山东招远水旺庄金矿深部地应力特征及其岩爆倾向性分析

柳禄湧, 李凯舟, 王能伟, 杨志杰, 杨冬铭, 孙尧. 2023. 山东招远水旺庄金矿深部地应力特征及其岩爆倾向性分析. 地质力学学报, 29(3): 417-429. doi: 10.12090/j.issn.1006-6616.20232910
引用本文: 柳禄湧, 李凯舟, 王能伟, 杨志杰, 杨冬铭, 孙尧. 2023. 山东招远水旺庄金矿深部地应力特征及其岩爆倾向性分析. 地质力学学报, 29(3): 417-429. doi: 10.12090/j.issn.1006-6616.20232910
LIU Luyong, LI Kaizhou, WANG Nengwei, YANG Zhijie, YANG Dongming, SUN Yao. 2023. In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province. Journal of Geomechanics, 29(3): 417-429. doi: 10.12090/j.issn.1006-6616.20232910
Citation: LIU Luyong, LI Kaizhou, WANG Nengwei, YANG Zhijie, YANG Dongming, SUN Yao. 2023. In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province. Journal of Geomechanics, 29(3): 417-429. doi: 10.12090/j.issn.1006-6616.20232910

山东招远水旺庄金矿深部地应力特征及其岩爆倾向性分析

  • 基金项目: 山东省地矿局2019年科技创新项目(KY201916);山东省地矿局2022年科技攻关项目(KY202208)
详细信息
    作者简介: 柳禄湧(1989—),男,工程师,主要从事矿区开采技术条件、区域水工环地质等调查和研究工作。 E-mail:342990323@qq.com
    通讯作者: 李凯舟(1988—),男,工程师,主要从事水工环地质、地热勘查、海洋地质等基础地质调查工作。E-mail:443241915@qq.com
  • 中图分类号: P315.72+7;P634.1

In-situ stress characteristics and rockburst tendency of surrounding rocks in the Shuiwangzhuang gold deposit, Zhaoyuan, Shandong province

  • Fund Project: This research is financially supported by the 2019 Science and Technology Innovation Project of Shandong Bureau of Geology and Mineral Resources (Grant KY201916) and the 2022 Key Science and Technology Project of Shandong Bureau of Geology and Mineral Resources (Grant KY202208).
More Information
  • 通过山东省招远市水旺庄金矿1881.08 m深孔水压致裂原地应力测量,获取了矿区深部地应力特征及其随深度的变化规律。结果表明:该矿区最大主应力随深度增加具有呈线性增大趋势,800.00 m以浅原位地应力状态以水平应力为主,随深度增加铅直主应力逐渐过渡为最大主应力;其中,最大水平主应力为11.22~45.69 MPa,最小水平主应力为7.28~36.17 MPa,铅直主应力为8.44~48.27 MPa,最大水平主应力方向为北西西向。根据该矿区应力量值及其最大水平主应力方向,分析了深部矿体地应力特征,水旺庄矿区深部地应力在招远−莱州地区属于一般偏低水平。结合钻孔岩芯岩石力学参数,基于工程岩体分级标准及岩石块体弹性应变能理论,对高围压环境下深部矿体开挖过程中,地下巷道发生岩爆的倾向性进行了分析讨论,水旺庄金矿总体属于无岩爆或弱岩爆的地层,但局部如1102.78 m、1379.40 m深度存在强烈岩爆倾向性,金矿矿体所处的1680.40~1684.90 m深度大体位于无岩爆区域。上述研究成果可为深部矿山建设与开采设计提供重要的科学依据。

  • 加载中
  • 图 1  水旺庄金矿周边地质构造简图(刘向东等,2022

    Figure 1. 

    图 2  水旺庄金矿深部矿体剖面图

    Figure 2. 

    图 3  水旺庄金矿6ZKC1钻孔典型测量曲线

    Figure 3. 

