浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义

刘远栋, 苏小浪, 程海艳, 张建芳, 李翔, 刘风龙. 2022. 浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义. 地质力学学报, 28(2): 237-256. doi: 10.12090/j.issn.1006-6616.2021093
引用本文: 刘远栋, 苏小浪, 程海艳, 张建芳, 李翔, 刘风龙. 2022. 浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义. 地质力学学报, 28(2): 237-256. doi: 10.12090/j.issn.1006-6616.2021093
LIU Yuandong, SU Xiaolang, CHENG Haiyan, ZHANG Jianfang, LI Xiang, LIU Fenglong. 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance. Journal of Geomechanics, 28(2): 237-256. doi: 10.12090/j.issn.1006-6616.2021093
Citation: LIU Yuandong, SU Xiaolang, CHENG Haiyan, ZHANG Jianfang, LI Xiang, LIU Fenglong. 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance. Journal of Geomechanics, 28(2): 237-256. doi: 10.12090/j.issn.1006-6616.2021093

浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义

  • 基金项目:
    浙江省级基础性公益性战略性地质工作专项资金项目(〔省资〕2018006);中国地质调查局地质调查项目(12120114043101)
详细信息
    作者简介: 刘远栋(1986—),男,硕士,工程师,主要从事区域地质矿产调查、地质遗迹调查工作。E-mail:lyd661106@163.com
    通讯作者: 张建芳(1985—),男,硕士,高级工程师,从事区域地质、矿产地质调查研究。E-mail:zhjianfang@126.com
  • 中图分类号: P588.12+1

Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance

  • Fund Project: This research is financially supported by the Special Fund Project of Basic Public Welfare Strategic Geological Work of Zhejiang Province (Grant No.2018006) and the Geological Project of the China Geological Survey (Grant No.12120114043101)
More Information
  • 龙泉岩体是浙南地区少有的加里东期花岗质岩体。岩石学、地球化学和年代学研究显示,龙泉岩体由花岗岩-二长花岗岩组合(花岗岩类)和英云闪长岩-奥长花岗岩-花岗闪长岩组合(TTG)组成,两类岩石组分普遍富集大离子亲石元素Rb、Ba、Th、U、K,亏损高场强元素Nb、Ta、P、Ti,显示岛弧岩浆岩的特征。TTG岩石的地球化学特征显示属于典型的高压型TTG,其岩浆来源于受俯冲板片流体作用的基性下地壳的重熔作用,而花岗岩类岩石则主要源于古老地壳沉积物的部分熔融,两者均未受地幔的明显混染。锆石SHRIMP U-Pb和锆石LA-ICP-MS U-Pb测年结果表明龙泉岩体的形成时间为443±3~410±3 Ma,结合岩石地球化学特征,指示晚至泥盆纪早期,龙泉地区还存在着洋壳的俯冲作用。

  • 加载中
  • 图 1  龙泉岩体地质简图

    Figure 1. 

    图 2  龙泉岩体不同岩石类型接触关系及野外照片

    Figure 2. 

    图 3  龙泉岩体主量元素岩石分类与岩石系列划分图解

    Figure 3. 

    图 4  龙泉岩体微量元素原始地幔标准化蛛网图

    Figure 4. 

    图 5  龙泉岩体稀土元素球粒陨石标准化分布型式图

    Figure 5. 

    图 6  龙泉岩体各类岩石锆石阴极发光图像

    Figure 6. 

    图 7  龙泉岩体各类岩石锆石U-Pb年龄谐和图

    Figure 7. 

    图 8  龙泉岩体成因类型判别图解

    Figure 8. 

    图 9  龙泉岩体t-εNd(t)图解

    Figure 9. 

    图 10  龙泉岩体Rb-(Nb+Y)图解和Rb-(Yb+Ta)图解(Pearce et al., 1984)

    Figure 10. 

    表 1  龙泉岩体花岗岩类和TTG主量元素(%)、微量元素(×10-6)、稀土元素(×10-6)丰度表

    Table 1.  Major elements (%), trace and rare earth elements (10-6) of the Longquan granitoids and TTG rocks

