Processing math: 100%

宁夏清水河盆地晚更新世中晚期孢粉记录及古气候意义

韦利杰, 李振宏, 李明涛, 董晓朋, 崔加伟, 寇琳琳. 2023. 宁夏清水河盆地晚更新世中晚期孢粉记录及古气候意义. 地质力学学报, 29(5): 662-673. doi: 10.12090/j.issn.1006-6616.2023015
引用本文: 韦利杰, 李振宏, 李明涛, 董晓朋, 崔加伟, 寇琳琳. 2023. 宁夏清水河盆地晚更新世中晚期孢粉记录及古气候意义. 地质力学学报, 29(5): 662-673. doi: 10.12090/j.issn.1006-6616.2023015
WEI Lijie, LI Zhenhong, LI Mingtao, DONG Xiaopeng, CUI Jiawei, KOU Linlin. 2023. Palynological records and paleoclimatic significance during the middle and late Late Pleistocene in the Qingshuihe Basin, Ningxia. Journal of Geomechanics, 29(5): 662-673. doi: 10.12090/j.issn.1006-6616.2023015
Citation: WEI Lijie, LI Zhenhong, LI Mingtao, DONG Xiaopeng, CUI Jiawei, KOU Linlin. 2023. Palynological records and paleoclimatic significance during the middle and late Late Pleistocene in the Qingshuihe Basin, Ningxia. Journal of Geomechanics, 29(5): 662-673. doi: 10.12090/j.issn.1006-6616.2023015

宁夏清水河盆地晚更新世中晚期孢粉记录及古气候意义

  • 基金项目:
    国家自然科学基金项目(41972119); 中国地质调查局地质调查项目(DD20190018, DD20221644)
详细信息
    作者简介: 韦利杰(1974-), 女, 副研究员, 主要从事古生物学与地层学方面的研究工作。E-mail: weilijie74@163.com
    通讯作者: 李振宏(1973-), 男, 研究员, 主要从事沉积地质与大地构造方面的研究工作。E-mail: lizhennhong@126.com
  • 中图分类号: P532;P534.63+1

Palynological records and paleoclimatic significance during the middle and late Late Pleistocene in the Qingshuihe Basin, Ningxia

  • Fund Project: This research is financially supported by the fund of the National Natural Science Foundation of China (Grant No.41972119) and the Geological Survey Projects of the China Geological Survey (Grants No.DD20190018, DD20221644)
More Information
  • 亚洲内陆荒漠化和干旱化与中国西部人类生存环境和社会可持续发展密切相关。中国西部地区的气候自晚更新世以来经历了多次冷暖、干湿变化, 研究其晚更新世古气候变化, 有助于预测未来气候的变化趋势。文章分析了宁夏南部清水河盆地晚更新世中晚期的孢粉记录, 结果显示孢粉序列可从下至上划分为4个组合带, 反映了该地区晚更新世中晚期植被和气候变化规律。研究表明研究区晚更新世中期(75~50 ka B.P.)是植被以蒿属为主的干草原, 气候温凉偏干; 晚更新世晚期(25~15 ka B.P.)由荒漠草原-干草原和疏林草原交替出现逐渐过渡到荒漠草原, 该时期冬季风呈现逐渐增强的趋势, 致使气候逐渐变冷变干, 气候类型由温凉偏湿过渡到冷干。宁夏南部清水河盆地晚更新世中晚期孢粉记录的深入研究对于正确认识黄土高原自然环境历史演变和黄土高原治理决策的制定具有重要指导意义。

  • 海洋地质学是研究地壳被海水淹没部分的形态、物质组成、成因、矿产资源及其成矿作用、地质构造和演化规律的学科。国外多位著名海洋地质学家,将海洋地质学定义为对海洋领域的地质学方面的研究,旨在揭示海洋动力学作用和地壳运动有关的各类地质作用的发生及其演变规律及环境影响等[1]。中国大百科词典认为,海洋地质学的研究内容涉及海岸与海底的地形地貌、海洋沉积物、洋底岩石、海底构造、深海大洋地质历史、古海洋和海底矿产资源[2]

    在党的十八大报告中,习近平总书记强调海洋强国战略,把海洋科技研究作为发展海洋强国的重要基石[3]。随着海洋遥感卫星、GPS、深潜器、海底摄像和海底地质取样、探测仪/分析等新技术、新方法的广泛应用,加上信息技术的快速发展,海洋地质学正在以前所未有的速度发展。海洋地质学伴随海洋基础理论研究的发展,海洋地质学的发展具有多学科之间相互渗透与交叉的学科特征。当代海洋地质学的发展更是呈现多学科交叉的趋势,海洋地质学正在成为解决海洋科学领域重大基础理论问题的重要组成部分。

    深海探测技术的不断突破,使海洋地质学的研究和发展备受关注。国际组织及主要海洋国家、研究机构等发布一系列海洋地质相关的计划、规划和战略研究报告,报告的起始时间为2015—2019年,目标时间为2020—2050年。鉴于此,综合近几十年海洋地质学的新发现与新进展,采用文献计量的方法[4],分析全球海洋地质领域的科技产出,并基于关键词对研究的热点进行分析,探讨海洋地质领域的研究趋势。

    在海洋地质领域,传统的研究计划有国际大洋发现计划(IODP)、国际大洋中脊计划(InterRidge)等,2011年IODP科学委员会对国际大洋钻探计划进行及时延续,提出国际大洋发现计划,并发布《IODP 2013—2023年实施计划》,国际大洋中脊协会提出了未来10年重点发展的6个主要研究方向,其中的研究重点包括控制俯冲板块组成的综合过程[5]。2017年,中国主导的IODP349航次的最新研究成果,发现首例富硅碳酸岩母岩浆。2020年,IODP发布《2050科学框架:科学大洋钻探探索地球》的报告,该科学框架提出七大战略目标[6],是框架的核心,囊括了整个地球系统科学及其互相作用过程和反馈机制,提出了大洋钻探中拟解决的科学问题。其中战略目标2构造板块的海洋生命周期,旨在探索大洋岩石圈的成因、年龄、运动和破坏性,研究构造、岩浆和热液过程之间的复杂相互作用如何驱动地壳增生类型的变化;探索海洋地壳、地幔和海洋之间的水热和微生物相互作用的完整历史,以及它们对地球化学循环、资源和生命的影响;研究地幔柱的起源和活动性、地球最深和最密集地幔区中大的低切变速度区、大的火成岩区和板内火山活动;提供岩石和流体样本,以及动态观测。国际海洋执行联盟(Ocean Energy Systems,OES)发布《国际海洋能源愿景》的报告[7],指出到2050年海洋能源部门投资将达到350亿美元,将具备30×104兆瓦的发电能力。海洋能源技术的开发将为公用设备、采矿、航天、船舶建造、交通运输、机器人技术、新材料、供应链、离岸风能和其他可再生能源、第三方认证、油气资源开发、国防等领域提供技术转移。

