中国地质科学院地质力学研究所
中国地质学会
主办

2022年9月17日中国台湾地震序列的触发机制及其动力学成因

黄少华, 万永革, 冯淦, 李枭, 关兆萱. 2023. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报, 29(5): 674-684. doi: 10.12090/j.issn.1006-6616.2023056
引用本文: 黄少华, 万永革, 冯淦, 李枭, 关兆萱. 2023. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报, 29(5): 674-684. doi: 10.12090/j.issn.1006-6616.2023056
HUANG Shaohua, WAN Yongge, FENG Gan, LI Xiao, GUAN Zhaoxuan. 2023. Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022. Journal of Geomechanics, 29(5): 674-684. doi: 10.12090/j.issn.1006-6616.2023056
Citation: HUANG Shaohua, WAN Yongge, FENG Gan, LI Xiao, GUAN Zhaoxuan. 2023. Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022. Journal of Geomechanics, 29(5): 674-684. doi: 10.12090/j.issn.1006-6616.2023056

2022年9月17日中国台湾地震序列的触发机制及其动力学成因

  • 基金项目:
    国家自然科学基金项目(42174074, 41674055);中央高校科研业务费专项(ZY20215117);河北省地震动力学重点实验室开放基金项目(FZ212105)
详细信息
    作者简介: 黄少华(1998-), 男, 在读硕士, 主要从事震源机制、应力场反演等方面的研究工作。E-mail: 1961921173@qq.com
    通讯作者: 万永革(1967-), 男, 研究员, 主要从事构造应力场、地震应力触发等方面研究。E-mail: wanyg217217@vip.sina.com
  • 中图分类号: P315

Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022

  • Fund Project: This research is financially supported by the fund of the National Natural Science Foundation of China(Grants No.42174074, 41674055), the Special Fund for Scientific Research of Central Universities(Grant No.ZY20215117), and the Open Fund Project of the Hebei Key Laboratory of Earthquake Dynamics(Grant No.FZ212105)
More Information
  • 2022年9月17—18日, 中国台湾先后发生台东县MS6.5和花莲县MS6.9两次强震及多次余震。两次强震均为逆走滑型地震, 且震中都位于台湾纵谷断裂带, 该地区构造复杂, 为晚中生代古太平洋板块朝东亚陆缘的消减带, 具有逆冲型构造应力背景。对纵谷断裂带周围地区历史上发生过的地震进行统计发现, 大部分地震为逆断型。为探究该地区此次发生逆走滑型地震的原因及其与构造应力场的关系, 首先通过搜集研究区相关的地震震源机制, 反演该地区的构造应力场, 明确其是以走向为北西西向的压应力为主的应力场; 然后将应力场投影到走向、倾角不同的断层面上, 发现一些节面上表现出较大的相对剪应力和较小的相对正应力, 说明这些节面上具有较强的剪切作用和较小的摩擦力, 容易发生错动而产生逆断型、逆走滑型和走滑型的地震。同时, 为明确短时间内两次强震间的触发关系, 通过计算MS6.5地震在MS6.9地震破裂面和滑动方向上产生的库伦破裂应力变化发现, MS6.9地震约在0.02MPa的库伦破裂应力触发下发生。相关结论对研究台湾纵谷带地震的发震机理和地球动力学具有一定的指导意义。

  • 加载中
  • 图 1  2022年9月17—18日中国台湾地震序列中MS>5的7个地震分布

    Figure 1. 

    图 2  2022年9月17—18日中国台湾两次强震的地震震源机制中心解计算结果

    Figure 2. 

    图 3  研究区1978—2019年间发生地震的类型分类

    Figure 3. 

    图 4  研究区反演应力状态

    Figure 4. 

    图 5  研究区应力场在各种节面上的相对应力

    Figure 5. 

    图 6  2022年9月17—18日中国台湾两次MS>6地震的推测断层状态

    Figure 6. 

    图 7  台东县MS6.5地震在花莲县MS6.9地震节面上产生的库伦破裂应力变化

    Figure 7. 

    图 8  2022年9月17—18日中国台湾两次MS>6地震共同产生的同震位移场

    Figure 8. 

