中国地质科学院地质力学研究所
中国地质学会
主办

陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析

李彬, 张文, 文冉. 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析. 地质力学学报, 28(2): 191-202. doi: 10.12090/j.issn.1006-6616.2021053
引用本文: 李彬, 张文, 文冉. 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析. 地质力学学报, 28(2): 191-202. doi: 10.12090/j.issn.1006-6616.2021053
LI Bin, ZHANG Wen, WEN Ran. 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: Engineering geological significance. Journal of Geomechanics, 28(2): 191-202. doi: 10.12090/j.issn.1006-6616.2021053
Citation: LI Bin, ZHANG Wen, WEN Ran. 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: Engineering geological significance. Journal of Geomechanics, 28(2): 191-202. doi: 10.12090/j.issn.1006-6616.2021053

陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析

  • 基金项目:
    国家自然科学基金(51468055)
详细信息
    作者简介: 李彬(1995—),男,在读硕士,研究方向为岩石力学。E-mail: lib0420@126.com
    通讯作者: 张文(1968—), 男,教授,博士,研究方向为岩土工程及防灾减灾。E-mail: 516061874@qq.com
  • 中图分类号: P553

Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: Engineering geological significance

  • Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No.51468055)
More Information
  • 中国西部地区地势复杂,区域构造应力场各向异性显著,了解地区地壳应力状态是判断隧道设计阶段线路布设合理性的基础,也是预测隧道施工过程可能出现岩爆、断层滑动等其他工程灾害的重要参数。为了研究陕南特长高速公路隧道现今地应力状态,基于古仙洞隧道钻孔(ZK10钻孔)与化龙山隧道钻孔(ZK11钻孔)水压致裂地应力测量,获得了两隧道现今地应力分布特征。古仙洞和化龙山特长深埋隧道最大埋深处SH值分别为13 MPa和22 MPa;古仙洞与化龙山隧道的应力关系分别为SH>Sh>SvSH>Sv>Sh,水平主应力起主导作用;SH方向为近北西—北西西向,与区域现今构造活动背景基本一致,主要受秦岭造山带活动断裂影响。基于地应力测量结果、相关理论及判断依据认为:最大水平主应力方向与洞轴线夹角,有利于隧道围岩稳定,研究区内古仙洞与化龙山隧道的总体布置是合理的;采用岩石强度应力比法、陶振宇判据、Russenes判据和岩石应力强度比法综合判定研究区内两隧道不具备发生中等强度以上等级岩爆的可能;利用莫尔-库伦准则及拜尔定律,摩擦系数μ取0.6~1.0,对研究区内两隧道的现今地应力状态分析后发现,两隧道附近断裂带的地应力大小未达到地壳浅部断层产生滑动失稳的临界条件,处于较稳定的应力状态。

  • 加载中
  • 图 1  研究区及邻区地质构造简图(据柯昌辉,2013修改)

    Figure 1. 

    图 2  化龙山隧道ZK11钻孔典型岩芯

    Figure 2. 

    图 3  水压致裂典型应力测量曲线(化龙山隧道)

    Figure 3. 

    图 4  3种方法综合确定Ps值(化龙山隧道58 m)

    Figure 4. 

    图 5  两个隧道主应力随深度变化

    Figure 5. 

    图 6  古仙洞隧道印模结果与两隧道最大主应力方向

    Figure 6. 

    图 7  研究区现今地应力作用方向(据谢富仁等,2007修改)

    Figure 7. 

    图 8  古仙洞隧道和化龙山隧道岩爆风险评价结果

    Figure 8. 

    图 9  基于实测应力的研究区段断层滑动稳定性评价

    Figure 9. 

