基于InSAR识别的黄土高原活动性地质灾害发育规律分析

姚闯闯, 姚鑫, 顾畛逵, 任开瑀, 周振凯. 2022. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析. 地质力学学报, 28(2): 257-267. doi: 10.12090/j.issn.1006-6616.2021083
引用本文: 姚闯闯, 姚鑫, 顾畛逵, 任开瑀, 周振凯. 2022. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析. 地质力学学报, 28(2): 257-267. doi: 10.12090/j.issn.1006-6616.2021083
YAO Chuangchuang, YAO Xin, GU Zhenkui, REN Kaiyu, ZHOU Zhenkai. 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. Journal of Geomechanics, 28(2): 257-267. doi: 10.12090/j.issn.1006-6616.2021083
Citation: YAO Chuangchuang, YAO Xin, GU Zhenkui, REN Kaiyu, ZHOU Zhenkai. 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. Journal of Geomechanics, 28(2): 257-267. doi: 10.12090/j.issn.1006-6616.2021083

基于InSAR识别的黄土高原活动性地质灾害发育规律分析

  • 基金项目:
    中国地质调查局地质调查项目(DD20190717);国家重点研发计划课题(2018YFC1505002);三峡集团公司项目YMJ(XLD)(19)110)
详细信息
    作者简介: 姚闯闯(1996—),男,在读硕士,从事地质灾害与InSAR研究工作。E-mail: 2393894121@qq.com
    通讯作者: 姚鑫(1978—), 男,博士,研究员,从事地质灾害与InSAR研究工作。E-mail: yaoxinphd@163.com
  • 中图分类号: P694; P237

Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification

  • Fund Project: This research is financially supported by the Geological Survey Project of China Geological Survey(Grant No.DD20190717), the National Key Research and Development Project (Grant No.2018YFC1505002), and the Project of Three Gorges Corporation(Grant No.YMJ(XLD)(19)110)
More Information
  • 地震、降雨、人类工程活动诱发的活动性地质灾害在黄土高原频现,但由于其地域广阔、构造活跃、地貌类型多样、各地黄土特性差异较大,一直以来缺乏活动性地质灾害发育分布的系统认识。InSAR技术具有大范围观测地表变形的能力,文章利用2019年1月1日至2020年3月31日期间40期Sentinal-1 SAR数据,计算了整个黄土高原62.46×104 km2的地表变形,辅助地貌和光学影像特征,解译了4类活动性地质灾害,共解译出活动性地质灾害3286处,其中滑坡1135处、采矿塌陷1691处、沉降368处、堆填变形体92处,同时对其活动发育规律进行了分析。黄土高原活动性地质灾害主要分布在八大区域,包括四大滑坡发育区、三大采矿塌陷分布区和一个沉降灾害分布区。活动性滑坡在空间分布上具有显著的区域性和丛集性,主要分布在中西部,滑坡体的发育密度与地形地貌有一定联系;采矿塌陷和地面沉降分布在中东部,密集且成群发育。地质灾害发育具有明显的时空发生规律,区域尺度上,地质灾害的发育密集程度受地形地貌和矿产资源的控制;灾害规模上,InSAR识别的灾害规模都为中型以上,与传统统计手段有一定差别。InSAR的识别结果客观反映了黄土高原地质灾害的分布规律。同时,InSAR技术能够有效监测到地下采煤诱发的地表破坏的分布、范围和强度以及露天采煤矿坑深度和范围的扩展,进而推断煤业生产活动强度。

  • 加载中
  • 图 1  研究区InSAR观测范围及工程地质岩组分布

    Figure 1. 

    图 2  黄土高原地质灾害InSAR变形图与光学影像图

    Figure 2. 

    图 3  黄土高原活动性地质灾害分布

    Figure 3. 

    图 4  青海东缘黄河流域侵蚀滑坡段及现场典型照片

    Figure 4. 

    图 5  黄土高原活动性滑坡地貌因子统计

    Figure 5. 

    表 1  黄土高原研究区各岩土体类型地质灾害发育情况

    Table 1.  Development of geological hazards in different types of rocks and soil in the study area

    岩土体类型 滑坡/处 采矿塌陷/处 沉降/处 堆填开挖变形/处 合计
    松散岩组 290 539 306 61 1196
    软弱岩组 186 478 29 7 700
    较软岩组 535 623 31 17 1206
    较硬岩组 44 37 0 4 85
    坚硬岩组 56 3 1 0 60
    坚硬侵入岩类 3 8 1 0 12
    极硬侵入岩类 21 3 0 3 27
    合计 1135 1691 368 92 3286
    下载: 导出CSV

    表 2  黄土高原最易发活动性滑坡地貌区段统计

    Table 2.  Statistics of the geomorphic sections most prone to active landslides in the study area