    样号 PM002-9 PM002-22 D0418 D0382 PM002-36 PM002-15 D0380 PM002-37 D0016 D0470 D2172-1 D2172-2 *JS151 *JS155 *JS157
    岩石类型 花岗岩 二长花岗岩 石英二长岩 英云闪长岩 奥长花岗岩 花岗闪长岩 花岗岩
    SiO2 70.49 72.58 74.09 67.79 72.99 66.04 65.75 63.87 66.17 71.61 68.27 66.34 71.24 60.71 72.25
    TiO2 0.37 0.24 0.09 0.07 0.14 0.61 0.62 0.76 0.67 0.35 0.44 0.30 0.30 0.70 0.20
    Al2O3 15.27 14.26 13.58 17.49 14.48 16.71 12.04 17.03 15.05 15.18 13.56 16.32 14.38 15.17 13.97
    Fe2O3 1.88 0.85 0.13 0.30 0.60 3.77 2.09 1.35 0.92 1.31 0.60 1.20 0.89 1.98 0.68
    FeO 1.04 1.11 0.54 0.44 0.50 0.61 2.13 3.34 3.20 1.39 2.35 1.30 1.29 3.27 0.80
    MnO 0.05 0.05 0.03 0.02 0.03 0.09 0.07 0.10 0.09 0.07 0.05 0.09 0.05 0.08 0.03
    MgO 0.49 0.30 0.25 0.19 0.39 0.89 1.30 1.89 1.73 0.54 1.07 0.44 0.89 5.01 0.66
    CaO 1.25 0.92 1.09 0.53 0.44 1.28 2.64 3.93 3.98 0.52 3.48 2.70 2.16 2.14 1.07
    Na2O 3.98 3.70 3.62 4.34 4.25 2.83 5.88 3.50 3.75 4.35 4.75 5.46 4.07 3.51 4.00
    K2O 3.73 4.98 5.18 6.51 4.52 4.61 4.10 1.85 2.03 2.19 1.37 2.29 2.42 2.43 4.35
    P2O5 0.09 0.07 0.02 0.02 0.03 0.19 0.22 0.25 0.21 0.12 0.16 0.17 0.12 0.10 0.07
    LOI 1.17 0.78 1.07 0.95 0.85 2.21 2.83 1.68 1.74 1.62 3.46 2.94 1.16 5.00 1.38
    Rb 104.00 98.30 139.00 188.00 138.00 170.00 108.00 98.50 85.00 122.00 65.90 102.00 63.05 85.81 94.96
    Ba 1424.00 2294.00 899.00 961.00 1559.00 1311.00 786.00 628.00 903.00 588.00 389.00 331.00 1568.18 674.01 1433.00
    Th 18.60 16.60 15.40 18.60 16.50 13.10 9.95 8.81 8.40 7.18 7.68 5.38 15.10 8.62 11.40
    U 0.60 0.93 1.92 1.58 2.65 2.17 1.56 1.64 1.15 1.09 0.96 2.29 1.92 1.24 0.82
    Ta 0.38 0.18 7.05 0.51 0.29 0.92 0.87 1.29 0.51 0.98 0.44 2.57 0.38 0.48 0.22
    Nb 10.90 6.60 35.00 6.91 4.86 18.50 11.60 14.90 9.80 10.90 5.59 19.70 7.49 7.57 5.80
    Sr 191.00 279.00 177.00 261.00 204.00 262.00 417.00 415.00 468.00 284.00 320.00 198.00 472.47 344.36 359.80
    Zr 290.00 165.00 62.10 180.00 119.00 303.00 192.00 222.00 170.00 164.00 194.00 141.00 196.91 194.16 159.00
    Hf 7.85 4.81 2.74 6.18 3.53 9.02 4.67 8.69 7.47 3.84 5.02 3.47 4.38 4.73 4.19
    Cr 4.18 5.15 3.20 0.34 5.40 3.71 6.06 24.00 21.10 7.61 11.20 8.10 8.79 240.59 6.23
    Ni 3.50 3.80 2.90 0.79 4.80 5.60 3.02 8.60 9.90 6.41 5.03 6.01 3.16 134.76 2.14
    Co 3.01 2.06 2.00 0.91 3.50 3.14 4.99 10.20 9.57 4.74 6.55 3.88 3.98 21.26 2.39
    V 43.50 45.90 22.10 16.30 36.60 45.70 48.40 81.90 78.70 30.30 34.80 22.80 27.60 98.92 17.00
    Sc 3.00 2.18 1.57 1.72 2.16 12.10 3.38 10.40 7.97 3.85 3.88 3.65 4.12 13.70 2.95
    Cs 1.82 1.22 2.57 2.43 1.99 3.55 6.53 5.14 2.04 3.57 3.67 5.43 1.74 1.52 2.12
    Cd 0.04 0.04 0.02 0.30 0.03 0.14 0.26 0.07 0.03 0.29 0.03 0.30
    Li 12.60 9.44 8.49 8.46 11.10 22.80 13.40 62.00 25.00 22.90 25.10 17.10
    Y 7.78 6.24 12.40 8.94 5.15 35.00 8.53 20.00 9.51 9.65 3.87 8.93 7.17 13.38 5.51
    La 72.20 59.90 25.80 24.80 25.20 50.10 29.70 22.20 33.00 25.20 35.40 14.90 45.80 37.69 27.90
    Ce 120.00 82.40 48.80 44.00 46.60 99.60 53.60 41.50 56.90 36.00 60.40 27.00 73.60 69.09 46.70
    Pr 12.60 9.27 5.43 4.92 5.63 11.30 5.45 4.77 5.81 4.42 6.03 2.80 6.80 7.02 4.47
    Nd 46.50 33.20 19.50 18.50 20.10 50.50 20.30 18.60 23.60 16.50 21.60 11.00 21.60 25.37 14.70
    Sm 6.19 4.09 3.72 3.31 3.17 9.68 3.25 3.82 3.80 2.82 3.03 2.18 3.23 4.09 2.45
    Eu 1.15 0.82 0.60 0.87 0.82 1.84 0.89 1.10 0.87 0.87 0.77 0.61 0.88 0.97 9.67
    Gd 3.47 2.38 3.00 3.15 2.21 7.58 3.31 3.83 2.70 2.99 1.94 2.40 2.27 3.05 1.65
    Tb 0.42 0.31 0.46 0.33 0.26 1.26 0.34 0.65 0.42 0.34 0.20 0.31 0.28 0.40 0.23
    Dy 1.70 1.36 2.33 1.80 1.26 6.74 1.88 3.82 1.98 1.99 0.86 1.84 1.26 2.50 1.10
    Ho 0.28 0.23 0.43 0.31 0.20 1.30 0.32 0.72 0.36 0.34 0.14 0.29 0.25 0.55 0.19
    Er 0.72 0.63 1.10 1.00 0.43 3.54 1.04 1.96 0.95 1.07 0.35 0.88 0.62 1.57 0.50
    Tm 0.08 0.08 0.17 0.13 0.06 0.48 0.13 0.31 0.13 0.13 0.05 0.11 0.10 0.23 0.07
    Yb 0.55 0.54 1.04 0.99 0.36 3.08 0.93 1.79 0.79 0.89 0.30 0.80 0.67 1.56 0.50
    Lu 0.09 0.09 0.15 0.15 0.05 0.43 0.13 0.24 0.13 0.12 0.04 0.11 0.10 0.23 0.08
    δEu 0.69 0.74 0.53 0.81 0.90 0.63 0.82 0.87 0.79 0.91 0.91 0.81 0.94 0.80 0.96
    δCe 0.90 0.77 0.96 0.92 0.92 0.99 0.96 0.94 0.93 0.77 0.93 0.96 0.91 0.97 0.93
    注:标记为“*”的样品引自《1∶25万衢州幅区域地质调查报告》(浙江省地质调查院,2013)
    下载: 导出CSV