    表 1  ZK10钻孔和ZK11钻孔水压致裂地应力测量结果

    Table 1.  Results of hydraulic fracturing in-situ stress measurements of Boreholes ZK10 and ZK11

    钻孔 深度/m 压裂参数/MPa 主应力值/MPa 破裂
    方向
    P0 Pb Pr Ps SH Sh Sv
    ZK10 145.72 0.00 13.51 10.38 7.46 12.00 7.46 3.86
    165.71 0.00 10.87 5.39 4.21 7.24 4.21 4.39 N66°W
    176.00 0.00 6.45 4.11 4.24 8.61 4.24 4.66
    212.92 0.35 14.77 10.45 8.04 13.32 8.04 5.64 N60°W
    266.20 0.88 14.54 5.75 5.79 10.74 5.79 7.05 N47°W
    ZK11 58.00 0.58 11.28 6.68 5.11 8.07 5.11 1.54 N47°W
    69.00 0.69 14.58 7.62 5.90 9.39 5.90 1.83 N55°W
    78.00 0.78 10.12 6.90 5.88 9.96 5.88 2.07
    95.00 0.95 13.20 8.37 7.58 13.42 7.58 2.52
    138.00 1.38 17.51 6.80 6.28 10.66 6.28 3.66
    295.00 2.95 13.90 10.64 9.89 16.08 9.89 7.82
    330.00 3.30 20.20 11.35 11.03 18.44 11.03 8.75 N70°W
    347.00 3.47 14.30 11.15 10.79 17.75 10.79 9.20 N66°W
    注:P0—孔隙压力;Pb—破裂压力;Pr—重张压力;Ps—关闭压力;SH—最大水平主应力;Sh—最小水平主应力;Sv—垂向应力,按照等于上覆岩层重度计算,岩石平均密度取2.65 g·cm-3
    下载: 导出CSV

    表 2  岩爆风险判据和分级

    Table 2.  Risk criteria and classification of rock burst

    判据方法 判别公式 参数意义 判据阈值 分级情况 判据特点
    岩石强度应力比法 Rc/σmax Rc为岩石饱和单轴抗压强度,MPa;
    σmax为最大主应力,MPa
    4~7 轻微岩爆 未考虑隧硐开挖过程和初始应力场的应力重分布影响
    2~4 中等岩爆
    1~2 强烈岩爆
    < 1 极强岩爆
    陶振宇判据 Rc/σmax Rc为岩石饱和单轴抗压强度,MPa;
    σmax为最大主应力,MPa
    5.5~14.5 轻微岩爆
    2.5~5.5 中等岩爆
    < 2.5 强烈岩爆
    岩石应力强度比法 σθmax/Rc Rc为岩石饱和单轴抗压强度,MPa;
    σθmax为隧道开挖面最大切向应力,MPa
    0.3~0.5 轻微岩爆 考虑隧硐开挖过程和初始应力场的应力重分布影响
    0.5~0.7 中等岩爆
    0.7~0.9 强烈岩爆
    >0.9 极强岩爆
    Russenes判据 Is(50)/σθmax Is(50)为岩石修正点荷载强度,MPa;
    σθmax为隧道开挖面最大切向应力,MPa
    0.150~0.200 轻微岩爆
    0.083~0.150 中等岩爆
    < 0.083 强烈岩爆
    下载: 导出CSV

    表 3  古仙洞隧道与化龙山隧道岩爆风险预测结果

    Table 3.  Predicted results of rock burst risk of the two tunnels

    隧道名称 岩性 判据方法 埋深/m 岩爆等级
    古仙洞 片岩 强度应力比法 0~270 无岩爆
    270~371 轻微岩爆
    陶振宇判据 0~371 轻微岩爆
    应力强度比法 0~371 无岩爆
    Russenes判据 0~291 无岩爆
    291~371 轻微岩爆
    化龙山 片岩 强度应力比法 0~125 无岩爆
    125~409 轻微岩爆
    409~470 中等岩爆
    陶振宇判据 0~224 轻微岩爆
    224~470 中等岩爆
    应力强度比法 0~335 无岩爆
    335~470 轻微岩爆
    Russenes判据 0~68 无岩爆
    68~323 轻微岩爆
    323~470 中等岩爆
    下载: 导出CSV
  • AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. London: Springer Chapman & Hall.