    图 4  水旺庄金矿6ZKC1孔主应力值随深度变化特征

    Figure 4. 

    图 5  水旺庄金矿主应力值与招远−莱州区域地应力值比较(招远−莱州区域地应力数据引自彭华和孙尧,2016a2016b裴峰,2020孙尧和彭华,2021侯奎奎等,2022

    Figure 5. 

    图 6  基于能量积聚方法的水旺庄金矿岩爆倾向性分布图

    Figure 6. 

    表 1  水压致裂地应力测量结果

    Table 1.  Results of in-situ stress measurement using hydraulic fracturing

    测段深度/m压裂参数/MPa主应力值/MPa破裂方位
    PbPrPsP0TSHShSv
    318.8010.484.364.153.126.1211.227.288.44
    370.008.344.664.423.633.6812.248.059.79
    430.608.064.834.664.223.2313.388.8811.39
    470.4010.065.435.044.614.6314.299.6512.45
    528.6011.275.755.335.185.5215.4310.5113.99
    618.6016.4310.047.486.066.3918.4713.5416.37
    702.5013.516.856.296.886.6618.9113.1818.59
    818.4011.957.576.928.024.3821.2214.9421.65NW66.2°
    931.3015.228.437.619.136.7923.5216.7324.64
    1045.5017.9015.5311.0710.252.3727.9321.3227.66
    1196.0022.1616.5211.9211.725.6430.9523.6431.65
    1286.0029.2323.1115.0912.606.1234.7527.6934.03
    1379.5028.7625.0816.2113.523.6837.0829.7336.50
    1459.0025.3122.0815.0914.303.2337.5029.3938.61
    1481.0025.4520.8214.5914.514.6337.4729.1139.19
    1546.0026.8321.3114.9915.155.5238.8030.1440.91
    1583.2027.8521.4615.1515.526.3939.5130.6741.89
    1652.8025.9219.2614.3616.206.6640.0230.5643.73NW71.5°
    1737.5027.1222.7416.1417.034.3842.7033.1745.97
    1757.4031.1724.3816.9217.226.7943.6034.1446.50
    1824.1032.4527.0818.3017.885.3745.6936.1748.27
    下载: 导出CSV

    表 2  基于工程岩体分级标准的水旺庄金矿岩爆倾向性预测

    Table 2.  Prediction of rockburst tendency of the Shuiwangzhuang gold deposit based on the engineering rock classification standards

    开挖
    深度/m
    单轴抗压
    强度Rc/MPa
    最大主应力
    σmax/MPa
    Rc/σmax岩爆倾向开挖
    深度/m
    单轴抗压
    强度Rc/MPa
    最大主应力
    σmax/MPa
    Rc/σmax岩爆倾向
    22.28 17.72 3.95 4.49 高应力,中等岩爆 1123.05 11.87 30.32 0.39 极高应力,强烈岩爆
    88.50 49.02 5.48 8.95 低应力,无岩爆 1162.42 15.91 31.39 0.51
    95.28 19.09 5.63 3.39 极高应力,强烈岩爆 1178.00 22.82 31.81 0.72
    163.58 77.28 7.20 10.73 低应力,无岩爆 1229.85 16.93 33.21 0.51
    181.27 99.08 7.61 13.02 1279.40 47.86 34.54 1.39
    250.44 43.52 9.20 4.73 高应力,中等岩爆 1304.74 12.55 35.23 0.36
    316.40 100.08 10.72 9.34 低应力,无岩爆 1349.40 86.98 36.43 2.39
    349.20 67.28 11.47 5.87 高应力,中等岩爆 1394.46 55.07 37.65 1.46
    415.40 52.81 12.99 4.07 1429.00 41.86 38.58 1.09
    486.96 48.01 14.64 3.28 极高应力,强烈岩爆 1446.31 62.49 39.05 1.60
    530.32 98.77 15.64 6.32 高应力,中等岩爆 1463.00 25.29 39.50 0.64
    586.78 60.52 16.94 3.57 极高应力,强烈岩爆 1498.87 32.35 40.47 0.80
    610.10 4.61 17.47 0.26 1513.00 48.88 40.85 1.20
    653.72 125.18 18.48 6.77 高应力,中等岩爆 1522.00 44.28 41.09 1.08
    694.53 140.27 19.41 7.23 低应力,无岩爆 1547.65 53.08 41.79 1.27
    748.61 54.16 20.66 2.62 极高应力,强烈岩爆 1593.27 69.49 43.02 1.62
    794.66 20.25 21.72 0.93 1641.49 26.34 44.32 0.59
    843.12 22.24 22.83 0.97 1671.59 77.37 45.13 1.71
    876.86 19.58 23.68 0.83 1712.61 34.41 46.24 0.74
    919.31 56.22 24.82 2.27 1719.00 71.88 46.41 1.55
    947.11 63.32 25.57 2.48 1738.96 48.45 46.95 1.03
    980.95 58.57 26.49 2.21 1775.32 62.19 47.93 1.30
    1018.55 41.48 27.50 1.51 1811.42 121.4 48.91 2.48
    1049.68 28.08 28.34 0.99 1862.34 48.4 50.28 0.96
    1102.78 6.46 29.78 0.22
    下载: 导出CSV