    区域 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区
    高程/m 2500~3000 2000~2500 1500~2000 1000~1500
    高差/m 100~150 50~100 50~100 100~150
    坡度/(°) 40~45 15~20 20~25 35~40
    坡向
    岩组类型 较软岩组 松散岩组 软弱岩组 松散岩组
    下载: 导出CSV
  • CAO J L, WANG R F, ZHANG J P, et al., 2004. Environmental geological problems in mining areas in Shanxi Province and present state of their study[J]. Geological Bulletin of China, 23(11): 1119-1126. (in Chinese with English abstract)

    CHENG T, SHAN X J, DONG W T, et al., 2008. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology and Engineering Geology, 35(1): 98-101. (in Chinese with English abstract)

    GUO S C, HOU H P, ZHANG S L, et al., 2017. Surface deformation monitoring of the mining area in Loess Plateau based on D-InSAR[J]. Science of Surveying and Mapping, 42(6): 207-212. (in Chinese with English abstract)

    HAN S F, ZHAO B Q, YIN Z M, et al., 2020. The identification of potential geological hazards on the Loess Plateau based on PS InSAR technology[J]. Journal of Lanzhou University: Natural Sciences, 56(1): 1-7. (in Chinese with English abstract)

    HE Y, 2016. Identification and Monitoring of the loess landslide by using of high resolution remote sensing and InSAR[D] Xi'an: Chang'an University. (in Chinese with English abstract)

    HU S, 2019. Spatial pattern of landslide in Loess Plateau and its influence on geomorphologic evolution[D]. Xi'an: Northwest University. (in Chinese with English abstract)

    HUANG T K, JEN C S, JIANG C F, et al., 1977. An outline of the tectonic characteristics of China[J]. Acta Geological Sinica (2): 117-135. (in Chinese with English abstract)

    LEI X Y, 2001. Geological disasters and human activities on the Loess Plateau of China[M]. Beijing: Geological Press. (in Chinese)

    LI M, DU J W, GAO W Y, 2009. Study on the relationship between geological disasters and precipitation in the Loess Plateau in north Shaanxi Province[J]. Arid Zone Research, 26(4): 599-606. (in Chinese with English abstract)

    LI Y, MENG H, DONG Y, et al., 2004. Main Types and characterisitics of geo-hazard in China: Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 15(2): 29-34. (in Chinese with English abstract)

    LIU X H, YAO X, ZHOU Z K, et al., 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)

    MIN L R, 1984. The Tectonic movement of quaternary in Loess Plateau of China[J]. Bulletin of the Chinese Academy of Geological Sciences (9): 225-236. (in Chinese with English abstract)

    PENG D L, XU Q, LIU F Z, et al., 2018. Distribution and failure modes of the Landslides in Heitai Terrace, China[J]. Engineering Geology, 236: 97-110. doi: 10.1016/j.enggeo.2017.09.016

    PENG J B, LIN H Z, WANG Q Y, et al., 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22(4): 684-691. (in Chinese with English abstract)

    PENG J B, WANG S K, WANG Q Y, et al., 2019. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 170: 329-350. doi: 10.1016/j.jseaes.2018.11.015

    PENG J B, WANG Q Y, ZHUANG J Q, et al., 2020. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 26(5): 714-730. (in Chinese with English abstract)

    SUN P P, ZHANG M S, CHENG X J, et al., 2019. On the regularity of geological hazards on the Loess Plateau in China[J]. Mountain Research, 37(5): 737-746. (in Chinese with English abstract)

    WANG N Q, 2004. Study on the growing laws and controlling measures for loess landslide[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)

    WANG S K, 2020. Study on the mechanisms for geohazards of macro loess discontinuities[D]. Xi'an: Chang'an University. (in Chinese with English abstract)

    WANG Z X, 2017. Boundary data of Loess Plateau region[J]. Journal of Global Change Data & Discovery, 1(1): 113, 236. (in Chinese with English abstract)

    XU C, WU X Y, XU X W, 2018. Earthquake-triggered landslides in the loess plateau and its adjacent areas[J]. Journal of Engineering Geology, 26(S1): 260-273. (in Chinese with English abstract)

    XU L, DAI F C, TU X B, et al., 2014. Landslides in a Loess Platform, North-West China[J]. Landslides, 11(6): 993-1005. doi: 10.1007/s10346-013-0445-x

    XU L P, 2008. Influence and reciprocal effects of vegetation rehabilitation on regional climate in Loess Plateau[D] Yangling: Northwest A & F University. (in Chinese with English abstract)

    XU Z J, LIN Z G, ZHANG M S, 2007. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 26(7): 1297-1312. (in Chinese with English abstract)

    YAO X, DENG J H, LIU X H, et al., 2020. Primary recognition of active landslides and development rule analysis for pan Three-river-parallel Territory of Tibet Plateau[J]. Advanced Engineering Sciences, 52(5): 16-37. (in Chinese with English abstract)