    表 1  中国台湾台东县MS6.5地震震源机制中心解结果和标准差

    Table 1.  Results and standard deviation of the central focal mechanism solution for the MS6.5 earthquake in Taitung County, Taiwan, China

    序号 各震源机制解(走向,倾角,滑动角)/(°) 机构 作为初始解计算出的中心震源机制解(走向,倾角,滑动角)/(°) 标准差(S)/ (°) S最小的中心解与各震源机制解的最小空间旋转角/(°)
    1 202,63,13 USGS 205.4,58.2,20.8 16.499554 8.38
    2 208,44,9 CPPT 205.4,58.2,20.8 16.499550 19.63
    3 199,76,15 GFZ 205.4,58.2,20.8 16.499544 19.07
    4 212,62,53 OCA 205.4,58.2,20.8 16.499547 29.65
    5 214,50,26 IPGP 205.4,58.2,20.8 16.499576 10.71
    6 206,39,11 中国地震台网中心 205.4,58.2,20.8 16.499550 21.71
    7 207,57,39 RMT 205.4,58.2,20.8 16.499550 17.39
    8 197,74,10 台湾地震科学资料中心(P波结果) 205.4,58.2,20.8 16.499543 18.62
    9 206,62,21 台湾地震科学资料中心(W震相结果) 205.4,58.16,20.9 16.499525 3.73
    10 204,62,19 GCMT 205.4,58.2,20.8 16.499572 4.19
    11 205.0,55.0,16.3 GRMT 205.4,58.2,20.8 16.499573 5.43
    注:台湾地震科学资料中心的计算结果包括两种,一种根据地震波的P波初动计算,另一种由地震波W震相计算得到
    下载: 导出CSV

    表 2  中国台湾花莲县MS6.9地震震源机制中心解结果和标准差

    Table 2.  Results and standard deviation of the central focal mechanism solution for the MS6.9 earthquake in Hualien County, Taiwan, China

    序号 各震源机制解(走向,倾角,滑动角)/(°) 机构 作为初始解算得的中心震源机制解(走向,倾角,滑动角)/(°) 标准差(S)/ (°) S最小的中心解与各震源机制解的最小空间旋转角/(°)
    1 201,61,31 GCMT 205.4,59.1,34.3 13.815634 4.40
    2 205,60,31 CPPT 205.4,59.1,34.3 13.815623 3.28
    3 204,54,31 GFZ 205.4,59.1,34.3 13.815624 5.79
    4 215,60,48 OCA 205.4,59.1,34.3 13.815633 12.12
    5 200,52,30 IPGP 205.4,59.1,34.3 13.815634 8.43
    6 210,77,19 USGS 205.4,59.1,34.3 13.815631 25.07
    7 207,40,26 中国地震台网中心 205.4,59.1,34.3 13.815622 21.26
    8 206.7,53.2,36.5 GRMT 205.4,59.1,34.3 13.815642 6.14
    9 205.0,61.3,46.6 RMT 205.4,59.1,34.3 13.815644 12.67
    10 199.4,72.7,43.4 台湾地震科学资料中心(W震相结果) 205.4,59.1,34.3 13.815638 18.65
    下载: 导出CSV

    表 3  5次MS<6的地震震源机制中心解汇总表

    Table 3.  Table of central focal mechanism solution of the five earthquakes with MS < 6

    序号(震级/MS) 发震时刻(北京时间) 中心解参数 地震类型
    日期 时分 节面Ⅰ/(走向,倾角,滑动角)/(°) 节面Ⅱ/(走向,倾角,滑动角)/(°)
    1(5.5) 2022-9-17 22∶45 104.4,88.1,168.8 194.7,78.8,1.9 走滑型
    2(5.7) 2022-9-18 13∶19 208.6,66.1,24.9 108.0,67.3,154.0 逆走滑型
    3(5.1) 2022-9-18 14∶32 200.3,80.7,9.19 108.8,80.9,170.6 走滑型
    4(5.8) 2022-9-18 17∶39 169.9,31.1,46.9 37.4,67.9,112.4 逆断型
    5(5.7) 2022-9-19 10∶07 195.0,63.8,43.0 82.6,52.3,146.1 逆走滑型
    下载: 导出CSV

    表 4  应力张量在各类型地震的总体震源机制节面上的相对剪应力和相对正应力统计表

    Table 4.  Relative shear stress and relative normal stress of stress tensor on the focal mechanism nodal plane of each type of earthquake focal mechanism

    总体震源机制节面Ⅰ (走向,倾角,滑动角)/(°) 总体震源机制节面Ⅱ (走向,倾角,滑动角)/(°) 应力张量在节面Ⅰ上的相对剪应力/相对正应力 应力张量在节面Ⅱ上的相对剪应力/相对正应力
    走滑型 163.51,85.24,6.27 72.99,83.76,175.21 0.700/-0.551 0.698/-0.302
    逆走滑型 200.15,56.94,45.60 81.03,53.22,137.07 0.929/-0.503 0.706/0.220
    逆断型 210.02,63.68,88.42 33.58,26.36,93.19 0.819/-0.697 0.806/0.455
    下载: 导出CSV
  • DAI Y L, WAN Y G, KONG X X, et al., 2022. Central focal mechanism of the Dengta, Liaoning M5.1 earthquake in 2013 and the analysis of its surrounding tectonic stress field[J]. Journal of Seismological Research, 45(4): 570-580. (in Chinese with English abstract)

