Advances in quantitative characterization of shale pore structure by using fluid injection methods
-
摘要:
页岩致密且结构复杂,对其孔隙结构进行定量表征一直是页岩储层研究的重点和难点,因其能够为页岩油气储层评价和甜点确定提供重要信息。通过系统梳理已有研究成果,介绍了以压汞法和气体吸附法为代表的流体注入法,简述了能够影响测试结果的因素,指出了目前页岩全孔径孔隙结构表征的问题及发展方向。分析表明,颗粒样气体吸附法和块(柱)压汞法表征结果的数据匹配性差,整合难度大;同时由上述两种方法联合所获得的表征结果也无法被其他独立测试所验证。进一步指出采用颗粒样代替传统块(柱)样进行页岩压汞测试可以提高数据质量,也是未来方法联用的发展方向,其中样品颗粒堆积孔进汞量校正、颗粒样粒径选择、多方法数据匹配是实现页岩全孔径孔隙结构定量表征的关键。
Abstract:Shale is compact and has complex structure, which makes it hard to characterize its pore structure quantitatively; however, the pore structure of shale can provide important information for shale reservoir evaluation and sweet spot determination. The fluid injection methods, represented by the gas adsorption method and the mercury injection method, are the most commonly used techniques in shale pore structure characterization, but neither of them can provide the complete pore size range of shale. In this paper, the research results of previous studies were reviewed and summarized, and the key factors affect the test result of gas adsorption method and mercury injection method were analyzed. The problems and future directions in the combined characterization of shale pore structure in the complete pore size were pointed out. It is noted that the characterization results from the gas adsorption using particle samples do not match those from the mercury injection using bulk samples, which makes the data combination impossible. And the combined characterization results are hard to be verified. For mercury injection, the usage of particle samples can improve the data quality compared to the bulk ones, as well as the combined characterization results. The understandings about conformance correction, premium particle size and data compatibility are the key issues to improve the combined characterization of shale pore structure.
-
-
图 1 氮气吸附测试中5类滞留环及其对应孔隙形状(据Labani et al., 2013修改)
Figure 1.
图 2 压汞法与N2吸附测定孔径分布曲线对比(据Clarkson et al., 2013;Kuila and Prasad, 2013修改)
Figure 2.
图 3 颗粒样压汞的四个阶段(Yu et al., 2019)
Figure 3.
图 4 页岩实测压汞数据的分形特征(鄂尔多斯三叠系张家滩陆相页岩,Yu et al., 2019)
Figure 4.
表 1 颗粒样和块样压汞充满度对比(Comisky et al., 2011;DarŁak et al., 2011)
Table 1. Comparison of mercury saturation using particle samples and bulk samples (data collected from Comisky et al., 2011; DarŁak et al., 2011)
样号 氦气测
孔隙度/%20~35目颗粒样
压汞孔隙度/%汞饱
和度/%块样压汞
孔隙度/%汞饱
和度/%1 5.45 5.42 99 2.42 44 2 7.67 6.56 85 3.32 43 3 7.98 7.24 91 4.59 57 4 1.1 0.80 73 0.43 39 5 1.88 1.48 79 0.89 47 6 9.43 7.70 82 4.44 47 7 6 3.90 65 2.15 36 8 4.9 3.60 73 1.81 37 -
ADESIDA A, 2011. Pore size distribution of Barnett shale using nitrogen adsorption data[D]. Oklahoma: University of Oklahoma.
AL HINAI A, REZAEE R, ESTEBAN L, et al., 2014. Comparisons of pore size distribution: a case from the Western Australian gas shale formations[J]. Journal of Unconventional Oil and Gas Resources, 8: 1-13. doi: 10.1016/j.juogr.2014.06.002
API RP 40, 1998. Recommended practices for core analysis[R]. 2nd ed. American: American Petroleum Institute.