    海底动力学研究是德国亥姆赫兹基尔海洋研究中心(GEOMAR)的主要研究方向,核心研究主题包括大洋岩石圈的形成变更、板块俯冲过程及其对环境的影响,聚焦洋底和海洋盆地的形成、俯冲带研究、海洋板块的转换等研究。GEOMAR在“2025研究战略”中再次强调了汇聚边缘-俯冲带的研究[8],还开展了“俯冲带流体和挥发物”合作研究项目,研究液体和挥发组分(碳、硫、卤素、水)通过俯冲带的途径和通量,分析这些挥发物对气候、水圈和大气圈地球化学演化的影响。另外,涉及到俯冲研究的还有2017年美国地质调查局制定的“俯冲带科学研究计划——降低板块碰撞引发灾害的风险”,以及2007年实施的日本南海地震区域实验计划等。美国国家研究理事会(NRC)2015年发布的《海洋变化:2015—2025海洋科学10年计划》提出的8个海洋科学优先科学问题中包括控制海洋盆地形成和演化的过程[9]。深海底矿藏能为减少温室气体排放等的新兴科技提供重要的新型金属。2018年英国自然环境研究理事会(NERC)资助新的深海矿藏勘探项目(ULTRA)[10],旨在通过提高深海海底矿产资源勘测的效率,有助于减少未来采矿对环境的潜在影响。同年,英国政府发布《预见未来海洋》报告,为未来英国海洋发展提出20条建议[11],确定英国海洋发展的关键行业(如智能设备、卫星通信、海洋测绘等)并积极开展合作,推动系统性、全球合作、协调和可持续的全球海洋观测和海底测绘,提升对海洋的认识。日本财团(The Nippon Foundation)宣布,日本世界大洋深度图(GEBCO)2030海底项目正在进行[12]。2030年海底计划的目标是在2030年前绘制整个海底地图,把现有和新收集的所有测深数据汇编成一个高质量、高分辨率的海底数字模型,并促进收集新数据的国际合作。

    根据海洋地质领域发表的科技论文,以Web of Science(简称WOS,是获取全球学术信息的重要数据库,收录了全球13000多种权威的、高影响力的学术期刊)数据库为数据源,采用主题检索的方式,分3个层面进行检索式构建:①(水下、深海、海底)和(地震、海洋矿产的各种表达、俯冲带、弧后盆地);②洋中脊各种表达;③(海山、热液)、学科方向:地质科学。检索日期为2020年4月,经过去除重复文献,遴选文献类型为科技论文、研究综述及研究进展,共获得海洋地质领域SCIE论文18000余篇。

    利用统计分析工具Origin及可视化图谱工具Citespace、VOSviewer、文献内容挖掘工具TDA等,以可视化图谱的方式呈现海洋地质领域研究的产出规模、国家分布、研究主题变化及最近3年研究的热点。

    全球海洋地质研究科技论文产出规模自20世纪90年代以来平稳发展,论文数量保持波动式增长变化态势(图 1)。论文发表数量从1990年的109篇提升至2019年的949篇,呈近10倍的增长。同时可以看出,2000年以前为文章低发期,发文量缓慢增长,占总发文量的28.7%;2000年之后发文量有较大幅度增长,2008—2012年有较小幅度回落;2012—2019年为文章高发期,发文量增长速度明显加快,且未来有继续增长的趋势,2009—2019年海洋地质领域发文量占全部发文量的近50%。这些数据证明,近年海洋地质研究在国际学术界受到持续关注且研究成果日益增多。

    图 1.  海洋地质领域研究的产出规模
    Figure 1.  Output scale of marine geology research

    海洋地质领域研究论文主要来自全球范围的135个国家,其中发表数量较多的地区主要集中在北美洲、欧洲和部分亚洲地区。图 2为海洋地质领域全球论文发表数量国家分布图,其中颜色深浅代表论文数量的多少,图中颜色最深的为美国,其次为欧洲国家、中国等。表 1显示,美国、法国、英国、德国、中国、日本、加拿大和俄罗斯的发文量均超过1000篇,其中美国发文量为6731篇,占总发文量的36.76%,中国在全球科技论文总量排名第六位。根据发文量在1500篇以上的国家近5年的发文情况(图 3),海洋地质研究的传统强国在发文量上较稳定,其中中国的后发优势十分明显,近年发文数量持续增长,表明中国的海洋地质研究热度正在上升。

    图 2.  海洋地质领域全球论文发表数量国家分布
    Figure 2.  Distribution map of the number of papers published in the field of marine geology from the world's major countries
    图 3.  2015—2019年主要国家发文变化情况
    Figure 3.  Changes of papers issued by major countries from 2015 to 2019