    表 3  基于能量积聚方法的水旺庄金矿岩爆倾向性预测

    Table 3.  Prediction of rockburst tendency of the Shuiwangzhuang gold deposit based on the theory of elastic strain energy

    开挖深度/m单轴抗压强度/MPaσ1/MPaσ2/MPaσ3/MPa泊松比弹性模量弹性应变能/(kJ/m3极限储能/(kJ/m3U/U0岩爆倾向
    22.2817.723.950.830.600.223.492.00494.350.0040无岩爆 
    88.5049.025.482.392.090.173.214.68539.790.0087无岩爆 
    95.2819.095.632.572.220.262.006.56543.720.0121无岩爆 
    163.5877.287.204.423.520.227.403.50583.300.0060无岩爆 
    181.2799.087.614.893.850.239.463.03593.550.0051无岩爆 
    250.4443.529.206.765.170.214.6310.40633.630.0164无岩爆 
    316.40100.0810.728.546.420.204.2616.78671.860.0250无岩爆 
    349.2067.2811.479.437.040.176.6013.89690.870.0201无岩爆 
    415.4052.8112.9911.228.300.216.1017.86729.230.0245无岩爆 
    486.9648.0114.6413.159.660.204.0636.47770.700.0473无岩爆 
    530.3298.7715.6414.3210.490.216.8924.20795.830.0304无岩爆 
    586.7860.5216.9415.8411.560.247.2025.05828.540.0302无岩爆 
    610.104.6117.4716.4712.000.271.15150.11842.060.1783无岩爆 
    653.72125.1818.4817.6512.830.167.0640.00867.340.0461无岩爆 
    694.53140.2719.4118.7513.610.216.8939.38890.990.0442无岩爆 
    748.6154.1620.6620.2114.630.134.0297.68922.320.1059无岩爆 
    794.6620.2521.7221.4615.510.203.20112.23949.010.1183无岩爆 
    843.1222.2422.8322.7616.430.183.52121.11977.090.1240无岩爆 
    876.8619.5823.6823.6117.070.173.35141.01996.650.1415无岩爆 
    919.3156.2224.8224.5817.880.224.8890.471021.250.0886无岩爆 
    947.1163.3225.5725.2218.410.174.95110.281037.360.1063无岩爆 
    980.9558.5726.4926.0019.050.165.22114.951056.970.1088无岩爆 
    1018.5541.4827.5026.8719.760.203.00190.561078.750.1766无岩爆 
    1049.6828.0828.3427.5820.350.223.50161.931096.790.1476无岩爆 
    1102.786.4629.7828.8021.360.370.32956.081127.570.8479严重岩爆
    1123.0511.8730.3229.2721.750.261.26441.951139.310.3879弱岩爆 
    1162.4215.9131.3930.1822.500.271.19480.011162.130.4130中等岩爆
    1178.0022.8231.8130.5322.790.251.85342.541171.160.2925无岩爆 
    1229.8516.9333.2131.7323.780.182.78312.861201.200.2605无岩爆 
    1279.4047.8634.5432.8724.720.151.85552.431229.920.4492中等岩爆
    1304.7412.5535.2333.4525.200.204.38209.051244.600.1680无岩爆 
    1349.4086.9836.4334.4826.050.191.23819.241270.480.6448强烈岩爆
    1394.4655.0737.6535.5126.900.236.89136.581296.590.1053无岩爆 
    1429.0041.8638.5836.3127.560.184.07284.901316.610.2164无岩爆 
    1446.3162.4939.0536.7127.890.235.15196.001326.640.1477无岩爆 
    1463.0025.2939.5037.0928.210.272.08426.401336.310.3191弱岩爆 
    1498.8732.3540.4737.9128.890.195.43227.101357.100.1673无岩爆 
    1513.0048.8840.8538.2429.160.173.31402.721365.290.2950无岩爆 
    1522.0044.2841.0938.4529.330.195.09249.521370.500.1821无岩爆 
    1547.6553.0841.7939.0429.820.244.68237.101385.370.1711无岩爆 
    1593.2769.4943.0240.0930.680.222.14588.351411.800.4167中等岩爆
    1641.4926.3444.3241.1931.600.234.20306.771439.750.2131无岩爆 
    1671.5977.3745.1341.8932.170.233.73357.781457.190.2455无岩爆 
    1712.6134.4146.2442.8332.950.183.77436.171480.960.2945无岩爆 
    1719.0071.8846.4142.9833.070.213.69408.601484.670.2752无岩爆 
    1738.9648.4546.9543.4433.450.205.60284.371496.230.1901无岩爆 
    1775.3262.1947.9344.2734.140.245.54261.161517.300.1721无岩爆 
    1811.42121.4048.9145.1034.830.163.38574.791538.220.3737弱岩爆 
    1862.3448.4050.2846.2735.790.247.28218.071567.730.1391无岩爆 
    下载: 导出CSV
  • [1]

