River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block
-
摘要:
分水岭是水系演化中的动态因素,通过连续或不连续的水系袭夺而发生迁移,从而导致水系重组。传统的对水系演化的研究主要集中单个河流袭夺事件,而新提出的利用分水岭两侧chi(χ)值差异来描述分水岭的动态迁移过程,能够解释大尺度的河流袭夺事件,描述水系的整体演化过程。文章基于12.5 m DEM数据提取了鄂尔多斯西北缘桌子山地区的chi(χ)值揭示其空间分布具有东高西低的特点,反映桌子山的分水岭处于向东迁移过程。综合分析进一步揭示,在桌子山东西两侧的构造升降和降水条件都无明显差异的条件下,岩性抗侵蚀能力差异是控制桌子山分水岭向东迁移的主要因素,当抗侵蚀能力更强的寒武系、奥陶系灰岩位于背斜西翼,而中元古宙长城系(Pt)沉积碎屑岩位于其下部时,背斜西翼的河流具有更强的侵蚀能力,西翼河流可能会穿过背斜核部,从而侧向袭夺东侧的河流。
Abstract:Divide is a dynamic feature of a landscape that routinely migrates, either through progressive or discrete river capture, in some cases even leading to the complete reorganization of river networks. Most of the existing geomorphological or drainage evolution studies focus on the single river capture, and few report on the overall movement and the geomorphologic adjustment of divide.Recently, it was proposed in a digital study of fluvial geomorphology that the chi (χ) value difference on both sides of the drainage divide could be used to explain the large-scale river capture and demonstrate the reorganization of drainage when describing the dynamic migration process of divide. In this paper, the chi (χ) values were calculated using the 12.5 m DEM data. The chi (χ) values were higher in the east and lower in the west, indicating an eastward migration. The lithological erosion resistance is the main factor controlling the eastward migration of the divides in Zhuozishan under the condition that there are no obvious differences in the tectonic uplift and precipitation conditions on the east and west sides. When the Cambrian and Ordovician limestones with stronger erosion resistance lie in the west wing of the Zhuozishan anticline, the other weak sedimentary clastic rocks located in its lower part, the river in the west wing would be through the core of the anticline, laterally capturing the rivers on the east of the anticline.
-
Key words:
- river capture /
- divide migration /
- Ordos /
- Zhuozishan
-
图 3 河道高程和chi(χ)值的线性关系(据Whipple et al., 2017修改)
Figure 3.
图 4 均衡和非均衡状态的流域盆地及河道chi(χ)值剖面(据Willett et al., 2014修改)
Figure 4.
表 1 岩石抗侵蚀强度分类表
Table 1. Classification of the erosion resistance values of different rocks based on the lithological strength
地层符号 岩性 岩性强度分类 地层时代 是否火成岩 LA LL LE Q4 冲积、湖积、风积砂土、粘土、砂砾 松散沉积物 第四系全新统 否 6.0 12 1.71 Q3 湖积洪积砂砾层 松散沉积物 第四系上更新统 否 6.0 11 1.62 Q2 冲洪积半固结砂层、砂土层 半固结沉积物 第四系下更新统 否 6.0 11 1.62 N 桔黄色泥质砂砾岩、细砂岩 弱的沉积岩 新近系 否 5.8 10 1.50 E 砖红色泥岩、细砂岩、砂质泥岩 弱的沉积岩 古近系 否 5.2 10 1.45 K 杂色砂岩、砂砾岩 弱的沉积岩 白垩系 否 4.2 10 1.35 J 黄绿色砂岩与泥岩互层,黑色页岩与钙质砂岩互层 弱的沉积岩 侏罗系 否 3.3 10 1.27 T 灰紫色砂岩与紫色泥岩互层、细粒长石石英砂岩 弱的沉积岩 三叠系 否 2.7 10 1.21 P 紫红色细粒砂岩、灰白色砂岩 强的沉积岩 二叠系 否 2.5 4 0.62 C 灰黑—黑色页岩、灰黑色粉砂质页岩 弱的沉积岩 石炭系 否 1.8 10 1.12 O 青灰色厚层灰岩、灰色白云质灰岩 强的沉积岩 奥陶系 否 1.2 4 0.50 灰岩、鲕状灰岩、竹叶状灰岩 强的沉积岩 寒武系 否 1.0 4 0.48 Pt 中粒石英砂岩、紫红色页岩、白云质灰岩夹石英砂岩 强的沉积岩 长城系 否 1.0 6 0.67 Ar 黑云母斜长片麻岩 变质岩 前长城系 是 0.0 2 0.29 γ2 元古代花岗岩 花岗岩 元古代 是 0.0 2 0.29 -
AALTO R, DUNNE T, GUYOT J L, 2006. Geomorphic controls on Andean denudation rates[J]. The Journal of Geology, 114(1): 85-99. doi: 10.1086/498101
AGLIARDI F, CROSTA G B, FRATTINI P, et al., 2013. Giant non-catastrophic landslides and the long-term exhumation of the European Alps[J]. Earth and Planetary Science Letters, 365: 263-274. doi: 10.1016/j.epsl.2013.01.030
BISHOP P, 1995. Drainage rearrangement by river capture, beheading and diversion[J]. Progress in Physical Geography: Earth and Environment, 19(4): 449-473. doi: 10.1177/030913339501900402