    统计全球海洋地质领域SCIE发文数量排名前15的国家的科研影响力及产出效率,包括论文总被引频次、篇均被引频次、未被引论文占比及H指数、论文被引用频次在100次和50次以上的国家发文占比(表 1)。从主要国家科研影响力看,论文总被引频次最高和H指数最高的为美国,法国、英国、德国等国家的被引频次均在6万次以上,H指数在20以上。虽然中国在发文数量方面具有较明显的优势,总被引频次和H指数方面的表现也不断提升,但整体上中国的综合研究影响力与国际先进国家相比,还具有较大的差距,最主要的表现是篇均被引频次不高(仅位列第14位)和高被引论文比例不高(被引频次≥50次/篇和被引频次≥100次/篇的论文比例仅位列第13位)。因此,提高研究成果的学术质量和学术界影响力是今后中国海洋地质研究的一个重要方向。图 4给出未被引论文与被引频次≥100论文比例分布图,美国、瑞士在海洋地质研究领域论文被引频次≥100论文比例较高,中国、俄罗斯和印度的未被引论文比例较高,远超过被引频次≥100论文所占比例。

    表 1.  主要国家发文影响力统计
    Table 1.  Influence statistics of major countries for published papers in the field of marine geology
    序号 国家 发文量/篇 总被引频次/次 篇均被引/(次·篇-1) 未被引用论文比例/% 被引次数≥100论文比例/% 被引次数≥50论文比例/% H指数
    1 美国 6731 334021 49.62 3.57% 13.03% 30.00% 45
    2 法国 2523 102971 40.81 3.53% 9.91% 25.41% 23
    3 英国 2007 89832 44.76 3.99% 9.67% 25.56% 20
    4 德国 1932 68223 35.31 4.61% 8.33% 21.89% 22
    5 日本 1809 51015 28.20 6.25% 5.75% 15.92% 20
    6 中国 1692 30158 17.82 15.43% 4.14% 9.16% 16
    7 加拿大 1205 45288 37.58 4.48% 8.88% 22.99% 16
    8 俄国 1062 19366 18.24 14.88% 3.39% 8.95% 15
    9 澳大利亚 908 38286 42.17 5.84% 10.46% 24.12% 12
    10 意大利 681 20376 29.92 4.85% 5.58% 18.94% 13
    11 挪威 440 13569 30.84 7.95% 5.68% 15.23% 8
    12 瑞士 417 19790 47.46 4.08% 11.75% 30.70% 6
    13 西班牙 388 12581 32.43 6.96% 6.96% 20.88% 10
    14 印度 362 5088 14.06 12.15% 1.66% 6.35% 10
    15 葡萄牙 322 9379 29.13 5.28% 4.97% 21.43% 7
    注:H指数是衡量学术影响力大小的指标,本文中指某个国家h篇文章每篇都被引用了至少h次,综合了发文量和被引量两个指标,对“质”和“量”有一定兼顾
     | Show Table
    DownLoad: CSV
    图 4.  主要国家未被引论文与被引频次≥100论文比例
    Figure 4.  Ratio of uncited papers to cited papers ≥100 in major countries

    在国际合作方面(图 5),美国是最重要的合作国家,其次是法国、英国、德国、中国等。各国合作还呈现出一定的区域性特点,如欧洲国家间合作较紧密,美国与墨西哥、加拿大等国的合作较多。中国的合作国家主要是美国,其次是俄罗斯、日本等。研究成果的国际合作情况可以反映该研究领域的国际化程度,也是体现研究领域国际影响力的重要方面。中国随着近年科学研究实力的快速发展,在该研究领域的发文量已超过部分发达国家,但还需进一步加强与其他国家及机构的交流和合作。

    图 5.  全球海洋地质研究领域主要国家合作情况
    Figure 5.  Global cooperation among major countries in the field of marine geology

    WOS数据库使用252个学科分类体系,并且对其收录的论文都给出了相应的Web of Science类别(WC字段)和研究方向(SC字段)[13]。根据WOS期刊分类统计显示,海洋地质领域论文涵盖128个研究领域,共发表在1114种国际期刊上,其中收录文章数量排名前10的期刊列表如图 6所示,占总数的35.1%,收录海洋地质领域论文较多的期刊分别是《Earth and Planetary Science Letters》《Journey of Geophysical Research Solid Earth》和《Geochemistry Geophysics Geosystems》。同时,统计结果显示,发表海洋科学论文的期刊主要为《Geochemistry & Geophysics》(地球化学与地球物理学)、《Geological Science》(地质科学)、《Oceanography》(海洋学)等学科类期刊。期刊类型分布与海洋地质研究的主要学科分布情况基本一致(表 2)。

    图 6.  海洋地质领域载文量前10位的期刊
    Figure 6.  Top 10 circulation journals in the field of marine geology
    表 2.  海洋地质领域研究学科分布情况
    Table 2.  Distribution of disciplines in the field of marine geology
    序号 期刊(学科领域) 发文量/篇 TOP10学科的占比/%
    1 Geochemistry & Geophysics(地球化学与地球物理学) 7795 36.92
    2 Geological Science(地质科学) 5817 27.55
    3 Oceanography(海洋学) 2195 10.40
    4 Mineralogy(矿物学) 1432 6.78
    5 Multidisciplinary Sciences(多学科科学) 967 4.58
    6 Marine & Freshwater Biology(海洋淡水生物学) 821 3.89
    7 Environmental Sciences(环境科学) 683 3.24
    8 Engineering(工程学) 501 2.37
    9 Microbiology(微生物学) 466 2.21
    10 Mining & Mineral Processing(矿物加工学) 434 2.06
     | Show Table
    DownLoad: CSV

    总体上,国际发表海洋地质领域论文的期刊种类十分广泛,不但有海洋地质专刊作为该类论文的专属学术发表平台,其他类别期刊对海洋地质领域论文的接纳程度也很高,一方面体现出海洋地质研究的跨学科性和包容性,另一方面也体现出国际学术界各研究领域对海洋地质研究的重视。海洋地质领域载文量过千篇的期刊是《Earth Planet Science Letter》和《Journey of Geophysical Research and Solid Earth》。

    关键词是表达一篇论文研究内容的自然语言词汇,能够迅速、准确地反映论文的主题内容和研究重点[14]。对关键词进行统计分析,可以发现一个领域的研究现状及其发展规律等。笔者给出的关键词具备灵活性、新颖性,且操作性强,实施方便,对关键词进行共词、共现、聚类分析等成为一个领域/学科研究热点判断的重要情报方法[15]。VOSviewer作为网络图谱分析的可视化软件[16],能够实现对关键词的挖掘与词频统计,并绘制关键词的共现可视化图谱(图 7),从而挖掘全球海洋地质研究领域的高频关键词,明晰海洋地质研究领域的研究热点。