    ALTLIP W D, LIAN Z S, 1987. Understanding and control of rockbursts: past, present and future[J]. Mining Technology, 3(8): 5-7. (in Chinese)

    [2]

    BAO Z Y, SUN Z Q, LIU G D, et al. , 2014. Geological characteristics and prospecting direction of deposits in Shuiwangzhuang Area in Potouqing fault[J]. Shandong Land and Resources, 30(2): 29-33. (in Chinese with English abstract)

    [3]

    CAI M F, 1995. The principle and techniques of in-situ stress measurement[M]. Beijing: Science Press. (in Chinese)

    [4]

    CAI M F, 2001. Optimization of mining design and control of ground pressure in metal mines-theory and practice[M]. Beijing: Science Press. (in Chinese)

    [5]

    CAI M F, GUO Q F, LI Y, et al. , 2013. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group[J]. Journal of University of Science and Technology Beijing, 35(11): 1399-1406. (in Chinese with English abstract)

    [6]

    CHEN Q C, SUN D S, CUI J J, et al. , 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. (in Chinese with English abstract)

    [7]

    CHEN W Z, LÜ S P, GUO X H, et al. , 2009. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 28(8): 1530-1540. (in Chinese with English abstract)

    [8]

    CHEN W Z, LÜ S P, GUO X H, et al. , 2010. Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 32(6): 963-969. (in Chinese with English abstract)

    [9]

    China Earthquake Administration, 2018. Specification of hydraulic fracturing and overcoring method for in-situ stress measurement: DB/T 14-201[S]. Beijing: Science Press. (in Chinese)