BONNET S, 2009. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide[J]. Nature Geoscience, 2(11): 766-771. doi: 10.1038/ngeo666
CAMPFORTS B, VANACKER V, HERMAN F, et al., 2020. Parameterization of river incision models requires accounting for environmental heterogeneity: insights from the tropical Andes[J]. Earth Surface Dynamics, 8(2): 447-470. doi: 10.5194/esurf-8-447-2020
CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 23(1): TC1006. http://ci.nii.ac.jp/naid/10016888636
COLLIGNON M, YAMATO P, CASTELLTORT S, et al., 2016. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran[J]. Earth Surface Processes and Landforms, 41(11): 1521-1535. doi: 10.1002/esp.3921
DAVIS W M, 1899. The geographical cycle[J]. The Geographical Journal, 14(5): 481-504. doi: 10.2307/1774538
FORTE A M, WHIPPLE K X, 2018. Criteria and tools for determining drainage divide stability[J]. Earth and Planetary Science Letters, 493: 102-117. doi: 10.1016/j.epsl.2018.04.026
FORTE A M, WHIPPLE K X, COWGILL E, 2015. Drainage network reveals patterns and history of active deformation in the eastern Greater Caucasus[J]. Geosphere, 11(5): 1343-1364. doi: 10.1130/GES01121.1
GOREN L, WILLETT S D, HERMAN F, et al., 2014. Coupled numerical-analytical approach to landscape evolution modeling[J]. Earth Surface Processes and Landforms, 39(4): 522-545. doi: 10.1002/esp.3514
HANCOCK G S, ANDERSON R S, 2002. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate[J]. GSA Bulletin, 114(9): 1131-1142. doi: 10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2
HOWARD A D, 1965. Geomorphological systems; equilibrium and dynamics[J]. American Journal of Science, 263(4): 302-312. doi: 10.2475/ajs.263.4.302
KANG Y Z, XING S W, LI H J, et al., 2019. Features of structural systems in northern China and its control on basin and hydrocarbon distribution[J]. Journal of Geomechanics, 25(6): 1013-1024. (in Chinese with English abstract)
KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009
KORUP O, CLAGUE J J, HERMANNS R L, et al., 2007. Giant landslides, topography, and erosion[J]. Earth and Planetary Science Letters, 261(3-4): 578-589. doi: 10.1016/j.epsl.2007.07.025
LIANG K, 2019. Late quaternary tectonic activity characteristics of the northwestern margin of the ordos block[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
LIU R, MA B Q, 2014. Preliminary study on the western margin fault of Zhuozi Mountain[J]. Bulletin of the Institute of Crustal Dynamics(26): 68-82. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SEIS201400006.htm
LIU X D, SUN H, MIAO Y F, et al., 2015. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 116: 1-14. doi: 10.1016/j.quascirev.2015.03.010
MAHER E, HARVEY A M, FRANCE D, 2007. The impact of a major Quaternary river capture on the alluvial sediments of a beheaded river system, the Rio Alias SE Spain[J]. Geomorphology, 84(3-4): 344-356. doi: 10.1016/j.geomorph.2005.07.034
MATHER A E, 2000. Impact of headwater river capture on alluvial system development: an example from the Plio-Pleistocene of the Sorbas Basin, SE Spain[J]. Journal of the Geological Society, 157(5): 957-966. doi: 10.1144/jgs.157.5.957
PERRON J T, ROYDEN L, 2013. An integral approach to bedrock river profile analysis[J]. Earth Surface Processes and Landforms, 38(6): 570-576. doi: 10.1002/esp.3302