APLIN A C, COUPLES G D, DREWS M, et al., 2012. Multi-scale effective flow properties of heterogeneous mudstones[C]//Proceedings of AAPG Hedberg conference, petroleum systems: modeling the past, planning the future-nice. France: American Association of Petroleum Geologists: 1-5.
BENNETT R H, BRYANT W R, HULBERT M H, et al., 1991. Microstructure of fine-grained sediments[M]. New York: Springer-Verlag.
BRACE W F, WALSH J B, FRANGOS W T, 1986. Permeability of granite under high pressure[J]. Journal of Geophysical Research, 73(6): 2225-2236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JB073i006p02225
BUSTIN R M, BUSTIN A M M, CUI X, et al., 2008. Impact of shale properties on pore structure and storage characteristics[C]//Proceedings of society of petroleum engineers shale gas production conference. Texas, USA: Society of Petroleum Engineers.
CAO T T, SONG Z G, LIU G X, et al., 2016. Characteristics of shale pores, fractal dimension and their controlling factors determined by nitrogen adsorption and mercury injection methods[J]. Petroleum Geology and Recovery Efficiency, 23(2): 1-8. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201602001
CHEN Y Y, WEI L, MASTALERZ M, et al., 2015. The effect of analytical particle size on gas adsorption porosimetry of shale[J]. International Journal of Coal Geology, 138: 103-112. doi: 10.1016/j.coal.2014.12.012
CLARKSON C R, BUSTIN R M, 1996. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential[J]. Fuel, 75(13): 1483-1498. doi: 10.1016/0016-2361(96)00142-1
CLARKSON C R, BUSTIN R M, 1999. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume distributions[J]. Fuel, 78(11): 1333-1344. doi: 10.1016/S0016-2361(99)00055-1
CLARKSON C R, SOLANO N, BUSTIN R M, et al., 2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119
COMISKY J T, SANTIAGO M, MCCOLLOM B, et al., 2011. Sample size effects on the application of mercury injection capillary pressure for determining the storage capacity of tight gas and oil shales[C]//Proceedings of Canadian Unconventional Resources Conference. Calgary, Alberta, Canada: Society of Petroleum Engineers.
CONNER W C, CEVALLOS-CANDAU J F, WEIST E L, et al., 1986. Characterization of pore structure: porosimetry and sorption[J]. Langmuir, 2(2): 151-154. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201310014
CURTIS J B, 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86(11): 1921-1938. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704025
DARŁAK B, KOWALSKA-WLODARCZYK M, SUCH P, 2011. Methodological aspects of porosity and pore space measurements in shale rocks[J]. Nafta-Gaz, 67(5): 326-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32f5342250f99930818eba92d87daea0
DE BOER J H, 1958. The structure and properties of porous materials[M]//EVERETT D H, STONE F S. Proceedings of the tenth symposium of the Colston research society. London: Butterworths: 68-94.
FRIESEN W I, MIKULA R J, 1987. Fractal dimensions of coal particles[J]. Journal of Colloid and Interface Science, 120(1): 263-271. doi: 10.1016/0021-9797(87)90348-1
GROEN J C, PEFFER L A A, PÉREZ-RAMÍREZ J, 2003. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 60(1-3): 1-17. doi: 10.1016/S1387-1811(03)00339-1
GUIDRY F K, LUFFEL D L, CURTIS J B, 1995. Development of laboratory and Petrophysical techniques for evaluating shale reservoirs[R]. GRI Final Technical Report GRI-95/0496. Chicago, IL: Gas Research Institute.
HAN B B, QIN Y, ZHANG Z, et al., 2015. Study on coal compressibility and correction of compression amount based on compressibility of mercury injection test[J]. Coal Science and Technology, 43(3): 68-72. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201503017
HAN H, CAO Y, CHEN S J, et al., 2016. Influence of particle size on gas-adsorption experiments of shales: an example from a Longmaxi Shale sample from the Sichuan Basin, China[J]. Fuel, 186: 750-757. doi: 10.1016/j.fuel.2016.09.018
HANDWERGER D A, KELLER J, VAUGHN K, 2011. Improved Petrophysical core measurements on tight shale reservoirs using retort and crushed samples[C]//Proceedings of SPE annual technical conference and exhibition. November: SPE.