    [10]

    FEI H L, XU X H, TANG C A, 1995. Research on theory of catastrophe of rock burst in underground chamber[J]. Journal of China Coal Society, 20(1): 29-33. (in Chinese with English abstract)

    [11]

    FENG C J, CHEN Q C, WU M L, et al. , 2012. Analysis of hydraulic fracturing stress measurement data: discussion of methods frequently used to determine instantaneous shut-in pressure[J]. Rock and Soil Mechanics, 33(7): 2149-2159. (in Chinese with English abstract)

    [12]

    FENG X T, XIAO Y X, FENG G L, et al. , 2019. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673. (in Chinese with English abstract)

    [13]

    GUO J Q, ZHAO Q, WANG J B, et al. , 2015. Rockburst prediction based on elastic strain energy[J]. Chinese Journal of Rock Mechanics and Engineering, 34(9): 1886-1893. (in Chinese with English abstract)

    [14]

    HAIMSON B, FAIRHURST C, 1967. Initiation and extension of hydraulic fractures in rock[J]. Society of Petroleum Engineers Journal, 7(3): 310-318. doi: 10.2118/1710-PA

    [15]

    HAIMSON B C, CORNET F H, 2003. ISRM Suggested Methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002

    [16]

    HE M C, XIE H P, PENG S P, et al. , 2005. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813. (in Chinese with English abstract)

    [17]

    HE M C, WANG Y, SU J S, et al. , 2018. Analysis of fractal characteristics of fragment of sandstone impact rock burst under static and dynamic coupled loads[J]. Journal of China University of Mining & Technology, 47(4): 699-705. (in Chinese with English abstract)

    [18]

    HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102. (in Chinese with English abstract)

    [19]

    LEE J S, 1976. Geomechanical method[M]. Beijing: Science Press. (in Chinese)

    [20]

    LEEMAN E R, 1971. The CSIR “doorstopper” and triaxial rock stress measuring instruments[J]. Rock Mechanics and Rock Engineering, 3(1): 25-50.

    [21]

    LI C L, 2019. Rockburst conditions and rockburst support[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 674-682. (in Chinese with English abstract)

    [22]

    LI S X, LIU C C, AN Y H, et al. , 2007. Geology of gold deposits in Jiaodong[M]. Beijing: Geology Press. (in Chinese)

    [23]

    LIU G D, WEN G J, LIU C J, et al. , 2017. Discovery, characteristics and prospecting direction of Shuiwangzhuang deep super-large gold deposit in the northern section of Zhaoping fault[J]. Gold Science and Technology, 25(3): 38-45. (in Chinese with English abstract)

    [24]

    LIU G D, SONG G Z, BAO Z Y, et al. , 2019. New breakthrough of deep prospecting in the northern section of the Zhaoping fault zone and the new understanding of fault distribution in the Jiaodong district[J]. Geotectonica et Metallogenia, 43(2): 226-234. (in Chinese with English abstract)

    [25]

    LIU H X, TAN Z Y, WANG X, et al. , 2020. Prediction of rock burst risk in deep shaft excavation of Xincheng gold mine[J]. Journal of China University of Mining & Technology, 49(2): 296-304. (in Chinese with English abstract)

    [26]

    LIU J, HUI C, FAN J M, et al. , 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract)

    [27]

    LIU X D, ZHOU M L, XU S H, et al. , 2022. Prospecting prediction and verification at a depth of 3000 m in the Shuiwangzhuang gold deposit, northwestern Jiaodong Peninsula, eastern China[J]. Geological Bulletin of China, 41(6): 946-957. (in Chinese with English abstract)

    [28]

    MA X M, PENG H, LI J S, et al. , 2006. In-situ stress measurement and its application to rock burst analysis in Xinbaiyanzhai tunnel of the Xiangyu railway[J]. Acta Geoscientica Sinica, 27(2): 181-186. (in Chinese with English abstract)