    DENG Z H, 2021. Study on coseismic displacement identification based on near-fault strong motion data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese with English abstract)

    FENG C J, LI B, LI H, et al., 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics, 28(6): 919-937. (in Chinese with English abstract)

    FENG G, WAN Y G, XU X, et al., 2021. Static stress influence of the 2021 MS7.4 Madoi, Qinghai earthquake on neighboring areas[J]. Chinese Journal of Geophysics, 64(12): 4562-4571. (in Chinese with English abstract) doi: 10.6038/cjg2021P0454

    HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake, Qinghai, China: implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168. (in Chinese with English abstract)

    HUANG J C, 2015. Research on the method and application of tectonic stress field inversion based on the seismic observations[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract)

    KING G C P, STEIN R S, LIN J, 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953.

    KONG H, WAN Y G, LV Y, 2023. Seismogenic structure and slip property of the Aketao MW6.6 earthquake[J]. Science Technology and Engineering, 23(7): 2734-2742. (in Chinese with English abstract)

    LI X D, 1986. Crustal stress analysis and the effects of arc-continent collision on north part of Taiwan region[D]. Taipei, China: Institute of Geosciences, National Taiwan University. (in Chinese)

    OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018

    RAU R J, WU F T, 1998. Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes[J]. TAO, 9(4): 755-778. doi: 10.3319/TAO.1998.9.4.755(TAICRUST)

    SELLA G F, DIXON T H, MAO A L, 2002. REVEL: A model for Recent plate velocities from space geodesy[J]. Journal of Geophysical Research: Solid Earth, 107(B4): 2081.

    SHEN Z K, JACKSON D D, GE B X, 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements[J]. Journal of Geophysical Research: Solid Earth, 101(B12): 27957-27980. doi: 10.1029/96JB02544

    STEIN R S, KING G C P, LIN J, 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake[J]. Science, 258(5086): 1328-1332. doi: 10.1126/science.258.5086.1328

    WAN Y G, SHEN Z K, SHENG S Z, et al., 2010. The mechanical effects of the 2008 MS7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism[J]. Chinese Journal of Geophysics, 53(2): 280-289. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2010.02.006

    WAN Y G, WU Y M, SHENG S Z, et al., 2011. Preliminary result of Taiwan 3-D stress field from P wave polarity data[J]. Chinese Journal of Geophysics, 54(11): 2809-2818. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2011.11.011

    WAN Y G, SHENG S Z, HUANG J C, et al., 2016. The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos[J]. Journal of Earth Science, 27(5): 777-785. doi: 10.1007/s12583-015-0649-1

    WAN Y G, JIN Z T, CUI H W, et al., 2017. The displacement and stress field generated by the collapse in Pingyi county, Shangdong province, on December 25, 2015[J]. Seismology and Geology, 39(1): 81-91. (in Chinese with English abstract)

    WAN Y G, 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 4718-4728. (in Chinese with English abstract) doi: 10.6038/cjg2019M0553

    WAN Y G, 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics, 63(6): 2281-2296. (in Chinese with English abstract)

    WAN Y G, 2022. Focal mechanism classification based on areal strain of the horizontal strain rosette of focal mechanism and characteristic analysis of overall focal mechanism of the earthquake sequence[J/OL]. Earth Science, 1-16[2022-09-05]. http://kns.cnki.net/kcms/detail/42.1874.p.20220715.1532.014.html. (in Chinese with English abstract)

    WAN Y G, XU X, HUANG S H, et al., 2022. Focal mechanisms and stress field of the 2022 Menyuan, Qinghai MS6.9 earthquake sequence determined by P-wave polarity data[J]. China Earthquake Engineering Journal, 44(3): 670-679, 690. (in Chinese with English abstract)

    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974

    WU X L, YANG Z Q, GONG Y, 2019. Present-day crustal deformation in arc-continent collision zone of the southeastern Eurasia plate[J]. Geomatics and Information Science of Wuhan University, 44(2): 240-245, 253. (in Chinese with English abstract)

    WU Y M, CHANG C H, ZHAO L, et al., 2008. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005[J]. Bulletin of the Seismological Society of America, 98(3): 1471-1481. doi: 10.1785/0120070166

    WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)

    XU X, WAN Y G, FENG G, et al., 2022. Study on three seismic fault segments and their sliding properties revealed by clustered seismic events in Huoshan area, Anhui province[J]. Chinese Journal of Geophysics, 65(5): 1688-1700. (in Chinese with English abstract)

    YANG Y M, HUANG S Y, DAI Y, 2021. Quick fault-plane identification and seismogenic structure of the 2020 Yutian MS6.4 earthquake, Xinjiang[J]. Earthquake, 41(2): 29-46. (in Chinese with English abstract)

    YEH Y H, BARRIER E, LIN C H, et al., 1991. Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes[J]. Tectonophysics, 200(1-3): 267-280.