    图 7.  海洋地质研究领域关键词共现图
    Figure 7.  Co-occurrence of key words in the field of marine geology

    图 7中,每个节点代表一个关键词,节点大小反映关键词出现频次的高低,颜色变化代表研究热点随着年份的变化。海洋地质领域论文涉及的关键词从整体看,分布较广,说明海洋地质研究的范围较广、视角较多,有一定的广度和深度。圆圈节点最大的是地球化学,即这一关键词出现的频率最高,为509次。大西洋中脊、俯冲分别出现371次和320次,位居第2和第3。运用学者Donohue提出的高频词与低频词界定阈值,其计算公式如下[17]

    T=[1+(1+8I)1/2]÷2

    式中,T表示高低频次界定阈值,I表示关键词数量。经统计处理,18312篇文章共检索出23433个关键词(I=23433),计算得出高低频次界定阈值T=215.99,即关键词频数在216个以上界定为高频关键词,共计8个。高频关键词反映出海洋地质研究的其他热点领域还包括大洋中脊、热液喷口、蛇绿岩、东太平洋海隆等。可以看出,这些高频关键词和海洋地质有着紧密的联系。同时,这些紧密联系可以启发海洋地质研究的新方向与新问题。

    为了更好地掌握海洋地质研究领域的热点变化,按照论文年度发表数量变化趋势,将论文发表时间分为3段:2000年以前、2001—2010年和2011—2019年,并统计3个时段的前20个关键词。2000年之前,研究主要集中于地球化学特征、俯冲带、热液喷口、深海研究、海啸、弧后盆地、大西洋洋中脊等;2001—2010年,延续之前的主要研究热点,在研究区域上更加关注Southwest Indian Ridge(西南印度洋中脊)的研究;2011—2019年,海底成岩、成矿作用,深海采矿、环境影响、东太平洋海隆等成为新的研究热点(表 3)。

    表 3.  海洋地质研究领域不同阶段高频关键词
    Table 3.  High-frequency keywords in different research stages in the field of marine geology
    阶段 高频关键词
    2000年以前 Geochemistry(地球化学)、Subduction(俯冲)、Hydrothermal Vents(深海热泉)、Deep Sea(深海)、Tsunami(海啸)、Back-Arc Basin(弧后盆地)、Subduction Zone(俯冲带)、Mid-Atlantic Ridge(大西洋洋中脊)、Basalt(玄武岩)、Mid-Ocean Ridge(洋中脊)、North China Craton(华北克拉通)、Seismic Tomography(地震层析成像)、New Species(新物种)、Atlantic Ocean(大西洋)、Trace Elements(微量元素)、Isotopes(同位素)、Ophiolite(蛇绿岩)、MORB(洋中脊玄武岩)、Mantle(地幔)、Crustal structure(地壳结构)
    2001—2010年 Geochemistry(地球化学)、Subduction(俯冲)、Mid-Ocean Ridge(洋中脊)、Tsunami(海啸)、Hydrothermal Vents(热液喷口)、Ophiolite(蛇绿石)、Hydrothermal(热液)、Serpentinization(蛇纹岩化)、MORB(洋中脊玄武岩)、Deep Sea(深海)、Subduction Zone(俯冲带)、Earthquake(地震)、Fluid Inclusions(流体包裹体)、Trace Elements(微量元素)、Basalt(玄武岩)、Tectonics(构造学)Seismic Tomography(地震层析成像)、Geochronology(地球年代学)、Southwest Indian Ridge(西南印度洋中脊)、Indian Ocean(印度洋)
    2011—2019年 Geochemistry(地球化学)、Subduction(俯冲)、Mid-Atlantic Ridge(大西洋洋中脊)、Mid-Ocean Ridge(洋中脊)、Tsunami(海啸)、Ophiolite(蛇绿石)、Hydrothermal Vents(热液喷口)、Hydrothermal(热液)、MORB(洋中脊玄武岩)、Serpentinization(蛇纹岩化)、Earthquake(地震)、Deep Sea(深海)、Subduction Zone(俯冲带)、Trace Elements(微量元素)、Deep-Sea Mining(深海采矿)、Southwest Indian Ridge(西南印度洋中脊)、East Pacific Rise(东太平洋海隆)、Indian Ocean(印度洋)、Basalt(玄武岩)、Oceanic Crust(洋壳)
     | Show Table
    DownLoad: CSV

    图 8所示为2017—2019年全球海洋地质领域研究的高频关键词(频次≥10)共现关系图谱,与图 7中全年海洋地质领域研究热点比较,大洋中脊、海底沉积物及矿物地球化学特征研究仍然是研究的核心内容;2017—2019年在海洋地质领域全球研究的另一个核心为深海采矿及其环境影响、俯冲过程等。图 8中关键词圆圈的颜色变化显示,海啸与地震、海底热液及深海采矿相关的生物多样性、新物种、生命起源等的跨学科研究成为深海地质研究的未来趋势。此外,中国南海区域、海底地震、海底滑坡、海啸、俯冲带、热液蚀变等的关联研究,也正逐渐成为海洋地质研究的热点。

    图 8.  最近3年(2017—2019)海洋地质领域研究热点演变
    Figure 8.  Evolution of hot issues in marine geology in recent 3 years (2017—2019)

    党的十九大报告中进一步明确了“坚持陆海统筹,加快建设海洋强国”,而海洋科技的创新发展是海洋强国的根本保证。《中国至2050年海洋科技发展路线图》《未来10年中国学科发展战略:海洋科学》等为中国未来10~30年的海洋科技发展进行了预测和规划,在相关关键领域和关键科学问题上进行了前瞻布局。但是,国际上主要国家对海洋科技发展也都制定发展战略计划,同时对海底资源和海洋可再生能源研究持续投入,将改变全球资源、能源格局。因此,基于国际海洋地质领域重要战略规划和科技论文分析得出以下启示,旨在能够为中国在海洋地质领域的部署及科学研究提供参考。