    [29]

    MIKHALYUK A V, ZAKHAROV V V, 1997. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks[J]. Journal of Applied Mechanics and Technical Physics, 38(2): 312-318. doi: 10.1007/BF02467918

    [30]

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press. (in Chinese)

    [31]

    PEI F, 2020. Mechanical properties of rock in deep stratum and analysis and control of shaft surrounding rock stability in Shaling gold mine[D]. Beijing: University of Science and Technology Beijing. (in Chinese with English abstract)

    [32]

    PENG H, CUI W, MA X M, et al. , 2006. Hydrofracturing in-situ stress measurements of the water diversion area in the first stage of the South-North Water Diversion Project (western line)[J]. Journal of Geomechanics, 12(2): 182-190. (in Chinese with English abstract)

    [33]

    PENG H, MA X M, JIANG J J, et al. , 2011. Research on stress field and hydraulic fracturing in-situ stress measurement of 1 000 m deep hole in Zhaolou Coal Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30(8): 1638-1645. (in Chinese with English abstract)

    [34]

    PENG H, SUN Y, 2016. Analysis report of hydraulic fracturing in-situ stress measurement of #2 Borehole in Ruihai Gold Mine[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)

    [35]

    PENG H, SUN Y, 2016. Analysis report on Hydraulic fracturing in-situ stress measurement of deep exploration borehole in Jiaojia Gold Deposit, Laizhou, Shandong Province[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)

    [36]

    PENG Z, WANG Y H, LI T J, 1996. Griffith theory and the criteria of rock burst[J]. Chinese Journal of Rock Mechanics and Engineering, 15(S1): 491-495. (in Chinese with English abstract)

    [37]

    QIAO L, CAI M F, 1995. New development of stress relief method for determination of in-situ stresses in a Gold Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 14(1): 25-32. (in Chinese with English abstract)

    [38]

    STEFFLER E D, EPSTEIN J S, CONLEY E G, 2003. Energy partitioning for a crack under remote shear and compression[J]. International Journal of Fracture, 120(4): 563-580. doi: 10.1023/A:1025511703698

    [39]

    SUJATHA V, KISHEN J M C, 2003. Energy release rate due to friction at bimaterial interface in dams[J]. Journal of Engineering Mechanics, 129(7): 793-800. doi: 10.1061/(ASCE)0733-9399(2003)129:7(793)

    [40]

    SUN D S, CHEN Q C, ZHANG Y Q, et al. , 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine[J]. Journal of Geomechanics, 26(1): 33-38. (in Chinese with English abstract)

    [41]

    SUN Y, PENG H, 2021. Analysis report on Hydraulic fracturing in-situ stress measurement of Borehole in Dayinggezhuang Gold Mine, Zhaoyuan City, Shandong Province[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)

    [42]

    TOFEL L W, 1985. Determination of in-situ stress based on the results of visco-elastic strain recovery of oriented core and comparison with the results of hydraulic fracturing stress[J]. Seismological and Geological Science and Technology Trends, (5): 13-17.

    [43]

    WANG L J, PAN L Z, LIAO C T, et al. , 1991. In-situ stress measurement and its application in engineering[M]. Beijing: Geological Publishing House. (in Chinese)

    [44]

    WANG L J, DING Y C, LIU Q S, et al. , 1996. Rock stress measurements in a planned tunnel for diversion of water from the Yellow River[J]. Journal of Geomechanics, 2(1): 62-69. (in Chinese with English abstract)

    [45]

    XIE H P, JU Y, LI L Y, et al. , 2005a. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010. (in Chinese with English abstract)

    [46]

    XIE H P, PENG R D, JU Y, et al. , 2005b. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 24(15): 2603-2608. (in Chinese with English abstract)

    [47]

    YANG Y H, SUN D S, ZHENG X H, et al. , 2019. A method of diametrical core deformation analysis and its application on stress investigation in SK2 well[J]. Journal of Central South University (Science and Technology), 50(12): 3106-3113. (in Chinese with English abstract)