    表 2  龙泉岩体LA-ICP-MS锆石U-Pb测年结果

    Table 2.  LA-ICP-MS Zircon U-Pb dating for the Longquan felsic rocks

    样品号及岩性 测点号 Th232/×10-6 U238/×10-6 Th/U 同位素比值 同位素年龄/Ma
    207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    D0382花岗岩 1 422 1338 0.31 0.0546 0.0008 0.5286 0.0087 0.0702 0.0010 395 33 431 6 438 6
    2 458 1379 0.33 0.0551 0.0008 0.5484 0.0094 0.0722 0.0010 417 35 444 6 449 6
    3 1344 3249 0.41 0.0568 0.0008 0.5505 0.0089 0.0704 0.0010 482 32 445 6 438 6
    4 610 1604 0.38 0.0550 0.0007 0.5411 0.0084 0.0714 0.0010 412 30 439 6 444 6
    5 395 1381 0.29 0.0557 0.0009 0.5494 0.0095 0.0716 0.0010 438 35 445 6 446 6
    6 750 1892 0.40 0.0548 0.0009 0.5467 0.0103 0.0724 0.0010 404 39 443 7 450 6
    7 908 2331 0.39 0.0557 0.0008 0.5473 0.0090 0.0713 0.0010 441 33 443 6 444 6
    8 971 2379 0.41 0.0558 0.0009 0.5509 0.0097 0.0716 0.0010 444 36 446 6 446 6
    9 1281 3150 0.41 0.0557 0.0007 0.5471 0.0084 0.0713 0.0010 439 29 443 6 444 6
    10 1319 2874 0.46 0.0556 0.0007 0.5418 0.0080 0.0707 0.0010 435 28 440 5 440 6
    11 487 1608 0.30 0.0550 0.0010 0.5341 0.0107 0.0705 0.0010 411 42 435 7 439 6
    12 732 1487 0.49 0.0552 0.0008 0.5364 0.0085 0.0705 0.0010 421 31 436 6 439 6
    13 1410 3229 0.44 0.0554 0.0007 0.5454 0.0083 0.0714 0.0010 429 29 442 5 444 6
    14 481 1344 0.36 0.0550 0.0008 0.5411 0.0086 0.0713 0.0010 413 31 439 6 444 6
    D0380石英二长岩 1 292 787 0.37 0.0543 0.0011 0.5099 0.0104 0.0681 0.0009 384 46 418 7 425 6
    2 592 612 0.97 0.0553 0.0010 0.5113 0.0095 0.0670 0.0009 426 41 419 6 418 5
    3 199 222 0.90 0.0551 0.0013 0.5093 0.0123 0.0670 0.0010 417 55 418 8 418 6
    4 484 716 0.68 0.0586 0.0017 0.5382 0.0151 0.0667 0.0010 551 64 437 10 416 6
    5 521 518 1.01 0.0552 0.0011 0.5136 0.0101 0.0674 0.0009 422 43 421 7 421 6
    6 247 245 1.01 0.0584 0.0016 0.5151 0.0138 0.0640 0.0010 545 61 422 9 400 6
    7 440 899 0.49 0.0550 0.0009 0.5133 0.0086 0.0677 0.0009 411 35 421 6 422 5
    8 268 296 0.90 0.0549 0.0013 0.5072 0.0117 0.0670 0.0009 408 52 417 8 418 6
    9 212 327 0.65 0.0539 0.0011 0.4949 0.0105 0.0666 0.0009 369 48 408 7 415 6
    10 372 424 0.88 0.0547 0.0012 0.5082 0.0115 0.0674 0.0010 398 51 417 8 421 6
    11 301 517 0.58 0.0544 0.0010 0.5055 0.0096 0.0674 0.0009 389 42 415 6 420 5
    12 291 276 1.05 0.0544 0.0015 0.5047 0.0135 0.0673 0.0010 388 62 415 9 420 6
    PM002-36二长花岗岩 1 367 271 1.35 0.0525 0.0017 0.5105 0.0159 0.0705 0.0011 307 73 419 11 439 6
    2 431 341 1.27 0.0551 0.0013 0.5259 0.0124 0.0692 0.0010 417 53 429 8 431 6
    3 243 244 1.00 0.0549 0.0021 0.5287 0.0199 0.0698 0.0012 409 88 431 13 435 7
    4 385 286 1.34 0.0554 0.0013 0.5265 0.0124 0.0689 0.0010 428 54 429 8 430 6
    5 190 188 1.01 0.0560 0.0015 0.5348 0.0146 0.0692 0.0010 454 62 435 10 431 6
    6 438 492 0.89 0.0559 0.0015 0.5289 0.0144 0.0687 0.0010 446 63 431 10 428 6
    7 262 266 0.98 0.0550 0.0012 0.5274 0.0118 0.0695 0.0009 413 51 430 8 433 6
    8 174 176 0.99 0.0545 0.0038 0.5232 0.0346 0.0695 0.0017 393 159 427 23 433 10
    9 376 262 1.44 0.0550 0.0013 0.5220 0.0120 0.0688 0.0009 413 52 426 8 429 6
    10 429 331 1.29 0.0548 0.0012 0.5210 0.0117 0.0689 0.0009 404 51 426 8 430 6
    11 77 79 0.97 0.0552 0.0033 0.5244 0.0305 0.0689 0.0014 421 137 428 20 429 9
    12 629 355 1.77 0.0551 0.0013 0.5250 0.0126 0.0691 0.0010 417 55 428 8 430 6
    13 181 200 0.90 0.0566 0.0018 0.5412 0.0173 0.0693 0.0011 475 74 439 11 432 6
    14 505 529 0.95 0.0558 0.0010 0.5342 0.0103 0.0694 0.0009 445 42 435 7 433 6
    15 82 183 0.45 0.0545 0.0017 0.5180 0.0161 0.0689 0.0010 391 73 424 11 430 6
    PM002-37英云闪长岩 1 60 91 0.66 0.0557 0.0019 0.6036 0.0199 0.0786 0.0012 439 76 479 13 488 7
    2 191 974 0.20 0.0550 0.0008 0.5116 0.0084 0.0674 0.0009 414 35 420 6 421 5
    3 92 61 1.51 0.0563 0.0028 0.5279 0.0261 0.0681 0.0012 463 115 430 17 424 7
    4 65 920 0.07 0.0827 0.0010 2.3563 0.0331 0.2066 0.0026 1263 25 1229 10 1211 14
    5 101 134 0.76 0.0561 0.0022 0.5227 0.0198 0.0676 0.0011 457 88 427 13 421 7
    6 842 1322 0.64 0.0560 0.0010 0.5313 0.0099 0.0688 0.0009 453 41 433 7 429 6
    7 363 912 0.40 0.0981 0.0012 3.6321 0.0502 0.2687 0.0034 1587 23 1557 11 1534 17
    8 286 213 1.34 0.2453 0.0030 20.3636 0.2833 0.6023 0.0078 3154 20 3109 13 3039 31
    9 409 266 1.54 0.0555 0.0016 0.5173 0.0144 0.0676 0.0010 434 64 423 10 421 6
    10 153 470 0.32 0.1535 0.0032 8.5164 0.1384 0.4025 0.0051 2385 36 2288 15 2180 23
    11 61 98 0.62 0.0670 0.0015 1.2758 0.0281 0.1381 0.0020 838 46 835 13 834 11
    12 89 108 0.82 0.0624 0.0015 1.0380 0.0251 0.1207 0.0017 688 52 723 12 734 10
    13 217 147 1.48 0.0555 0.0019 0.5175 0.0173 0.0677 0.0011 430 77 423 12 422 6
    14 1137 478 2.38 0.0564 0.0013 0.5265 0.0124 0.0677 0.0010 469 53 429 8 422 6
    15 191 411 0.46 0.0544 0.0013 0.5084 0.0119 0.0677 0.0010 389 53 417 8 423 6
    16 112 80 1.41 0.0549 0.0040 0.5164 0.0363 0.0682 0.0017 409 167 423 24 425 10
    17 445 248 1.79 0.0548 0.0014 0.5162 0.0130 0.0683 0.0010 404 57 423 9 426 6
    18 738 832 0.89 0.0549 0.0011 0.5185 0.0105 0.0685 0.0009 409 45 424 7 427 6
    19 922 936 0.99 0.0551 0.0015 0.5158 0.0137 0.0680 0.0010 414 61 422 9 424 6
    20 204 120 1.70 0.0548 0.0030 0.5197 0.0273 0.0688 0.0014 404 125 425 18 429 9
    下载: 导出CSV