    (1) 近30年的海洋地质科学研究和技术发展,一系列重大研究计划的实施中得到跨越式发展。中国海洋科学界积极投身于国际大型研究计划,在获取数据完成研究项目的同时,不断地吸取的国际同行研究经验,提升研究人员的能力。但在深海国家计划中,中国的参与能力很有限。如深海钻探计划(DSDP)、大洋钻探计划(ODP)、综合大洋钻探计划(IODP)、国际大洋发现计划(IODP)等实施了数百个航次,其中由中国科学家提出并主持的航次数量较少(仅限于南海)。尽管中国已开建大洋钻探船“梦想号”和建设东海——南海海底科学观测网,但是在当前密集开展的国际海底观测网络建设中介入却较少。因此,亟需在国际大洋钻探活动及国际计划中发挥更大作用,抓住国际大型研究计划的合作机遇,更加主动深入地参与,并鼓励多机构多人次参与。只有深度参与到国际大型研究计划中,才能有效地跟进前沿热点和技术研发,掌握最先进的海洋调查和探测技术。同时,在参与过程中,提出和发展以中国为主的国际大型深海调查和研究计划。中国漫长的海岸线和辽阔的海域,为开展深海研究提供了得天独厚的优势。通过国际研究计划的组织,培养国际化领军人才,引智引力,快速提升中国在深海海洋科技的研究水平,发展建设国际化的技术研发队伍。

    (2) 海底地形地貌是研究海底构造的钥匙,对航海、军事及海底工程均有重要的现实意义。今后要着力提升海洋地质调查研究能力,突破重点海域的勘查技术的攻关。洋壳构造的研究对解决地壳起源、构造演化等地质学根本问题关系极大,与海底成矿作用也有密切关系,围绕国家深海基地建设,各个行业部门可集中优势力量,围绕深海科学、资源勘探规模开发等目标,组建多个分布式、跨学科和技术领域的具有国际竞争力的中国海洋地质科学技术研发机构。中国要瞄准海洋地质科学研究前沿热点问题和卡脖子技术,组织力量开展国际合作研究,逐步成为在海洋地质科学研究领域的引领者;瞄准国家经济发展对海洋资源勘探开发的紧迫和长远需求,组织力量对关键海洋地质勘探、开采技术和装备进行研发,成为有效支撑海洋资源勘探开发和海洋地质科学研究的关键技术力量,逐步成为国际上有影响力的技术研发队伍。

    (3) 中国在海洋地质领域的基础研究与应用研究已取得长足的进步,但是从论文的影响力看,还远不及其他海洋发达国家,未来应考虑国际形势,围绕国家需求,发展并提升深海监测与调查技术装备水平,逐步提升海洋地质综合科技实力。中国在海洋地质领域的发文量较高,但是论文的篇均被引用情况远不及其他海洋发达国家,在科技论文质量上处于跟跑状态。未来要以重大科学计划为牵引,提出以中国为主导的海洋地质领域的大科学计划,加强国内外合作与学术交流,促进成果集成及产出。

    (1) 国际上主要海洋发达国家为海洋科技发展制定了发展战略规划和研究计划,同时对海底资源和海洋可再生能源研究持续投入,进行海洋测绘,并把海底三维立体地形地貌绘制作为未来的工作目标。

    (2) 国际海洋地质研究始于20世纪初期,其中最近10年的科技论文占全部发文的50%。海洋地质领域研究以美国为主导,在论文总量前15位的国家中,中国在海洋地质领域的论文总量位居第6位,论文总被引频次位居第8位,篇均被引频次位居第14位,未被引用论文占中国国家发文量的比例最高。中国论文篇均被引频次低及未被引论文总量高可能与最近5年(2016—2020年)科技论文产出数量多有关,近5年中国在海洋地质领域的发文量位居第2位。

    (3) 全球海洋地质领域研究呈现跨学科研究趋势,大洋中脊、海底沉积物及矿物地球化学特征仍然是研究的核心,深海采矿、环境影响、俯冲带过程备受关注,海啸与地震、海底热液及采矿相关的生物多样性、新物种及生命起源等的跨学科研究成为深海地质研究的新趋势。

  • 图 1  六盘山及清水河盆地区域地质简图(据马兆颖等,2020修改)

    Figure 1. 

    图 2  九百户剖面和三岔村剖面柱状图和采样位置

    Figure 2. 

    图 3  宁夏南部清水河盆地晚更新世中晚期主要孢粉类型

    Figure 3. 

    图 4  宁夏南部清水河盆地晚更新世中晚期孢粉百分比图谱

    Figure 4. 

    图 5  宁夏南部清水河盆地晚更新世中晚期孢粉图谱

    Figure 5. 

  • AN Z S, WU G X, LI J P, et al., 2015. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 43: 29-77. doi: 10.1146/annurev-earth-060313-054623

    CAI M T, FANG X M, WU F L, et al., 2013. Pliocene-Pleistocene stepwise drying of Central Asia: evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau[J]. Global and Planetary Change, 94-95: 72-81.

    China Vegetation Editorial Committee, 1980. Chinese vegetation[M]. Beijing: Science Press. (in Chinese)

    CUI J W, LI Z H, LIU F, et al., 2018. Redefinition of the sedimentary time of the Salawusu Formation in the Hongsibu Basin, Ningxia and its significance[J]. Journal of Geomechanics, 24(2): 283-292. (in Chinese with English abstract)

    DENG C L, HAO Q Z, GUO Z T, et al., 2019. Quaternary integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 62(1): 324-348. doi: 10.1007/s11430-017-9195-4

    DING Z L, RUTTER N, HAN J T, et al., 1992. A coupled environmental system formed at about 2.5 Ma in East Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 94(1-4): 223-242. doi: 10.1016/0031-0182(92)90120-T

    DING Z L, DERBYSHIRE E, YANG S L, et al., 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 17(3): 1003, doi: 10.1029/2001PA000725.

    FANG X M, AN Z S, CLEMENS S C, et al., 2020. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(40): 24729-24734.

