用[J].地学前缘, 11(2): 393-400. doi: 10.3321/j.issn:1005-2321.2004.02.009
王子潮, 王亚南, 1987.构造变形与热液成矿[J].地质学报, 61(2): 126-137. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198702002.htm
魏俊浩, 张德会, 王思源, 等, 1999.剪切带中矿化与非矿化地段流体:岩石相互作用差异性研究[J].地质科学, 34(4): 473-484. http://www.cnki.com.cn/Article/CJFDTotal-DZKX199904008.htm
吴学益, 杨元根, 肖化云, 等, 1999.赣东北断裂带铜、金成矿控制因素耦合作用及其模拟实验[J].大地构造与成矿学, 23(1): 3-15. doi: 10.3969/j.issn.1001-1552.1999.01.002
吴学益, 尚精华, 张开平, 2007.金山金矿构造控矿特征及其模拟实验[J].矿物学报, 27(2): 143-152. doi: 10.3321/j.issn:1000-4734.2007.02.009
肖化云, 吴学益, 1997.金山金矿田构造变形特征及其模拟实验[J].地质地球化学(3): 80-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700063280
熊德信, 孙晓明, 翟伟, 等. 2007.云南大坪韧性剪切带型金矿富CO2流体包裹体及其成矿意义[J].地质学报, 81(5): 640-653. doi: 10.3321/j.issn:0001-5717.2007.05.008
许德如, 2002.海南岛抱板群岩石高温高压实验及金成矿机理探讨[J].大地构造与成矿学, 26(2): 207-215. doi: 10.3969/j.issn.1001-1552.2002.02.017
许德如, 吴传军, 吕古贤, 等, 2015.岩石流变学原理在构造成矿研究中的应用:以BIF型富铁矿床为例[J].大地构造与成矿学, 39(1): 93-109. doi: 10.3969/j.issn.1001-1552.2015.01.010
徐兴旺, 牛磊, 洪涛, 等, 2019.流体构造动力学与成矿作用[J].地质力学学报, 25(1): 1-8. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb
杨巍然, 张文淮, 1996.构造流体:一个新的研究领域[J].地学前缘, 3(3-4): 124-130. http://d.old.wanfangdata.com.cn/Periodical/dqkx200001013
杨新岳, 谢国源, 李志纯, 1995.变形过程中的流体-岩石作用和变形岩石质量平衡[J].中国科学(B辑), 25(3): 329-336. http://www.cnki.com.cn/Article/CJFDTotal-JBXK199503016.htm
杨晓勇, 2005.论韧性剪切带研究及其地质意义[J].地球科学进展, 20(7): 765-771. doi: 10.3321/j.issn:1001-8166.2005.07.010
岳石, 马瑞, 王子潮, 1990.关于韧性变形与成矿作用的一些实验结果[J].地质找矿论丛, 5(4): 30-36. http://www.cqvip.com/qk/90755x/199004/229967.html
张伯友, 张爱萍, 俞鸿年, 等, 1992.浙江璜山韧性剪切带退变质作用与金矿化关系的讨论[J].地质找矿论丛, 7(1): 1-9. http://www.cqvip.com/qk/90755X/199201/723003.html
张连昌, 曾章仁, 杨兴科, 等, 1997.康古尔韧性剪切带型金矿构造地球化学特征[J].贵金属地质, 6(1): 13-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700948243
张媛媛, 周永胜, 2012.断层脆塑性转化带的强度与变形机制及其流体和应变速率的影响[J].地震地质, 34(1): 172-194. doi: 10.3969/j.issn.0253-4967.2012.01.016
钟增球, 1996.剪切带的流体-岩石相互作用[J].地学前缘, 3(3-4): 209-215.
周利敏, 张德会, 席斌斌, 2008.岩石中的渗透率、流体流动及热液成矿作用[J].地学前缘, 15(3): 299-310. doi: 10.3321/j.issn:1005-2321.2008.03.027
-