HOUBEN M E, DESBOIS G, URAI J L, 2014. A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods[J]. Marine and Petroleum Geology, 49(1): 143-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17c3602b9b13eb8bb9d8f6e77c007024
JOSH M, ESTEBAN L, PIANE C D, et al., 2012. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 88-89: 107-124. doi: 10.1016/j.petrol.2012.01.023
KLAVER J, HEMES S, HOUBEN M, et al., 2015. The connectivity of pore space in mudstones: insights from high-pressure Wood's metal injection, BIB-SEM imaging, and mercury intrusion porosimetry[J]. Geofluids, 15(4): 577-591. doi: 10.1111/gfl.12128
KUILA U, PRASAD M A, 2013. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 61(2): 341-362. doi: 10.1111/1365-2478.12028
KWON O, KRONENBERG A K, GANGI A F, et al., 2004. Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading[J]. Journal of Geophysical Research: Solid Earth, 109(B10): B10205. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2004JB003052/
LABANI M M, REZAEE R, SAEEDI A, et al., 2013. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: a case study from the Perth and Canning Basins, Western Australia[J]. Journal of Petroleum Science and Engineering, 112(3): 7-16.
LI Y H, LU G Q, RUDOLPH V, 1999. Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry[J]. Particle & Particle Systems Characterization, 16(1): 25-31. http://www.researchgate.net/publication/43490824_Compressibility_and_fractal_dimension_of_fine_coal_particles_in_relation_to_pore_structure_characterisation_using_mercury_porosimetry
LOWELL S, SHIELDS J E, THOMAS M A, et al., 2004. Characterization of porous solids and powders: Surface area, pore size and density[M]. Netherlands: Springer.
LUFFEL D L, GUIDRY F K, 1992. New core analysis methods for measuring reservoir rock properties of Devonian shale[J]. Journal of Petroleum Technology, 44(11): 1184-1190. doi: 10.2118/20571-PA
LUFFEL D L, HOPKINS C W, SCHETTLER P D Jr, 1993. Matrix permeability measurement of gas productive shales[C]//Proceedings of SPE annual technical conference and exhibition. Houston: SPE.
MILNER M, MCLIN R, PETRIELLO J, 2010. Imaging texture and porosity in mudstones and shales: comparison of secondary and ion-milled backscatter SEM methods[C]//Proceedings of Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada: Society of Petroleum Engineers: 1-10.
NELSON P H, 2009. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 93(3): 329-340. doi: 10.1306/10240808059
PENG S, ZHANG T W, LOUCKS R G, et al., 2017. Application of mercury injection capillary pressure to mudrocks: conformance and compression corrections[J]. Marine and Petroleum Geology, 88: 30-40. doi: 10.1016/j.marpetgeo.2017.08.006
SCHMITT M, FERNANDES C P, DA CUNHA NETO J A B, et al., 2013. Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with Mercury Injection Capillary Pressure techniques[J]. Marine and Petroleum Geology, 39(1): 138-149. doi: 10.1016/j.marpetgeo.2012.09.001
SHANG C J, KANG Y S, DENG Z, et al., 2019. The influence mechanism of filled natural fractures on the variation law of shale permeability in loading process[J]. Journal of Geomechanics, 25(3): 382-391. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201903008
SONDERGELD C H, AMBROSE R J, RAI C S, et al., 2010. Micro-structural studies of gas shales[C]//Proceedings of Society of Petroleum Engineers Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA: Society of Petroleum Engineers: 1-17.