    ANDERSON E M, 1905. The dynamics of faulting[J]. Transactions of the Edinburgh Geological Society, 8(3): 387-402. doi: 10.1144/transed.8.3.387

    BYERLEE J, 1978a. Friction of rocks[J]. Pure and Applied Geophysics, 116(4-5): 615-626. doi: 10.1007/BF00876528

    BYERLEE J, 1978b. Friction of rocks[M]//BYERLEE J D, WYSS M. Rock friction and earthquake prediction. Basel: Birkhäuser: 615-626.

    CHANG C D, JO Y, 2015. Heterogeneous in situ stress magnitudes due to the presence of weak natural discontinuities in granitic rocks[J]. Tectonophysics, 664: 83-97. doi: 10.1016/j.tecto.2015.08.044

    CHEN Q C, FENG C J, MENG W, et al., 2012. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 55(12): 3923-3932. (in Chinese with English abstract)

    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)

    DU J J, CHEN Q C, AN Q M, et al., 2013. Hydrofracturing in-situ stress measurement in Hanzhong Basin, Shaanxi Province[J]. Acta Seismologica Sinica, 35(6): 799-808. (in Chinese with English abstract)

    DU X X, SHAO H C, 1999. Modern tectonic stress field in the Chinese mainland inversed from focal mechanism solutions[J]. Acta Seismologica Sinica, 21(4): 354-360. (in Chinese with English abstract) https://link.springer.com/article/10.1007/s11589-999-0078-2

    FENG C J, CHEN Q C, WU M L, et al., 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract) https://www.researchgate.net/publication/279602328_Analysis_of_hydraulic_fracturing_stress_measurement_data-discussion_of_methods_frequently_used_to_determine_instantaneous_shut-in_pressure

    HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation-Part 3: Hydraulic Fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002

    HAN J L, WU S R, TAN C X, et al., 2007. Studies on geostress by comparing result of AE method with that of hydraulic fracturing technique in Dongjiangkou Granite in East Qinling[J]. Chinese Journal of Rock Mechanics and Engineering, 26(1): 81-86. (in Chinese with English abstract)

    JI S C, WANG Q, SUN S S, et al., 2008. Continental extrusion and seismicity in China[J]. Acta Geologica Sinica, 82(12): 1644-1667. (in Chinese with English abstract) https://www.researchgate.net/publication/263446332_Continental_Extrusion_and_Seismicity_in_China

    KE C H, 2013. The ore-forming processes of molybdenum polymetallic deposits to the west side of Mangling Pluton, North Qinling[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)

    MENG W, GUO C B, MAO B Y, et al., 2021. Tectonic stress field and engineering influence of China-Nepal railway corridor[J]. Geoscience, 35(1): 167-179. (in Chinese with English abstract)

    National Railway Administration of People's Republic of China, 2017. Code for design on tunnel of railway: TB 10003-2016[S]. Beijing: China Railway Publishing House. (in Chinese)

    NIU L L, FENG C J, ZHANG P, et al., 2018. In-situ measurements in the southern margin of the Ordos block[J]. Journal of Geomechanics, 24(1): 25-34. (in Chinese with English abstract)

    REN Y, WANG D, LI T B, et al., 2021. In-situ geostress characteristics and engineering effect in Ya'an-Xinduqiao section of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76. (in Chinese with English abstract)

    RUSSENES B F, 1974. Analysis of rock spalling for tunnels in steep valley sides (in Norwegian)[D]. Norway: Norwegian Institute of Technology: 9-17.

    SUN D S, CHEN Q C, ZHANG Y Q, 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine[J]. Journal of Geomechanics, 26(1): 33-38. (in Chinese with English abstract)

    TAO Z Y, 1987. Rockburst and its criterion in highly geostress zone[J]. Yangtze River, 18(5): 25-32. (in Chinese)

    WANG B, QIN X H, CHEN Q C, et al., 2020. Measurement results of in-situ stress in Guyuan area of Ningxia on the southwest margin of Ordos block and its causation analysis[J]. Geological Bulletin of China, 39(7): 983-994. (in Chinese with English abstract)