    GUO Z T, FEDOROFF N, LIU D S, 1996. Micromorphology of the loess-paleosol sequence of the last 130 ka in China and paleoclimatic events[J]. Science in China (Series D), 39(5): 468-477.

    GUO Z T, RUDDIMAN W F, HAO Q Z, et al., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 416(6877): 159-163. doi: 10.1038/416159a

    HUANG T, LI Z H, LIU F, et al., 2018. The current situation of desertification in the Hongsibu Basin, Ningxia, and its main geological controlling factors[J]. Journal of Geomechanics, 24(4): 505-514. (in Chinese with English abstract)

    KAWAMURA K, PARRENIN F, LISIECKI L, et al., 2007. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360, 000 years[J]. Nature, 448(7156): 912-916. doi: 10.1038/nature06015

    KOU L L, LI Z H, DONG X P, et al., 2021. The age sequence of the detrital zircons from the Guanyindian section in Longde, the northeastern margin of the Tibetan Plateau, and its geological significance[J]. Journal of Geomechanics, 27(6): 1051-1064. (in Chinese with English abstract)

    LI W Y, YAO Z J, 1990. A study on the quantitative relationship between Pinus pollen in surface sample and Pinus vegetation[J]. Acta Botanica Sinica, 32(12): 943-950. (in Chinese with English abstract)

    LI W Y, 1998. Quaternary vegetation and environment of China[M]. Beijing: Science Press. (in Chinese)

    LI Y C, XU Q H, XIAO J L, et al., 2005. Indication of some major pollen taxa in surface samples to their parent plants of forest in northern China[J]. Quaternary Sciences, 25(5): 598-608. (in Chinese with English abstract)

    LI Y C, XU Q H, ZHAO Y K, et al., 2005. Pollen indication to source plants in the eastern desert of China[J]. Chinese Science Bulletin, 50(15): 1632-1641. doi: 10.1360/04wd0170

    LI Z H, CUI J W, LI C Z, et al., 2020. Late Pleistocene sedimentary features and the palaeoclimatic background in Hongsibao Basin[J]. Coal Geology & Exploration, 48(6): 233-242. (in Chinese with English abstract)

    LIU B H, WU F, ZHANG X J, et al., 2023. Late Pleistocene element geochemistry and its implications for environmental change in Hongsibu Basin, northeastern margin of Qinghai-Tibet Plateau[J/OL]. Geological Bulletin of China: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html. (in Chinese with English abstract)

    LIU D C, GAO X, WANG X L, et al., 2011. Palaeoenvironmental changes from sporopollen record during the later Late Pleistocene at Shuidonggou locality 2 in Yinchuan, Ningxia[J]. Journal of Palaeogeography, 13(4): 467-472. (in Chinese with English abstract)

    LIU H Y, 2002. Quaternary ecology and global change[M]. Beijing: Science Press. (in Chinese)

    LIU J F, 1992. The spore-pollen records of glaciation-loess cycles in Huining area in the west part of the Loess Plateau since 660000 a B.P. [J]. Journal of Glaciology and Geocryology, 14(1): 33-43. (in Chinese with English abstract)

    LIU X D, DONG B W, 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution[J]. Chinese Science Bulletin, 58(34): 4277-4291. doi: 10.1007/s11434-013-5987-8

    LU H Y, WANG X Y, WANG Y, et al., 2022. Chinese loess and the Asian monsoon: what we know and what remains unknown[J]. Quaternary International, 620: 85-97. doi: 10.1016/j.quaint.2021.04.027

    LU Y C, WANG X L, WINTLE A G, 2007. A new OSL chronology for dust accumulation in the last 130, 000 yr for the Chinese Loess Plateau[J]. Quaternary Research, 67(1): 152-160. doi: 10.1016/j.yqres.2006.08.003

    LUO C X, PAN A D, ZHENG Z, 2006. Progresses about the studies on the relationship between topsoil spore-pollen and vegetation in arid areas of Northwest China[J]. Arid Zone Research, 23(2): 314-319. (in Chinese with English abstract)

    MA Y Z, MENG H W, SANG Y L, et al., 2009. Pollen keys for identification of Coniferopsida and Compositae classes under light microscopy and their ecological significance[J]. Acta Palaeontologica Sinica, 48(2): 240-253. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-6616.2009.02.013

    MA Z Y, DONG X P, ZHANG Q, et al., 2020. Sedimentary response to the uplift of the Liupan Shan since the Late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 48(5): 152-164. (in Chinese with English abstract)

    MA Z Y, 2021. Sedimentary characteristics and geological significance of Qingshuihe Basin since Late Pleistocene[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)

    PRESCOTT J R, HUTTON J T, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 23(2-3): 497-500. doi: 10.1016/1350-4487(94)90086-8

    QI L, QIAO Y S, LIU Z X, et al., 2021. Geochemical characteristics of the Tertiary and Quaternary eolian deposits in eastern Gansu province: implications for provenance and weathering intensity[J]. Journal of Geomechanics, 27(3): 475-490. (in Chinese with English abstract)

    SONG Y G, LAI Z P, LI Y, et al., 2015. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 30: 405-410. doi: 10.1016/j.quageo.2015.01.012

    SUN A Z, MA Y Z, FENG Z D, et al., 2007. Pollen-recorded climate changes between 13.0 and 7.0 14C ka BP in southern Ningxia, China[J]. Chinese Science Bulletin, 52(8): 1080-1088. doi: 10.1007/s11434-007-0163-7

    SUN A Z, FENG Z D, MA Y Z, 2010. Vegetation and environmental changes in western Chinese Loess Plateau since 13.0 ka BP[J]. Journal of Geographical Sciences, 20(2): 177-192. doi: 10.1007/s11442-010-0177-y

    SUN A Z, HAN X L, ZHANG D H, 2010. The holocene vegetation change in difference area of the Chinese Loess Plateau[J]. Journal of Southwest China Normal University (Natural Science Edition), 35(6): 68-72. (in Chinese with English abstract)