    表 3  龙泉岩体SHRIMP锆石U-Pb测年结果

    Table 3.  SHRIMP Zircon U-Pb dating of Longquan felsic rocks

    样品号及岩性 测点号 206Pbc/% U/×10-6 Th/×10-6 232Th/238U 206Pb*/×10-6 年龄/Ma 同位素比值
    206Pb/238U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 207Pb*/206Pb* ±/% 207Pb*/235U ±/% 206Pb*/238U ±/% error
    D0016英云闪长岩 1 0.38 126 56 0.46 7.9 449 11 323 98 391 19 0.0529 4.3 0.526 5.0 0.0721 2.6 0.516
    2 0.00 353 354 1.04 21.3 437 10 357 43 425 12 0.0537 1.9 0.519 3.1 0.0702 2.5 0.791
    3.1 0.17 194 230 1.22 11.6 433 11 330 65 425 13 0.0530 2.9 0.508 3.8 0.0695 2.6 0.667
    3.2 0.42 145 133 0.95 9.3 464 12 514 71 478 16 0.0576 3.2 0.592 4.1 0.0746 2.6 0.627
    4 0.18 303 360 1.23 18.4 440 11 371 50 437 12 0.0540 2.2 0.526 3.3 0.0706 2.5 0.746
    5 0.00 180 35 0.20 11.1 448 11 361 66 413 18 0.0538 2.9 0.533 3.9 0.0719 2.5 0.656
    6 0.14 351 266 0.78 20.9 432 10 368 71 420 13 0.0539 3.1 0.515 4.0 0.0692 2.5 0.620
    7 0.15 261 65 0.26 15.9 442 13 360 54 412 18 0.0537 2.4 0.526 3.8 0.0710 3.0 0.779
    8 -- 364 154 0.44 21.8 435 10 439 42 475 14 0.0557 1.9 0.536 3.1 0.0698 2.5 0.796
    9 0.13 366 390 1.10 22.2 438 11 383 43 427 12 0.0543 1.9 0.527 3.2 0.0704 2.5 0.791
    10 0.00 327 157 0.50 19.0 421 10 467 45 461 24 0.0564 2.0 0.524 3.2 0.0674 2.5 0.773
    11 0.08 412 291 0.73 24.0 422 10 425 41 423 12 0.0553 1.9 0.516 3.1 0.0677 2.5 0.799
    D2172奥长花岗岩 1 0.17 233 24 0.11 13.5 421 10 373 97 386 66 0.0540 4.3 0.503 5.0 0.0675 2.5 0.505
    2 0.31 308 225 0.76 18.2 428 10 356 71 425 14 0.0536 3.2 0.507 4.0 0.0686 2.5 0.619
    3 0.07 568 423 0.77 32.5 416 10 379 35 404 11 0.0542 1.6 0.498 2.9 0.0666 2.5 0.845
    4 0.08 457 438 0.99 26.0 413 10 339 39 404 11 0.0533 1.7 0.485 3.0 0.0661 2.4 0.819
    5 0.24 188 128 0.71 11.0 424 10 337 71 419 14 0.0532 3.1 0.498 4.0 0.0679 2.5 0.630
    6 0.18 284 222 0.81 16.5 422 10 332 66 413 13 0.0531 2.9 0.495 3.8 0.0677 2.5 0.653
    7 0.16 410 403 1.02 23.0 407 10 362 46 398 11 0.0538 2.1 0.483 3.2 0.0651 2.5 0.768
    8 1.37 119 84 0.74 6.8 411 11 382 190 379 24 0.0543 8.6 0.492 9.0 0.0658 2.7 0.296
    9 0.17 323 222 0.71 18.4 414 10 341 48 404 12 0.0533 2.1 0.487 3.3 0.0663 2.5 0.758
    10 0.19 238 153 0.66 14.1 429 10 368 60 411 13 0.0539 2.7 0.511 3.7 0.0687 2.5 0.684
    11 0.11 244 229 0.97 14.1 420 10 401 70 410 13 0.0547 3.1 0.508 4.0 0.0673 2.5 0.623
    12 0.19 700 80 0.12 39.5 409 10 410 51 435 32 0.0550 2.3 0.497 3.3 0.0656 2.4 0.731
    13 0.08 402 70 0.18 22.5 406 10 461 41 422 27 0.0562 1.9 0.504 3.1 0.0650 2.5 0.797
    14 0.61 165 104 0.65 10.0 439 11 361 130 393 20 0.0538 5.7 0.523 6.2 0.0705 2.6 0.415
    注:Pbc和Pb*分别代表普通铅和放射性铅
    下载: 导出CSV