    WANG C H, GUO Q L, HOU Y H, et al., 2010. In-situ stress field and project stability of underground water-sealed oil depots[J]. Chinese Journal of Geotechnical Engineering, 32(5): 698-705. (in Chinese with English abstract)

    WANG C H, GAO G Y, WANG H, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167-174. (in Chinese with English abstract)

    WANG Q C, SUN S, LI J L, et al., 1989. The tectonic evolution of the Qinling mountain belt[J]. Scientia Geologica Sinica, 24(2): 129-142. (in Chinese)

    WU M L, ZHANG C Y, FAN T Y, 2016. Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the MS7.0 Lushan earthquake[J]. Journal of Asian Earth Sciences, 121: 9-19. doi: 10.1016/j.jseaes.2016.02.004

    WU Y Y, DENG S Z, NIU F L, et al., 2021. Crust-mantle coupling mechanism beneath the Qinling Orogen Belt revealed by SKS-wave splitting[J]. Chinese Journal of Geophysics, 64(5): 1608-1619. (in Chinese with English abstract)

    XIAO B Z, LUO C W, LIU Y K, 2005. In-situ stress measurement and prediction analysis of tunnel rockburst in West Hubei[J]. Chinese Journal of Rock Mechanics and Engineering, 24(24): 4472-4477. (in Chinese with English abstract)

    XIE F R, CHEN Q C, CUI X F, et al., 2007. Fundamental database of crustal stress environment in continental China[J]. Progress in Geophysics, 22(1): 131-136. (in Chinese with English abstract)

    XU L S, WANG L S, 1999. Study on the Laws of rockburst and its forecasting in the tunnel of Erlang mountain road[J]. Chinese Journal of Geotechnical Engineering, 21(5): 569-572. (in Chinese with English abstract)

    YANG Z B, BAI Y, YIN J M, et al., 2017. In-situ stress measurement and stability assessment of surrounding rock mass in Hejialiang tunnel of Shaanxi province[J]. Yangtze River, 48(6): 52-56. (in Chinese with English abstract)

    YU L, YOU Z M, CHEN J P, et al., 2015. Rock classification for tunnels in high geostress areas[J]. Modern Tunnelling Technology, 52(3): 23-30. (in Chinese with English abstract)

    ZHANG C Y, WU M L, CHEN Q C, et al., 2012. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3): 305-310. (in Chinese with English abstract)

    ZHANG C Y, WU M L, LIAO C T, 2013. In-situ stress measurement and study of stress state characteristics of Jinchuan No. 3 mine[J]. Rock and Soil Mechanics, 34(11): 3254-3260. (in Chinese with English abstract)

    ZHANG C Y, CHEN Q C, QIN X H, et al., 2017. In-situ stress and fracture characterization of a candidate repository for spent nuclear fuel in Gansu, northwestern China[J]. Engineering Geology, 231: 218-229. doi: 10.1016/j.enggeo.2017.10.007

    ZHANG H, SHI G, WU H, et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese with English abstract)

    ZHANG J J, FU B J, 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042. (in Chinese with English abstract)

    ZOBACK M D, HEALY J H, 1984. Friction, faulting and in situ stress[J]. Annales Geophysicae, 2(6): 689-698.

    陈群策, 丰成君, 孟文, 等, 2012. 5·12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J]. 地球物理学报, 55(12): 3923-3932. doi: 10.6038/j.issn.0001-5733.2012.12.005

    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2019.25.05.070

    杜建军, 陈群策, 安其美, 等, 2013. 陕西汉中盆地水压致裂地应力测量分析研究[J]. 地震学报, 35(6): 799-808. doi: 10.3969/j.issn.0253-3782.2013.06.003

    杜兴信, 邵辉成, 1999. 由震源机制解反演中国大陆现代构造应力场[J]. 地震学报, 21(4): 354-360. doi: 10.3321/j.issn:0253-3782.1999.04.003

    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力PS的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159. doi: 10.3969/j.issn.1000-7598.2012.07.035

    国家铁路局, 2017. 铁路隧道设计规范: TB 10003-2016[S]. 北京: 中国铁道出版社.