    SUN C F, LIU Y, CAI Q F, et al., 2020. Similarities and differences in driving factors of precipitation changes on the western Loess Plateau and the northeastern Tibetan Plateau at different timescales[J]. Climate Dynamics, 55(9-10): 2889-2902. doi: 10.1007/s00382-020-05429-6

    TANG L Y, LI C H, AN C B, et al., 2007. Vegetation history of the western Loess Plateau of China during the last 40 ka based on pollen record[J]. Acta Palaeontologica Sinica, 46(1): 45-61. (in Chinese with English abstract)

    TANG Z H, ZHANG J, JIA Z K, 2003. Sustainable using for agriculture water resources in the dry land south of Ningxia[J]. Chinese Agricultural Science Bulletin, 19(4): 189-194. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6850.2003.04.065

    WANG F Y, SONG C Q, SUN X J, 1996. Study on surface pollen in middle Inner Mongolia, China[J]. Acta Botanica Sinica, 38(11): 902-909. (in Chinese with English abstract)

    WANG N A, 1994. On forming times of East Asia monsoon[J]. Scientia Geographica Sinica, 14(1): 81-89. (in Chinese with English abstract)

    WANG P X, 1990. Neogene stratigraphy and paleoenvironments of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3-4): 315-334. doi: 10.1016/0031-0182(90)90183-8

    WU F L, FANG X M, MIAO Y F, 2020. Aridification history of the West Kunlun Mountains since the mid-Pleistocene based on sporopollen and microcharcoal records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 547: 109680, doi: 10.1016/j.palaeo.2020.109680.

    WYRWOLL K H, WEI J H, LIN Z H, et al., 2016. Cold surges and dust events: establishing the link between the East Asian Winter Monsoon and the Chinese loess record[J]. Quaternary Science Reviews, 149: 102-108. doi: 10.1016/j.quascirev.2016.04.015

    YU H J, HAN D L, CHU F Y, 1997. Preliminary study on the desert loess deposit group in the north shelf area at the close of Late Pleistocene[J]. Journal of Geomechanics, 3(4): 33-38. (in Chinese with English abstract)

    ZACHOS J, PAGANI M, SLOAN L, et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    ZAN J B, FANG X M, YANG S L, et al., 2013. Evolution of the arid climate in High Asia since ~1 Ma: evidence from loess deposits on the surface and rims of the Tibetan Plateau[J]. Quaternary International, 313-314: 210-217. doi: 10.1016/j.quaint.2013.03.012

    ZHU S Y, WU H B, LI Q, et al., 2016. Aridification in northwestern China since the Late Cenozoic evidenced by the vegetation change[J]. Quaternary Sciences, 36(4): 820-831. (in Chinese with English abstract)

    崔加伟, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地萨拉乌苏组地层时代重新厘定及意义[J]. 地质力学学报, 24(2): 283-292. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2018.24.02.030

    黄婷, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地地表沙漠化现状及其地质主控因素[J]. 地质力学学报, 24(4): 505-514. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2018.24.04.053

    寇琳琳, 李振宏, 董晓朋, 等, 2021. 青藏高原东北缘隆德观音店剖面碎屑锆石年龄序列及地质意义[J]. 地质力学学报, 27(6): 1051-1064. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2021.27.06.085

    李文漪, 姚祖驹, 1990. 表土中松属花粉与植物间数量关系的研究[J]. 植物学报, 32(12): 943-950. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199012006.htm

    李文漪, 1998. 中国第四纪植被与环境[M]. 北京: 科学出版社.

    李月丛, 许清海, 肖举乐, 等, 2005. 中国北方森林植被主要表土花粉类型对植被的指示性[J]. 第四纪研究, 25(5): 598-608. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200505008.htm

    李振宏, 崔加伟, 李朝柱, 等, 2020. 红寺堡盆地晚更新世沉积特征及古气候背景[J]. 煤田地质与勘探, 48(6): 233-242. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202006031.htm

    刘博华, 吴芳, 张绪教, 等, 2023. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义[J/OL]. 地质通报: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html.

    刘德成, 高星, 王旭龙, 等, 2011. 宁夏银川水洞沟遗址2号点晚更新世晚期孢粉记录的古环境[J]. 古地理学报, 13(4): 467-472. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201104013.htm

    刘鸿雁, 2002. 第四纪生态学与全球变化[M]. 北京: 科学出版社.

    刘俊峰, 1992. 黄土高原西部会宁地区66万年以来冰期-黄土旋回的孢粉记录[J]. 冰川冻土, 14(1): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199201004.htm

    罗传秀, 潘安定, 郑卓, 2006. 西北干旱地区表土孢粉与植被关系研究进展[J]. 干旱区研究, 23(2): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200602020.htm

    马玉贞, 蒙红卫, 桑艳礼, 等, 2009. 光学显微镜下松柏类和菊科花粉的分类、鉴定要点及生态意义[J]. 古生物学报, 48(2): 240-253. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200902014.htm

    马兆颖, 董晓朋, 张庆, 等, 2020. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 48(5): 152-164. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005019.htm

    马兆颖, 2021. 清水河盆地晚更新世以来沉积特征及地质意义[D]. 北京: 中国地质科学院.

    綦琳, 乔彦松, 刘宗秀, 等, 2021. 陇东新近纪红黏土与第四纪黄土地球化学特征及其物源和风化指示意义[J]. 地质力学学报, 27(3): 475-490. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2021.27.03.043

    孙爱芝, 韩晓丽, 张德怀, 2010. 黄土高原不同地貌类型区全新世植被变化研究[J]. 西南师范大学学报(自然科学版), 35(6): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201006015.htm

    唐领余, 李春海, 安成邦, 等, 2007. 黄土高原西部4万多年以来植被与环境变化的孢粉记录[J]. 古生物学报, 46(1): 45-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200701002.htm

    唐振华, 张静, 贾志宽, 2003. 宁夏南部旱区农业水资源开发与可持续利用[J]. 中国农学通报, 19(4): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200304066.htm

    王琫瑜, 宋长青, 孙湘君, 1996. 内蒙古中部表土花粉研究[J]. 植物学报, 38(11): 902-909. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199611010.htm

    王乃昂, 1994. 论东亚季风的形成时代[J]. 地理科学, 14(1): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199401010.htm

    于洪军, 韩德亮, 初风友, 1997. 晚更新世末期北方陆架区沙漠-黄土堆积群的初步研究[J]. 地质力学学报, 3(4): 33-38. https://journal.geomech.ac.cn/article/id/b2dfff9f-0d85-4766-a6a9-ae63373b36d6

    中国植被编辑委员会, 1980. 中国植被[M]. 北京: 科学出版社.