    表 4  龙泉岩体Sr、Nd同位素组成

    Table 4.  Sr and Nd isotopic compositions of the Longquan pluton

    样号 D7008 D7007 D2792 D2797
    岩性 英云闪长岩 花岗闪长岩 二长花岗岩
    年龄/Ma 413 413 413 415
    Rb/×10-6 64.52 61.97 85.81 90.58
    Sr/×10-6 421.76 491.96 344.36 291.26
    87Rb/86Sr 0.442968 0.364743 0.900465 0.721556
    87Sr/86Sr 0.711387 0.710705 0.712980 0.712475
    ISr 0.708782 0.708560 0.707658 0.708231
    Sm/×10-6 2.32 3.24 4.09 1.75
    Nd/×10-6 14.46 19.27 25.37 10.97
    147Sm/144Nd 0.097583 0.102228 0.097202 0.098115
    143Nd/144Nd 0.512207 0.512308 0.512230 0.512002
    INd 0.511943 0.512032 0.511966 0.511737
    εSr(t) 67.7 64.6 51.8 59.9
    εNd(t) -3.2 -1.5 -2.7 -7.2
    fSm/Nd -0.50 -0.48 -0.51 -0.50
    TDM/Ma 1239 1153 1205 1514
    T2DM/Ma 1415 1275 1376 1742
    注:数据引用自《1∶25万衢州幅区域地质调查报告》(浙江省地质调查院,2013)
    下载: 导出CSV

    表 5  龙泉岩体同位素年龄一览表

    Table 5.  Isotopic age table of the Longquan pluton

    样号 岩性 岩类 年龄/Ma 测试方法 资料来源
    JS151 花岗闪长岩 TTG 410±3 LA-ICP-MS 浙江省地质调查院,2015
    D2172 奥长花岗岩 418±5 SHRIMP 此次研究
    JS155 花岗闪长岩 419+5 LA-ICP-MS 浙江省地质调查院,2015
    PM002-37 英云闪长岩 424±3 LA-ICP-MS 此次研究
    D0016 英云闪长岩 437±6 SHRIMP 此次研究
    D0380 石英二长岩 花岗岩 418±3 LA-ICP-MS 此次研究
    PM002-36 二长花岗岩 432±3 LA-ICP-MS 此次研究
    D0382 花岗岩 443±3 LA-ICP-MS 此次研究
    下载: 导出CSV
  • ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3

    ANDERSEN T, 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    ATHERTON M P, PETFORD N, 1993. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416): 144-146. doi: 10.1038/362144a0

    BAI D Y, HUANG J Z, MA T Q, et al., 2006a. Geology and geochemistry of the Silurian Penggongmiao granitic pluton in the southeastern Hunan province and its implication for tectonic setting[J]. Geoscience, 20(1): 130-140. (in Chinese with English abstract)

    BAI D Y, WANG X H, MA T Q, et al., 2006b. Characteristics and forming mechanism of Indosinian folds in the southeast Hunan[J]. Geology and Mineral Resources of South China(4): 50-57. (in Chinese with English abstract)

    BAI D Y, JIA B H, ZHONG X, et al., 2012. Potential genesis of the trending changes of Jinning Period and Caledonian structural lineamens in middle-southern Hunan[J]. Journal of Geomechanics, 18(2): 165-177. (in Chinese with English abstract)

    BAI D Y, ZHONG X, JIA P Y, et al., 2014. Zircon SHRIMP U-Pb dating and geochemistry of Caledonian Miao' ershan pluton in the western part of the Nanling Mountains and their tectonic significance[J]. Acta Petrologica et Mineralogica, 33(3): 407-423. (in Chinese with English abstract)

    BARKER F, 1979. Trondhjemites, dacites, and related rocks[M]. Amsterdam: Elsevier Scientific Publishing Company.

    CHENG L K, 2018. Zircon U-Pb dating and geological significance of Caledonian Dadongshan pluton in the Northern Guangdong province[J]. Geology and Mineral Resources of South China, 34(1): 31-40. (in Chinese with English abstract)

    CONDIE K C, 1982. Plate tectonic and crustal evolution[M]. New York: Pergamon Press: 1-310.

    CONDIE K C, 2005a. Earth as an evolving planetary system[M]. 2nd ed. Amsterdam: Elsevier: 1-447.

    CONDIE K C, 2005b. TTGs and adakites: are they both slab melts?[J]. Lithos, 80(1-4): 33-44. doi: 10.1016/j.lithos.2003.11.001

    CONDIE K C, BENN K, 2006. Archean geodynamics: similar to or different from Modern geodynamics?[M]//BENN K, MARESCHAL J C, CONDIE K C. Archean geodynamics and environments, volume 164. Washington: American Geophysical Union: 47-59.

    DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0

    DENG J F, LIU C, FENG Y F, et al., 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4): 1112-1118. (in Chinese with English abstract)

    DENG J F, FENG Y F, DI Y J, et al., 2017. Intrusive Geotectonics of China[M]. Beijing: Geological Publishing House: 1-583(in Chinese with English abstract).

    DENG J F, LIU C, DI Y J, et al., 2018. Discussion on the tonalite-trondhjemite-granodiorite (TTG) petrotectonic assemblage and its subtypes[J]. Earth Science Frontiers, 25(6): 42-50. (in Chinese with English abstract)

    DIWU C R, SUN Y, LIN C L, et al., 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China[J]. Acta Petrologica Sinica, 23(2): 253-262. (in Chinese with English abstract)

    DRUMMOND M S, DEFANT M J, 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slabmelting: Archean to modern comparisons[J]. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. doi: 10.1029/JB095iB13p21503

    FENG Y F, DENG J F, WANG S J, et al., 2010. The recognition of the magnesian andesitic series (MA) in the Precambrian granitic rocks in western Shandong Province and the continental crustal growth[J]. Geology in China, 37(4): 1119-1129. (in Chinese with English abstract)

    FENG Y F, DENG J F, XIAO Q H, et al., 2011. Recognizing the TTG rock types: discussion and suggestion[J]. Geological Journal of China Universities, 17(3): 406-414(in Chinese with English abstract).