    YUAN L X, 2006. Forming mechanism of the Loess Landslides in Xiji of Ningxia with Low-Angle, High speed and far-distance[J]. Journal of Disaster Prevention and Mitigation Engineering, 26(2): 219-223. (in Chinese)

    ZHAO C Y, LIU X J, ZHANG Q, et al., 2019. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 44(7): 996-1007. (in Chinese with English abstract)

    ZHAO D L, LANCUO Z M, HOU G L, et al., 2021. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 27(1): 83-95. (in Chinese with English abstract)

    ZHOU J X, ZHU C Y, ZHENG J M, et al., 2002. Landslide disaster in the loess Area of China[J]. Journal of Forestry Research, 13(2): 157-161. doi: 10.1007/BF02857244

    ZHU Z Y, 1992. Neotectonics and Neotectonic movement of the Loess Plateau and its adjacent regions[J]. Quaternary Sciences, 12(3): 252-264. (in Chinese with English abstract)

    曹金亮, 王润福, 张建萍, 等, 2004. 山西省矿山环境地质问题及其研究现状[J]. 地质通报, 23(11): 1119-1126. doi: 10.3969/j.issn.1671-2552.2004.11.012

    程滔, 单新建, 董文彤, 等, 2008. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质, 35(1): 98-101. doi: 10.3969/j.issn.1000-3665.2008.01.022

    郭山川, 侯湖平, 张绍良, 等, 2017. D-InSAR的黄土高原矿区地表形变监测[J]. 测绘科学, 42(6): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201706036.htm

    韩守富, 赵宝强, 殷宗敏, 等, 2020. 基于PS InSAR技术的黄土高原地质灾害隐患识别[J]. 兰州大学学报: 自然科学版, 56(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202001001.htm

    何杨, 2016. 高分遥感与InSAR技术在黄土滑坡识别和监测中的应用研究[D]. 西安: 长安大学.

    胡胜, 2019. 黄土高原滑坡空间格局及其对地貌演化的影响[D]. 西安: 西北大学.

    黄汲清, 任纪舜, 姜春发, 等, 1977. 中国大地构造基本轮廓[J]. 地质学报(2): 117-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197702002.htm

    雷祥义, 2001. 黄土高原地质灾害与人类活动[M]. 北京: 地质出版社.

    李明, 杜继稳, 高维英, 2009. 陕北黄土高原区地质灾害与降水关系[J]. 干旱区研究, 26(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200904025.htm

    李媛, 孟晖, 董颖, 等, 2004. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 15(2): 29-34. doi: 10.3969/j.issn.1003-8035.2004.02.005

    刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.05.059

    闵隆瑞, 1984. 中国黄土高原第四纪构造运动[J]. 中国地质科学院院报(9): 225-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402019.htm

    彭建兵, 林鸿州, 王启耀, 等, 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm

    彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26(5): 714-730. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2020.26.05.059

    孙萍萍, 张茂省, 程秀娟, 等, 2019. 黄土高原地质灾害发生规律[J]. 山地学报, 37(5): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201905011.htm

    王念秦, 2004. 黄土滑坡发育规律及其防治措施研究[D]. 成都: 成都理工大学.

    王少凯, 2020. 黄土宏观界面及其控灾机制研究[D]. 西安: 长安大学.

    王正兴, 2017. 黄土高原地区[J]. 全球变化数据学报(中英文), 1(1): 113, 236. https://www.cnki.com.cn/Article/CJFDTOTAL-QQSJ201701018.htm

    许冲, 吴熙彦, 徐锡伟, 2018. 黄土高原及邻区的地震滑坡[J]. 工程地质学报, 26(S1): 260-273. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201810001038.htm

    徐丽萍, 2008. 黄土高原地区植被恢复对气候的影响及其互动效应[D]. 杨凌: 西北农林科技大学.

    徐张建, 林在贯, 张茂省, 2007. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 26(7): 1297-1312. doi: 10.3321/j.issn:1000-6915.2007.07.001

    姚鑫, 邓建辉, 刘星洪, 等, 2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术, 52(5): 16-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005003.htm

    袁丽侠, 2006. 宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J]. 防灾减灾工程学报, 26(2): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602017.htm

    赵超英, 刘晓杰, 张勤, 等, 2019. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 44(7): 996-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907005.htm

    赵东亮, 兰措卓玛, 侯光良, 等, 2021. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报, 27(1): 83-95. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2021.27.01.009

    朱照宇, 1992. 黄土高原及邻区新构造与新构造运动[J]. 第四纪研究, 12(3): 252-264. doi: 10.3321/j.issn:1001-7410.1992.03.007

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1138
  • PDF下载数:  57
  • 施引文献:  0
出版历程
收稿日期:  2021-07-16
修回日期:  2021-12-15
刊出日期:  2022-04-28

目录