    [48]

    YU X F, ZHENG Y R, LIU H H, et al. , 1983. Stability analysis of underground cavern[M]. Beijing: China Coal Industry Publishing House. (in Chinese)

    [49]

    ZHANG G Z, JIA Z Q, FENG J, et al. , 2022. Definition for dual-index high geostress and classification standard for rock burst and large deformation in railway tunnels[J]. Journal of Railway Engineering Society, 39(8): 53-58, 65. (in Chinese with English abstract)

    [50]

    ZHANG J J, FU B J, 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042. (in Chinese with English abstract)

    [51]

    ZHANG Y, DENG X Y, LI X H, et al. , 2022. Prediction of rockburst dangerousness based on elastic strain energy characteristics[J]. Chinese Journal of Underground Space and Engineering, 18(S1): 305-311. (in Chinese with English abstract)

    [52]

    奥特利普W D, 连志升, 1987. 对岩爆的了解与控制: 过去、现在及将来[J]. 国外采矿技术快报, 3(8): 5-7

    [53]

    鲍中义, 孙忠全, 刘国栋, 等, 2014. 破头青断裂水旺庄矿区矿床地质特征及找矿方向[J]. 山东国土资源, 30(2): 29-33.

    [54]

    蔡美峰, 1995. 地应力测量原理和技术[M]. 北京: 科学出版社.

    [55]

    蔡美峰, 2001. 金属矿山采矿设计优化与地压控制-理论与实践[M]. 北京: 科学出版社.

    [56]

    蔡美峰, 郭奇峰, 李远, 等, 2013. 平煤十矿地应力测量及其应用[J]. 北京科技大学学报, 35(11): 1399-1406.

    [57]

    陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865.

    [58]

    陈卫忠, 吕森鹏, 郭小红, 等, 2009. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报, 28(8): 1530-1540.

    [59]

    陈卫忠, 吕森鹏, 郭小红, 等, 2010. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 32(6): 963-969.

    [60]

    费鸿禄, 徐小荷, 唐春安, 1995. 地下硐室岩爆的突变理论研究[J]. 煤炭学报, 20(1): 29-33.

    [61]

    丰成君, 陈群策, 吴满路, 等, 2012. 水压致裂应力测量数据分析: 对瞬时关闭压力ps的常用判读方法讨论[J]. 岩土力学, 33(7): 2149-2159.

    [62]

    冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 38(4): 649-673.

    [63]

    郭建强, 赵青, 王军保, 等, 2015. 基于弹性应变能岩爆倾向性评价方法研究[J]. 岩石力学与工程学报, 34(9): 1886-1893.

    [64]

    何满潮, 谢和平, 彭苏萍, 等, 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2803-2813.

    [65]

    何满潮, 王炀, 苏劲松, 等, 2018. 动静组合荷载下砂岩冲击岩爆碎屑分形特征[J]. 中国矿业大学学报, 47(4): 699-705.

    [66]

    侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102.

    [67]

    李春林, 2019. 岩爆条件和岩爆支护[J]. 岩石力学与工程学报, 38(4): 674-682.

    [68]

    李士先, 刘长春, 安郁宏, 等, 2007. 胶东金矿地质[M]. 北京: 地质出版社.

    [69]

    李四光, 1976. 地质力学方法[M]. 北京: 科学出版社.

    [70]

    刘国栋, 温桂军, 刘彩杰, 等, 2017. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 25(3): 38-45.

    [71]

    刘国栋, 宋国政, 鲍中义, 等, 2019. 胶东招平断裂北段深部找矿新突破及对断裂空间展布的新认识[J]. 大地构造与成矿学, 43(2): 226-234.

    [72]

    刘焕新, 谭卓英, 王玺, 等, 2020. 新城金矿深竖井开挖岩爆危险性预测[J]. 中国矿业大学学报, 49(2): 296-304.