    YONG Q, 2017. Research on characteristics of inversion for earthquake fault slip constrained by InSAR and GPS geodetic deformation data[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)

    YU H L, WAN Y G, HUANG S H, et al., 2021. Study on focal mechanism solution and stress field of the 2021 Yangbi, Yunnan MS6.4 earthquake sequence using P-wave first motion data[J]. Journal of Seismological Research, 44(3): 338-347. (in Chinese with English abstract)

    YU S B, CHEN H Y, KUO L C, 1997. Velocity field of GPS stations in the Taiwan area[J]. Tectonophysics, 274(1-3): 41-59.

    ZHANG Q Y, 2019. Research and application of key technologies for InSAR coseismic deformation extraction[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese with English abstract)

    戴盈磊, 万永革, 孔祥雪, 等, 2022. 2013年辽宁灯塔M5.1地震震源机制中心解及震源区构造应力场特征分析[J]. 地震研究, 45(4): 570-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202204008.htm

    邓志辉, 2021. 基于近断层强震动数据的同震位移识别研究[D]. 哈尔滨: 中国地震局工程力学研究所.

    丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报, 28(6): 919-937. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.20222820

    冯淦, 万永革, 许鑫, 等, 2021. 2021年青海玛多MS7.4地震对周围地区的应力影响[J]. 地球物理学报, 64(12): 4562-4571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202112025.htm

    韩帅, 吴中海, 高扬, 等, 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2022013

    黄骥超, 2015. 基于地震观测资料的构造应力场反演方法与应用研究[D]. 兰州: 中国地震局兰州地震研究所.

    孔华, 万永革, 吕彦, 2023. 阿克陶MW6.6地震的发震构造及滑动特征[J]. 科学技术与工程, 23(7): 2734-2742. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202307006.htm

    李锡堤, 1986. 大地应力分析与弧陆碰撞对于台湾北部古应力场变迁之影响[D]. 台北: 国立台湾大学地质研究所.

    万永革, 沈正康, 盛书中, 等, 2010. 2008年新疆于田7.3级地震对周围断层的影响及其正断层机制的区域构造解释[J]. 地球物理学报, 53(2): 280-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201002007.htm

    万永革, 吴逸民, 盛书中, 等, 2011. P波极性数据所揭示的台湾地区三维应力结构的初步结果[J]. 地球物理学报, 54(11): 2809-2818. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111013.htm

    万永革, 靳志同, 崔华伟, 等, 2017. 2015年12月25日山东平邑塌陷事件产生的位移场与应力场[J]. 地震地质, 39(1): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201701006.htm

    万永革, 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报, 62(12): 4718-4728. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912018.htm

    万永革, 2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报, 63(6): 2281-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202006017.htm

    万永革, 2022. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析[J/OL]. 地球科学, 1-16[2022-09-05]. http://kns.cnki.net/kcms/detail/42.1874.p.20220715.1532.014.html.

    万永革, 许鑫, 黄少华, 等, 2022. P波极性资料确定的2022青海门源MS6.9地震序列震源机制及应力场[J]. 地震工程学报, 44(3): 670-679, 690. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202203020.htm

    吴啸龙, 杨志强, 龚云, 2019. 欧亚大陆东南缘弧-陆碰撞带现今地壳水平变形特征研究[J]. 武汉大学学报·信息科学版, 44(2): 240-245, 253. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201902013.htm

    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206004.htm

    许鑫, 万永革, 冯淦, 等, 2022. 安徽霍山地区丛集地震事件揭示的三条地震断面及其滑动性质研究[J]. 地球物理学报, 65(5): 1688-1700. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202205011.htm

    杨彦明, 黄世源, 戴勇, 等, 2021. 2020年新疆于田MS6.4地震断层面快速测定及发震构造研究[J]. 地震, 41(2): 29-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN202102004.htm

    雍琦, 2017. InSAR和GPS大地测量形变数据反演地震断层滑动的影响特征研究[D]. 成都: 西南交通大学.

    余海琳, 万永革, 黄少华, 等, 2021. 利用P波初动数据研究2021年云南漾濞MS6.4地震序列震源机制解及应力场[J]. 地震研究, 44(3): 338-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202103005.htm

    张庆云, 2019. InSAR同震形变提取关键技术研究及其应用[D]. 哈尔滨: 中国地震局工程力学研究所.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1064
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2022-07-08
修回日期:  2023-06-10
刊出日期:  2023-10-28

目录