    GUAN Y L, YUAN C, LONG X P, et al., 2013. Early Paleozoic intracontinental orogeny of the eastern South China block: evidence from Ⅰ-type granitic plutons in the SE Yangtze Block[J]. Geotectonica et Metallogenia, 37(4): 698-720. (in Chinese with English abstract)

    GUAN Y L, YUAN C, LONG X P, et al., 2016. Genesis of mafic enclaves from early Paleozoic granites in the South China Block: evidence from petrology, geochemistry and zircon U-Pb geochronology[J]. Geotectonica et Metallogenia, 40(1): 109-124. (in Chinese with English abstract)

    HAO Y, LI S Z, JIN C, et al., 2010. Caledonian structural characteristics and mechanism in Hunan-Jiangxi-Guangxi Provinces[J]. Geotectonica et Metallogenia, 34(2): 166-180. (in Chinese with English abstract)

    HU Y H, QIAN J F, ZHU X Y, et al, 2012. The overview and origin analysis for the Caledonian movement in the South China block[J]. Bulletin of Science and Technology, 28(11): 42-48, 71. (in Chinese with English abstract)

    Irvine T N, Barager W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8: 523-548. doi: 10.1139/e71-055

    JIANG Y, ZHAO X L, LIN S F, et al., 2014. Identification and tectonic implication of neoproterozoic continental margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze carton[J]. Acta Geologica Sinica, 88(8): 1461-1474. (in Chinese with English abstract)

    LAI S C, ZHU Y, 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China[J]. Journal of Geomechanics, 26(5): 759-790(in Chinese with English abstract).

    LIU H, ZHAO X L, GEY P, et al., 2020. U-Pb dating of zircons from Xiayuan and Hongyegang intrusives in Dikou area and their geological significance[J]. Geological Review, 66(3): 637-650. (in Chinese with English abstract)

    LIU Y D, LIU F L, ZHANG J F, et al., 2021. Geochronological and geochemical characteristics of the metamorphic basic rocks and their tectonic implications in the Longquan area, Zhejiang Province[J]. Acta Geologica Sinica, 95(2): 413-426. (in Chinese with English abstract)

    LUDWIG K R, 2003. User's manual for Isoplot/Ex, Version 3.00. A geochronological toolkit for Microsoft excel[J]. Berkeley Geochronology Center Special Publication, 4(2): 1-70.

    MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    MARTIN H, 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0

    MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048

    MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    MORRISON G W, 1980. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 13(1): 97-108. doi: 10.1016/0024-4937(80)90067-5

    MOYEN J F, MARTIN H, 2012. Forty years of TTG research[J]. Lithos, 148: 312-336. doi: 10.1016/j.lithos.2012.06.010

    NIE T C, 2018. Determination and significance of Mamianshan subduction accretionary complex in Jianou Area, Fujian Province[J]. Geology of Fujian, 37(4): 273-287. (in Chinese with English abstract)

    NIE T C, ZHOU X D, 2019. Geological characteristics and its origin of quartzite in Mamianshan subduction accretive complex of Gaomen Area of Jianou City, Fujian Province[J]. Geology of Fujian, 38(4): 237-247. (in Chinese with English abstract)

    O′CONNOR J T, 1965. A classification for quartz-rich igneous rocks based on feldspar ratios[R]. Reston: United StatesGeological Survey: 79-84.

    PAN G T, LU S N, XIAO Q H, et al., 2016. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers, 23(6): 1-23(in Chinese with English abstract).

    PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55-75. doi: 10.1144/GSL.SP.1999.168.01.05

    PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    PENG S B, JIN Z M, LIU Y H, et al., 2006a. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic Belt, western Guangdong Province, China[J]. Earth Science-Journal of China University of Geosciences, 31(1): 110-120. (in Chinese with English abstract)

    PENG S B, JIN Z M, FU J M, et al., 2006b. Geochemical characteristics of basic intrusive rocks in the Yunkai uplift, Guangdong-Guangxi, China, and their tectonic significance[J]. Geological Bulletin of China, 25(4): 434-441. (in Chinese with English abstract)

    PETFORD N, ATHERTON M, 1996. Na-rich partial melts from newly underplated basalticcrust: the Cordillera Blanca batholith, Peru[J]. Journal of Petrology, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    PITCHER W S, 1982. Granite type and tectonic environment[M]//HSÈU K J. Mountain building processes. London: Academic Press: 19-40.

    PITCHER W S, 1993. The nature and origin of granite[M]. London: Blackie Academic & Professional.

    QIN X F, WANG Z Q, HU G A, et al., 2013. Geochronology and geochemistry of Hudong gneissic composite pluton in the junction of Guangdong and Guangxi provinces: implications for Early Paleozoic tectono-magmatism along the northern margin of Yunkai massif[J]. Acta Petrologica Sinica, 29(9): 3115-3130. (in Chinese with English abstract)

    RICKWOOD PC, 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    RAPP R P, WATSON E B, 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Jouranal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    SHEN W Z, ZHANG F R, SHU L S, et al., 2008. Formation age, geochemical characteristics of the Ninggang granite body in Jiangxi Province and its tectonic significance[J]. Acta Petrologica Sinica, 24(10): 2244-2254. (in Chinese with English abstract)

    SHU L S, YU J H, JIA D, et al., 2008. Early Paleozoic orogenic belt in the eastern segment of South China[J]. Geological Bulletin of China, 27(10): 1581-1593. (in Chinese with English abstract)

    SHU L S, 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract)

    SMITHIES R H, 2000. The Archaean tonalite-trondhjemite-granodiorite(TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115-125. doi: 10.1016/S0012-821X(00)00236-3

    SONG B, ZHANG Y H, WAN Y S, et al., 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26-30(in Chinese with English abstract).

    WANG D Z, 2004. The study of granitic rocks in South China: looking back and forward[J]. Geological Journal of China Universities, 10(3): 305-314(in Chinese with English abstract).