    韩金良, 吴树仁, 谭成轩, 等, 2007. 东秦岭东江口花岗岩体水压致裂法与AE法地应力测量对比研究[J]. 岩石力学与工程学报, 26(1): 81-86. doi: 10.3321/j.issn:1000-6915.2007.01.011

    嵇少丞, 王茜, 孙圣思, 等, 2008. 亚洲大陆逃逸构造与现今中国地震活动[J]. 地质学报, 82(12): 1644-1667. doi: 10.3321/j.issn:0001-5717.2008.12.003

    柯昌辉, 2013. 北秦岭蟒岭岩体西侧钼多金属矿床成矿作用研究[D]. 北京: 中国地质科学院.

    孟文, 郭长宝, 毛邦燕, 等, 2021. 中尼铁路交通廊道现今构造应力场及其工程影响[J]. 现代地质, 35(1): 167-179. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101019.htm

    牛琳琳, 丰成君, 张鹏, 等, 2018. 鄂尔多斯地块南缘地应力测量研究[J]. 地质力学学报, 24(1): 25-34. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2018.24.01.003

    任洋, 王栋, 李天斌, 等, 2021. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报, 40(1): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101006.htm

    孙东生, 陈群策, 张延庆, 2020. ASR法在井下矿山地应力测试中的应用前景分析[J]. 地质力学学报, 26(1): 33-38. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.01.003

    陶振宇, 1987. 高地应力区的岩爆及其判别[J]. 人民长江, (5): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE198705004.htm

    王斌, 秦向辉, 陈群策, 等, 2020. 鄂尔多斯地块西南缘宁夏固原地区原位地应力测量结果及其成因[J]. 地质通报, 39(7): 983-994. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202007006.htm

    王成虎, 郭啟良, 侯砚和, 等, 2010. 地下水封油库场址地应力场及工程稳定性分析研究[J]. 岩土工程学报, 32(5): 698-705. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005010.htm

    王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167-174. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.02.016

    王清晨, 孙枢, 李继亮, 等, 1989. 秦岭的大地构造演化[J]. 地质科学, 24(2): 129-142. doi: 10.3321/j.issn:0563-5020.1989.02.002

    吴逸影, 邓斯壮, 钮凤林, 等, 2021. 秦岭造山带上地幔各向异性及相关的壳幔耦合型式[J]. 地球物理学报, 64(5): 1608-1619. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202105011.htm

    肖本职, 罗超文, 刘元坤, 2005. 鄂西地应力测量与隧道岩爆预测分析[J]. 岩石力学与工程学报, 24(24): 4472-4477. doi: 10.3321/j.issn:1000-6915.2005.24.012

    谢富仁, 陈群策, 崔效锋, 等, 2007. 中国大陆地壳应力环境基础数据库[J]. 地球物理学进展, 22(1): 131-136. doi: 10.3969/j.issn.1004-2903.2007.01.018

    徐林生, 王兰生, 1999. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 21(5): 569-572. doi: 10.3321/j.issn:1000-4548.1999.05.009

    杨宗宝, 白银, 尹健民, 等, 2017. 陕西何家梁隧道地应力测量及围岩稳定性评价[J]. 人民长江, 48(6): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201706012.htm

    余莉, 尤哲敏, 陈建平, 等, 2015. 高地应力地区隧道围岩分级研究[J]. 现代隧道技术, 52(3): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503005.htm

    张重远, 吴满路, 陈群策, 等, 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3): 305-310. doi: 10.3969/j.issn.1673-9787.2012.03.011

    张重远, 吴满路, 廖椿庭, 2013. 金川三矿地应力测量及应力状态特征研究[J]. 岩土力学, 34(11): 3254-3260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311034.htm

    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.04.051

    张镜剑, 傅冰骏, 2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

  • 加载中

(9)

(3)

计量
  • 文章访问数:  2317
  • PDF下载数:  67
  • 施引文献:  0
出版历程
收稿日期:  2021-05-26
修回日期:  2021-12-20
刊出日期:  2022-04-28

目录