STANMORE B R, HE Y H, WHITE E T, et al., 1997. Porosity and water retention in coarse coking coal[J]. Fuel, 76(3): 215-222. http://www.sciencedirect.com/science/article/pii/S0016236196002086
TIAN H, ZHANG S C, LIU S B, et al., 2012. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 33(3): 419-427. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011
WANG G C, JU Y W, YAN Z F, et al., 2015. Pore structure characteristics of coal-bearing shale using fluid invasion methods: a case study in the Huainan-Huaibei Coalfield in China[J]. Marine and Petroleum Geology, 62: 1-13. doi: 10.1016/j.marpetgeo.2015.01.001
WANG X, QI M, HU Y L, et al., 2015. Analysis of the shale pore structures by the combination of high-pressure mercury injection and fractal theory[J]. Petroleum Geology and Oilfield Development in Daqing, 34(2): 165-169. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsydzykf201502033
WEI L, MASTALERZ M, SCHIMMELMANN A, et al., 2014. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 132: 38-50. doi: 10.1016/j.coal.2014.08.003
WEI M M, XIONG Y Q, ZHANG L, et al., 2016. The effect of sample particle size on the determination of pore structure parameters in shales[J]. International Journal of Coal Geology, 163: 177-185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d910ba8e1ec912f1ae8bd386d04376ee
WU L Q, LIU C L, ZHANG T, et al., 2018. The application of two factor method in quantitative prediction of teconics fractures: a case study of shale in Qing-1 member, Songliao Basin[J]. Journal of Geomechanics, 24(5): 598-606. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201805063.htm
XIE X Y, TANG H M, WANG C H, et al., 2006. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry, 26(12): 100-102. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200612026
YANG F, NING Z F, KONG D T, et al., 2013. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 24(3): 450-455. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003
YU Y X, LUO X R, WANG Z X, et al., 2019. A new correction method for Mercury Injection Capillary Pressure (MICP) to characterize the pore structure of shale[J]. Journal of Natural Gas Science and Engineering, 68: 102896. http://www.researchgate.net/publication/333382542_A_new_correction_method_for_mercury_injection_capillary_pressure_MICP_to_characterize_the_pore_structure_of_shale
ZHANG S W, XIAN X F, ZHOU J P, et al., 2018. Experimental study of the pore structure characterization in shale with different particle size[J]. Journal of Energy Resources Technology, 140(5): 054502. doi: 10.1115/1.4039022
ZOU C N, DONG D Z, WANG S J, et al., 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37(6): 641-653. (in Chinese with English abstract) doi: 10.1016/S1876-3804(11)60001-3
曹涛涛, 宋之光, 刘光祥, 等, 2016.氮气吸附法—压汞法分析页岩孔隙、分形特征及其影响因素[J].油气地质与采收率, 23(2): 1-8. doi: 10.3969/j.issn.1009-9603.2016.02.001
韩贝贝, 秦勇, 张政, 等, 2015.基于压汞试验的煤可压缩性研究及压缩量校正[J].煤炭科学技术, 43(3): 68-72. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201503017
尚春江, 康永尚, 邓泽, 等, 2019.充填天然裂缝对页岩受载过程中渗透率变化规律影响机理分析[J].地质力学学报, 25(3):382-391. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190308&journal_id=dzlxxb
田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报, 33(3): 419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011
王欣, 齐梅, 胡永乐, 等, 2015.高压压汞法结合分形理论分析页岩孔隙结构[J].大庆石油地质与开发, 34(2): 165-169. doi: 10.3969/J.ISSN.1000-3754.2015.02.033
吴林强, 刘成林, 张涛, 等, 2018. "二元法"在构造裂缝定量预测中的应用:以松辽盆地青一段泥页岩为例[J].地质力学学报, 24(5):598-606. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180502&journal_id=dzlxxb
谢晓永, 唐洪明, 王春华, 等, 2006.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业, 26(12): 100-102. doi: 10.3321/j.issn:1000-0976.2006.12.026
杨峰, 宁正福, 孔德涛, 等, 2013.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学, 24(3): 450-455. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003
邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发, 37(6): 641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001
-