    祝淑雅, 吴海斌, 李琴, 等, 2016. 晚新生代以来中国西北植被演化及反映的干旱化过程[J]. 第四纪研究, 36(4): 820-831.

  • 加载中

(5)

计量
  • 文章访问数:  1028
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2023-02-09
修回日期:  2023-06-09
刊出日期:  2023-10-28

目录

  • 表 1.  主要国家发文影响力统计
    Table 1.  Influence statistics of major countries for published papers in the field of marine geology
    序号 国家 发文量/篇 总被引频次/次 篇均被引/(次·篇-1) 未被引用论文比例/% 被引次数≥100论文比例/% 被引次数≥50论文比例/% H指数
    1 美国 6731 334021 49.62 3.57% 13.03% 30.00% 45
    2 法国 2523 102971 40.81 3.53% 9.91% 25.41% 23
    3 英国 2007 89832 44.76 3.99% 9.67% 25.56% 20
    4 德国 1932 68223 35.31 4.61% 8.33% 21.89% 22
    5 日本 1809 51015 28.20 6.25% 5.75% 15.92% 20
    6 中国 1692 30158 17.82 15.43% 4.14% 9.16% 16
    7 加拿大 1205 45288 37.58 4.48% 8.88% 22.99% 16
    8 俄国 1062 19366 18.24 14.88% 3.39% 8.95% 15
    9 澳大利亚 908 38286 42.17 5.84% 10.46% 24.12% 12
    10 意大利 681 20376 29.92 4.85% 5.58% 18.94% 13
    11 挪威 440 13569 30.84 7.95% 5.68% 15.23% 8
    12 瑞士 417 19790 47.46 4.08% 11.75% 30.70% 6
    13 西班牙 388 12581 32.43 6.96% 6.96% 20.88% 10
    14 印度 362 5088 14.06 12.15% 1.66% 6.35% 10
    15 葡萄牙 322 9379 29.13 5.28% 4.97% 21.43% 7
    注:H指数是衡量学术影响力大小的指标,本文中指某个国家h篇文章每篇都被引用了至少h次,综合了发文量和被引量两个指标,对“质”和“量”有一定兼顾
     | Show Table
    DownLoad: CSV
  • 表 2.  海洋地质领域研究学科分布情况
    Table 2.  Distribution of disciplines in the field of marine geology
    序号 期刊(学科领域) 发文量/篇 TOP10学科的占比/%
    1 Geochemistry & Geophysics(地球化学与地球物理学) 7795 36.92
    2 Geological Science(地质科学) 5817 27.55
    3 Oceanography(海洋学) 2195 10.40
    4 Mineralogy(矿物学) 1432 6.78
    5 Multidisciplinary Sciences(多学科科学) 967 4.58
    6 Marine & Freshwater Biology(海洋淡水生物学) 821 3.89
    7 Environmental Sciences(环境科学) 683 3.24
    8 Engineering(工程学) 501 2.37
    9 Microbiology(微生物学) 466 2.21
    10 Mining & Mineral Processing(矿物加工学) 434 2.06
     | Show Table
    DownLoad: CSV
  • 表 3.  海洋地质研究领域不同阶段高频关键词
    Table 3.  High-frequency keywords in different research stages in the field of marine geology
    阶段 高频关键词
    2000年以前 Geochemistry(地球化学)、Subduction(俯冲)、Hydrothermal Vents(深海热泉)、Deep Sea(深海)、Tsunami(海啸)、Back-Arc Basin(弧后盆地)、Subduction Zone(俯冲带)、Mid-Atlantic Ridge(大西洋洋中脊)、Basalt(玄武岩)、Mid-Ocean Ridge(洋中脊)、North China Craton(华北克拉通)、Seismic Tomography(地震层析成像)、New Species(新物种)、Atlantic Ocean(大西洋)、Trace Elements(微量元素)、Isotopes(同位素)、Ophiolite(蛇绿岩)、MORB(洋中脊玄武岩)、Mantle(地幔)、Crustal structure(地壳结构)
    2001—2010年 Geochemistry(地球化学)、Subduction(俯冲)、Mid-Ocean Ridge(洋中脊)、Tsunami(海啸)、Hydrothermal Vents(热液喷口)、Ophiolite(蛇绿石)、Hydrothermal(热液)、Serpentinization(蛇纹岩化)、MORB(洋中脊玄武岩)、Deep Sea(深海)、Subduction Zone(俯冲带)、Earthquake(地震)、Fluid Inclusions(流体包裹体)、Trace Elements(微量元素)、Basalt(玄武岩)、Tectonics(构造学)Seismic Tomography(地震层析成像)、Geochronology(地球年代学)、Southwest Indian Ridge(西南印度洋中脊)、Indian Ocean(印度洋)
    2011—2019年 Geochemistry(地球化学)、Subduction(俯冲)、Mid-Atlantic Ridge(大西洋洋中脊)、Mid-Ocean Ridge(洋中脊)、Tsunami(海啸)、Ophiolite(蛇绿石)、Hydrothermal Vents(热液喷口)、Hydrothermal(热液)、MORB(洋中脊玄武岩)、Serpentinization(蛇纹岩化)、Earthquake(地震)、Deep Sea(深海)、Subduction Zone(俯冲带)、Trace Elements(微量元素)、Deep-Sea Mining(深海采矿)、Southwest Indian Ridge(西南印度洋中脊)、East Pacific Rise(东太平洋海隆)、Indian Ocean(印度洋)、Basalt(玄武岩)、Oceanic Crust(洋壳)
     | Show Table
    DownLoad: CSV