PRINCE P S, SPOTILA J A, HENIKA W S, 2010. New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians[J]. Geomorphology, 123(3-4): 305-319. doi: 10.1016/j.geomorph.2010.07.023
PRINCE P S, SPOTILA J A, HENIKA W S, 2011. Stream capture as driver of transient landscape evolution in a tectonically quiescent setting[J]. Geology, 39(9): 823-826. doi: 10.1130/G32008.1
PRITCHARD D, ROBERTS G G, WHITE N J, et al., 2009. Uplift histories from river profiles[J]. Geophysical Research Letters, 36(24): L24301. doi: 10.1029/2009GL040928
STOKES M, MATHER A E, HARVEY A M, 2002. Quantification of river-capture-induced base-level changes and landscape development, Sorbas Basin, SE Spain[J]. Geological Society, London, Special Publications, 191(1): 23-35. doi: 10.1144/GSL.SP.2002.191.01.03
TUCKER G E, SLINGERLAND R, 1997. Drainage basin responses to climate change[J]. Water Resources Research, 33(8): 2031-2047. doi: 10.1029/97WR00409
VACHERAT A, BONNET S, MOUTHEREAU F, 2017. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain)[J]. Earth Surface Dynamics Discussions, doi:10.5194/esurf-2017-53.
WHIPPLE K X, 2001. Fluvial landscape response time: how plausible is steady-state denudation?[J]. American Journal of Science, 301(4-5): 313-325. doi: 10.2475/ajs.301.4-5.313
WHIPPLE K X, FORTE A M, DIBIASE R A, et al., 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution[J]. Journal of Geophysical Research: Earth Surface, 122(1): 248-273. doi: 10.1002/2016JF003973
WHIPPLE K X, TUCKER G E, 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120
WILLETT S D, 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts[J]. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. doi: 10.1029/1999JB900248
WILLETT S D, MCCOY S W, PERRON J T, et al., 2014. Dynamic reorganization of river basins[J]. Science, 343(6175): 1248765. doi: 10.1126/science.1248765
XU D Z, LI S H, YIN H Q, et al., 2018. Late quaternary activity characteristics of western piedmont fault of Gangdeershan in the Wuhai fault depression, Inner Mongolia[J]. China Earthquake Engineering Journal, 40(1): 92-100. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201801015.htm
YANG R, WILLETT S D, GOREN L, 2015. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 520(7548): 526-529. doi: 10.1038/nature14354
ZHAO H G, LIU C Y, WANG F, et al., 2006. Structural division and characteristics in western edge of Ordos basin[J]. Oil & Gas Geology, 2006, 27(2): 173-179. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200602006.htm
ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm
ZHUO Y Z, 2015. The mesozoic and cenozoic uplift events and tectonic significance of Zhuozishan area in the northwest margin of Odros basin[D]. Xi'an: Northwest University. (in Chinese with English abstract)
康玉柱, 邢树文, 李会军, 等, 2019. 中国北方地区构造体系控盆作用与控油分布规律[J]. 地质力学学报, 25(6): 1013-1024. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190602&journal_id=dzlxxb
梁宽, 2019. 鄂尔多斯块体西北缘晚第四纪构造活动特征研究[D]. 北京: 中国地震局地质研究所.
刘睿, 马保起, 2014. 桌子山西缘断裂的初步研究[J]. 地壳构造与地壳应力文集, (26): 68-82.
徐东卓, 李胜虎, 尹海权, 等, 2018. 内蒙古乌海断陷岗德尔山西麓断裂晚第四纪特征分析[J]. 地震工程学报, 40(1): 92-100. doi: 10.3969/j.issn.1000-0844.2018.01.092
赵红格, 刘池洋, 王峰, 等, 2006. 鄂尔多斯盆地西缘构造分区及其特征[J]. 石油与天然气地质, 27(2): 173-179. doi: 10.3321/j.issn:0253-9985.2006.02.006
郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb
卓鱼周, 2015. 鄂尔多斯盆地西北部桌子山地区中-新生代隆升事件的确定及其构造意义[D]. 西安: 西北大学.