    WANG F, 2021. Zircon U-Pb geochronology, geochemical characteristics and tectonic implications of Caledonian granites from the Xuanhe area, Southwestern Fujian Province[J]. Geology in China, 48(1): 207-228. (in Chinese with English abstract)

    WEI C J, GUAN X, DUNG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381-1404. (in Chinese with English abstract)

    WILLIAMS I S, 1998. U-Th-Pb geochronology by ion microprobe[M]//MCKIBBEN M A, SHANKS Ⅲ W C, RIDLEY W I. Applications of microanalytical techniques to understanding mineralising processes. Colorado: Society of Economic Geologists: 1-35.

    WRIGHT J B, 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 106(4): 370-384. doi: 10.1017/S0016756800058222

    WU M Q, ZUO M L, ZHANG D H, et al., 2014. Genesis and diagenetic environment of TTG suite[J]. Geological Review, 60(3): 503-514(in Chinese with English abstract).

    XI W W, CHEN S Z, 2019. Identification of Caledonian granite in the Zhenghe area, Fujian province and its tectonic significance[J]. Acta Geologica Sinica, 93(4): 804-815. (in Chinese with English abstract)

    XU D R, CHEN G H, XIA B, et al., 2006. The caledonian adakite-like granodiorites in Banshanpu Area, Eastern Hunan Province, South China: petrogenesis and geological significance[J]. Geological Journal of China Universities, 12(4): 507-521. (in Chinese with English abstract)

    YOGODZINSKI G M, KAY R W, VOLYNETS O N, et al., 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge[J]. GSA Bulletin, 107(5): 505-519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2

    ZHANG C Z, ZHANG Q, JIN W J, et al., 2018. Can Archean TTG compare with Adakite? Global data gives results[J]. Chinese Journal of Geology, 53(4): 1254-1266. (in Chinese with English abstract)

    ZHANG F F, WANG Y J, FAN W M, et al., 2010. LA-ICPMS zircon U-Pb geochronology of late Early Paleozoic granites in eastern Hunan and western Jiangxi provinces, South China[J]. Geochimica, 39(5): 414-426. (in Chinese with English abstract)

    ZHANG F R, SHU L S, WANG D Z, et al., 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China[J]. Earth Science Frontiers, 16(1): 248-260. (in Chinese with English abstract)

    ZHANG F R, 2011. The geological and geochemical characteristics and its petrogenesis for Caledonian granites in the central-Southern JiangXi Province[D]. Nanjing: Nanjing University. (in Chinese with English abstract)

    ZHANG Y, SHU L S, CHEN X Y, 2011. Geochemistry, geochronology, and petro-genesis of the early Paleozoic granitic plutons in the central-southern Jiangxi Province, China[J]. Science China Earth Sciences, 54(10): 1492-1510. doi: 10.1007/s11430-011-4249-3

    Zhejiang Institute of Geological Survey, 2013. 1∶250000 Regional Geological Survey of Quzhou[R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)

    Zhejiang Institute of Geological Survey, 2015. Geological structure of Jiangshan-Shaoxing Suture[R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)

    Zhejiang Institute of Geological Survey, 2016. 1∶50000 Regional Geological Survey of Xuanhu, Ruiyang[R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)

    ZHOU X D, 2020. Geochemistry and geochronology characteristics of diagonal amphibole, within the Mamianshan subbduction-accretionary complex zone, and its geological significance in Jianou City, Northwest Fujian Province[J]. Geology of Fujian, 39(2): 79-95. (in Chinese with English abstract)

    ZHOU X M, 2003. My thinking about granite geneses of South China[J]. Geological Journal of China Universities, 9(4): 556-565. (in Chinese with English abstract)

    ZHU Q B, HUANG W C, MENG Q X, et al., 2015. Caledonian tectonic event of Cathaysia block: constraints on zircon U-Pb geochronology and Lu-Hf isotope for two kinds of granite[J]. Geology in China, 42(6): 1715-1739. (in Chinese with English abstract)

    柏道远, 黄建中, 马铁球, 等, 2006a. 湘东南志留纪彭公庙花岗岩体的地质地球化学特征及其构造环境[J]. 现代地质, 20(1): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200601015.htm

    柏道远, 王先辉, 马铁球, 等, 2006b. 湘东南印支期褶皱特征及形成机制[J]. 华南地质与矿产(4): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200604008.htm

    柏道远, 贾宝华, 钟响, 等, 2012. 湘中南晋宁期和加里东期构造线走向变化成因[J]. 地质力学学报, 18(2): 165-177. doi: 10.3969/j.issn.1006-6616.2012.02.007

    柏道远, 钟响, 贾朋远, 等, 2014. 南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义[J]. 岩石矿物学杂志, 33(3): 407-423. doi: 10.3969/j.issn.1000-6524.2014.03.001

    程亮开, 2018. 粵北大东山岩体加里东期花岗岩锆石U-Pb年龄及地质意义[J]. 华南地质与矿产, 34(1): 31-40. doi: 10.3969/j.issn.1007-3701.2018.01.004

    邓晋福, 刘翠, 冯艳芳, 等, 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 37(4): 1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025

    邓晋福, 冯艳芳, 狄永军, 等, 2017. 中国侵入岩大地构造[M]. 北京: 地质出版社: 1-583.

    邓晋福, 刘翠, 狄永军, 等, 2018. 英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分[J]. 地学前缘, 25(6): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806005.htm

    第五春荣, 孙勇, 林慈銮, 等, 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J]. 岩石学报, 23(2): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702007.htm

    冯艳芳, 邓晋福, 王世进, 等, 2010. 鲁西地区早前寒武纪花岗岩类中镁安山质岩石系列(MA)的识别及大陆地壳生长[J]. 中国地质, 37(4): 1119-1129. doi: 10.3969/j.issn.1000-3657.2010.04.026

    冯艳芳, 邓晋福, 肖庆辉, 等, 2011. TTG岩类的识别: 讨论与建议[J]. 高校地质学报, 17(3): 406-414. doi: 10.3969/j.issn.1006-7493.2011.03.005

    关义立, 袁超, 龙晓平, 等, 2013. 华南地块东部早古生代的陆内造山作用: 来自Ⅰ型花岗岩的启示[J]. 大地构造与成矿学, 37(4): 698-720. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304014.htm