    [73]

    刘建, 惠晨, 樊建明, 等, 2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 27(1): 31-39.

    [74]

    刘向东, 周明岭, 徐韶辉, 等, 2022. 胶西北水旺庄金矿床3000 m深度找矿预测[J]. 地质通报, 41(6): 946-957.

    [75]

    马秀敏, 彭华, 李金锁, 等, 2006. 襄渝铁路增建二线: 新白岩寨隧道地应力测量及其在岩爆分析中的应用[J]. 地球学报, 27(2): 181-186.

    [76]

    裴峰, 2020. 纱岭金矿深部地层岩体力学性能与深竖井围岩稳定性分析及控制[D]. 北京: 北京科技大学.

    [77]

    彭华, 崔巍, 马秀敏, 等, 2006. 南水北调西线第一期工程调水区水压致裂地应力测量及其工程意义[J]. 地质力学学报, 12(2): 182-190.

    [78]

    彭华, 马秀敏, 姜景捷, 等, 2011. 赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30(8): 1638-1645.

    [79]

    彭华, 孙尧, 2016a. 瑞海金矿2#钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所.

    [80]

    彭华, 孙尧, 2016b. 山东省莱州市焦家金矿床深部勘探钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所.

    [81]

    彭祝, 王元汉, 李廷芥, 1996. Griffith理论与岩爆的判别准则[J]. 岩石力学与工程学报, 15(S1): 491-495.

    [82]

    乔兰, 蔡美峰, 1995. 应力解除法在某金矿地应力测量中的新进展[J]. 岩石力学与工程学报, 14(1): 25-32.

    [83]

    孙东生, 陈群策, 张延庆, 2020. ASR法在井下矿山地应力测试中的应用前景分析[J]. 地质力学学报, 26(1): 33-38. doi: 10.12090/j.issn.1006-6616.2020.26.01.003

    [84]

    孙尧, 彭华, 2021. 山东省招远市大尹格庄金矿钻孔水压致裂地应力测量分析报告[R]. 北京: 中国地质科学院地质力学研究所.

    [85]

    王连捷, 潘立宙, 廖椿庭, 等, 1991. 地应力测量及其在工程中的应用[M]. 北京: 地质出版社.

    [86]

    王连捷, 丁原辰, 刘琦胜, 等, 1996. 引黄隧洞地应力测量[J]. 地质力学学报, 2(1): 62-69.

    [87]

    谢和平, 鞠杨, 黎立云, 2005a. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 24(17): 3003-3010.

    [88]

    谢和平, 彭瑞东, 鞠杨, 等, 2005b. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 24(15): 2603-2608.

    [89]

    杨跃辉, 孙东生, 郑秀华, 等, 2019. 岩芯直径变形分析法及其在松科2井深部地应力调查中的应用[J]. 中南大学学报(自然科学版), 50(12): 3106-3113.

    [90]

    于学馥, 郑颖人, 刘怀恒, 等, 1983. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社.

    [91]

    张广泽, 贾哲强, 冯君, 等, 2022. 铁路隧道双指标高地应力界定及岩爆大变形分级标准[J]. 铁道工程学报, 39(8): 53-58, 65.

    [92]

    张镜剑, 傅冰骏, 2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

    [93]

    张勇, 邓兴洋, 李学华, 等, 2022. 基于弹性应变能特征的岩爆危险性预测研究[J]. 地下空间与工程学报, 18(S1): 305-311.

    [94]

    中国地震局, 2018. 原地应力测量水压致裂法和套芯解除法技术规范: DB/T 14—2018[S]. 北京: 中国标准出版社.

    [95]

    中华人民共和国住房和城乡建设部, 2015. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社.

  • 加载中

(6)

(3)

计量
  • 文章访问数:  932
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2023-03-10
修回日期:  2023-04-23
刊出日期:  2023-06-28

目录