    关义立, 袁超, 龙晓平, 等, 2016. 华南早古生代花岗岩中暗色包体的成因: 岩石学、地球化学和锆石年代学证据[J]. 大地构造与成矿学, 40(1): 109-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201601010.htm

    郝义, 李三忠, 金宠, 等, 2010. 湘赣桂地区加里东期构造变形特征及成因分析[J]. 大地构造与成矿学, 34(2): 166-180. doi: 10.3969/j.issn.1001-1552.2010.02.003

    胡艳华, 钱俊锋, 褚先尧, 等, 2012. 华南加里东运动研究综述及其性质初探[J]. 科技通报, 28(11): 42-48, 71. doi: 10.3969/j.issn.1001-7119.2012.11.011

    姜杨, 赵希林, 林寿发, 等, 2014. 扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义[J]. 地质学报, 88(8): 1461-1474. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408008.htm

    赖绍聪, 朱毓, 2020. 扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制: 研究进展与展望[J]. 地质力学学报, 26(5): 759-790. doi: 10.12090/j.issn.1006-6616.2020.26.05.062

    刘欢, 赵希林, 葛延鹏, 等, 2020. 武夷地块北东部迪口地区下元岩体和红叶岗岩体锆石La-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评, 66(3): 637-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003011.htm

    刘远栋, 刘风龙, 张建芳, 等, 2021. 浙江龙泉地区变质基性岩年代学、地球化学特征及构造意义[J]. 地质学报, 95(2): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102009.htm

    聂童春, 2018. 福建建瓯地区马面山俯冲增生杂岩的厘定及其意义[J]. 福建地质, 37(4): 273-287. doi: 10.3969/j.issn.1001-3970.2018.04.001

    聂童春, 周小栋, 2019. 福建建瓯高门地区马面山俯冲增生杂岩中石英岩地质特征及其成因探讨[J]. 福建地质, 38(4): 237-247. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201904001.htm

    潘桂棠, 陆松年, 肖庆辉, 等, 2016. 中国大地构造阶段划分和演化[J]. 地学前缘, 23(6): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm

    彭松柏, 金振民, 刘云华, 等, 2006a. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J]. 地球科学—中国地质大学学报, 31(1): 110-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601015.htm

    彭松柏, 金振民, 付建明, 等, 2006b. 两广云开隆起区基性侵入岩的地球化学特征及其构造意义[J]. 地质通报, 25(4): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200604002.htm

    覃小锋, 王宗起, 胡贵昂, 等, 2013. 两广交界地区壶垌片麻状复式岩体的年代学和地球化学: 对云开地块北缘早古生代构造-岩浆作用的启示[J]. 岩石学报, 29(9): 3115-3130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309013.htm

    沈渭洲, 张芳荣, 舒良树, 等, 2008. 江西宁冈岩体的形成时代、地球化学特征及其构造意义[J]. 岩石学报, 24(10): 2244-2254. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810006.htm

    舒良树, 于津海, 贾东, 等, 2008. 华南东段早古生代造山带研究[J]. 地质通报, 27(10): 1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001

    舒良树, 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm

    王德滋, 2004. 华南花岗岩研究的回顾与展望[J]. 高校地质学报, 10(3): 305-314. doi: 10.3969/j.issn.1006-7493.2004.03.001

    王峰, 2021. 闽西南宣和加里东期花岗岩锆石U-Pb年龄、地球化学特征及对华南造山的启示[J]. 中国地质, 48(1): 207-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101016.htm

    魏春景, 关晓, 董杰, 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705002.htm

    吴鸣谦, 左梦璐, 张德会, 等, 2014. TTG岩套的成因及其形成环境[J]. 地质论评, 60(3): 503-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201403003.htm

    隰弯弯, 陈世忠, 2019. 福建政和地区加里东期花岗岩的厘定及其大地构造意义[J]. 地质学报, 93(4): 804-815. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201904004.htm

    许德如, 陈广浩, 夏斌, 等, 2006. 湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J]. 高校地质学报, 12(4): 507-521. doi: 10.3969/j.issn.1006-7493.2006.04.012

    张昌振, 张旗, 金维浚, 等, 2018. 太古宙TTG能否与埃达克岩对比?: 全球数据给出的结果[J]. 地质科学, 53(4): 1254-1266.

    张芳荣, 舒良树, 王德滋, 等, 2009. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘, 16(1): 248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027

    张芳荣, 2011. 江西中—南部加里东期花岗岩地质地球化学特征及其成因[D]. 南京: 南京大学.

    张菲菲, 王岳军, 范蔚茗, 等, 2010. 湘东-赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究[J]. 地球化学, 39(5): 414-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201005002.htm

    张苑, 舒良树, 陈祥云, 2011. 华南早古生代花岗岩的地球化学、年代学及其成因研究: 以赣中南为例[J]. 中国科学: 地球科学, 41(8): 1061-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108003.htm

    浙江省地质调查院, 2013. 浙江1∶25万衢州市幅区域地质调查成果报告[R]. 杭州: 浙江省地质调查院.

    浙江省地质调查院, 2015. 江山-绍兴拼合带地质构造研究成果报告[R]. 杭州: 浙江省地质调查院.

    浙江省地质调查院, 2016. 浙江1∶5万铉湖、瑞洋区域地质矿产调查成果报告[R]. 杭州: 浙江省地质调查院.

    周小栋, 2020. 闽西北建瓯马面山俯冲增生杂岩带内斜长角闪岩的地球化学、年代学特征及其地质意义[J]. 福建地质, 39(2): 79-95. doi: 10.3969/j.issn.1001-3970.2020.02.001

    周新民, 2003. 对华南花岗岩研究的若干思考[J]. 高校地质学报, 9(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009

    朱清波, 黄文成, 孟庆秀, 等, 2015. 华夏地块加里东期构造事件: 两类花岗岩的锆石U-Pb年代学和Lu-Hf同位素制约[J]. 中国地质, 42(6): 1715-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201506005.htm

  • 加载中

(10)

(5)

计量
  • 文章访问数:  3313
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2021-07-27
修回日期:  2021-12-24
刊出日期:  2022-04-28

目录