基于水压致裂法的三山岛深竖井工程区地应力测量与反演分析

朱明德, 王照亚, 张月征, 李文光, 侯奎奎, 纪洪广, 尹延天, 付桢, 郝英杰. 2023. 基于水压致裂法的三山岛深竖井工程区地应力测量与反演分析. 地质力学学报, 29(3): 430-441. doi: 10.12090/j.issn.1006-6616.20232911
引用本文: 朱明德, 王照亚, 张月征, 李文光, 侯奎奎, 纪洪广, 尹延天, 付桢, 郝英杰. 2023. 基于水压致裂法的三山岛深竖井工程区地应力测量与反演分析. 地质力学学报, 29(3): 430-441. doi: 10.12090/j.issn.1006-6616.20232911
ZHU Mingde, WANG Zhaoya, ZHANG Yuezheng, LI Wenguang, HOU Kuikui, JI Hongguang, YIN Yantian, FU Zhen, HAO Yingjie. 2023. In-situ stress measurement and inversion analysis of the deep shaft project area in Sanshan Island based on hydraulic fracturing method. Journal of Geomechanics, 29(3): 430-441. doi: 10.12090/j.issn.1006-6616.20232911
Citation: ZHU Mingde, WANG Zhaoya, ZHANG Yuezheng, LI Wenguang, HOU Kuikui, JI Hongguang, YIN Yantian, FU Zhen, HAO Yingjie. 2023. In-situ stress measurement and inversion analysis of the deep shaft project area in Sanshan Island based on hydraulic fracturing method. Journal of Geomechanics, 29(3): 430-441. doi: 10.12090/j.issn.1006-6616.20232911

基于水压致裂法的三山岛深竖井工程区地应力测量与反演分析

  • 基金项目: 山东省自然科学基金项目(ZR2021ZD36)
详细信息
    作者简介: 朱明德(1988—),男,硕士,主要从事岩石力学与地应力测量等相关工作。E-mail:zhumingde@sd-gold.com
    通讯作者: 王照亚(1969—),男,高级工程师,主要从事岩石力学基础理论与岩土工程相关工作。E-mail:wangzhaoya@sd-gold.com
  • 中图分类号: P553

In-situ stress measurement and inversion analysis of the deep shaft project area in Sanshan Island based on hydraulic fracturing method

  • Fund Project: This research is financially supported by the Shandong Provincial Natural Science Foundation(Grant ZR2021ZD36)
More Information
  • 山东省三山岛西岭矿区拟建2000 m深副井,属于超深井建设工程。揭示建井工程区地应力场特征是开展竖井设计、建设施工的必要先决条件之一,研究中采用水压致裂法开展了深部竖井地应力现场测量工作,测量深度达到1899.00 m,通过数值仿真模拟方法反演了竖井工程区2017.56 m深的地应力场。结果表明:在水压致裂测试的钻孔357.76~1899.00 m深度范围内,最大水平主应力(SH)为23.16~70.86 MPa,最小水平主应力(Sh)为15.24~47.06 MPa;主应力随深度近于线性增加,地应力测量孔实测最大水平主应力方向分别为NW55.5°、NW60.4°、NW58.4°,为近北西方向;竖井工程区应力场主要以水平应力为主导,1200.00 m以下铅直主应力(Sv)为中间应力,SHSv之比平均值为1.53;通过FLAC 3D软件的反演分析获得了建井工程区内地应力场随深度、地层变化的分布规律,测试点的反演结果与实测值基本一致。近2000 m超深地层地应力状态及其分布规律,为竖井工程的井筒井壁设计和工程风险评估提供了基础科学依据。

  • 加载中
  • 图 1  西岭副井工程地质勘察图

    Figure 1. 

    图 2  测量典型压裂过程曲线

    Figure 2. 

    图 3  单回路水压致裂地应力测量系统

    Figure 3. 

    图 4  测量系统的印模装置

    Figure 4. 

    图 5  水压致裂典型压力曲线

    Figure 5. 

    图 6  西岭金矿钻孔主应力值随深度变化图与应力关系图

    Figure 6. 

    图 7  地质模型图和网格细节图

    Figure 7. 

    图 8  最大水平主应力云图

    Figure 8. 

    图 9  最小水平主应力云图

    Figure 9. 

    图 10  铅直方向主应力云图

    Figure 10. 

    图 11  实测值和理论计算值对比图

    Figure 11. 

    图 12  模型破坏方式模拟分析

    Figure 12. 

    图 13  深部地应力导致的工程灾害图

    Figure 13. 

    表 1  三山岛金矿西岭矿区副井勘察孔水压致裂原地应力测量结果

    Table 1.  Results of hydraulic fracturing in-situ stress measurements in the borehole of the auxiliary shaft at the Xiling deposit, Sanshandao gold mine

    测段深度/m压裂参数/MPa主应力值/MPa破裂方位
    PbPrPsPoTSHShSv
    357.7620.0215.5411.733.514.4823.1615.249.47
    431.0924.5715.7811.854.228.7923.9916.0811.41
    509.3525.1520.2913.444.994.8625.0218.4313.48NW55.5°
    608.2625.1618.8214.355.966.3430.2020.3116.39
    665.3324.3421.3914.756.522.9529.3721.2717.60
    881.7030.2223.0916.298.647.1434.4224.9323.33
    957.1025.8622.5416.579.383.3336.5625.9525.32
    1010.5023.0619.1916.489.903.8740.1426.3827.23
    1097.5030.4325.7220.1910.764.7145.6230.9529.04NW60.4°
    1166.4134.8425.9420.5011.438.9046.9931.9330.86
    1220.4034.4025.3120.4411.969.0947.9632.4032.29
    1275.8032.7923.6319.5212.509.1647.4332.0234.38
    1350.0029.3021.8418.6213.237.4747.2531.8535.72
    1408.0028.0223.3619.3213.804.6648.4033.1237.26
    1473.1831.9324.0920.5914.447.8552.1235.0338.98
    1512.5031.0124.9820.7514.826.0452.1135.5840.02NW58.4°
    1594.6031.8226.5922.1215.635.2355.4037.7542.19
    1643.6338.9829.4324.7016.119.5560.7940.8144.30
    1689.5037.8328.3124.4616.569.5261.6341.0244.70
    1756.8034.8930.6526.3917.224.2465.7243.6046.48
    1792.7032.6927.7024.8317.574.9964.3742.4047.43
    1839.0037.3528.7325.4318.028.6265.5843.4549.56
    1899.0042.4733.1028.4518.619.3770.8647.0650.25
    下载: 导出CSV

    表 2  岩石物理力学实验结果统计表

    Table 2.  Statistics of the physical and mechanical measurements of rocks

    采样深度/m岩性工程岩组抗拉强度
    σt/MPa
    抗剪强度(直剪)弹性模量
    E50/×103 MPa
    泊松比
    μ50
    黏聚力
    C/MPa
    内摩擦角
    φ/(°)
    4.73~16.93 裂隙较发育,岩芯以碎块、块状为主,部分碎屑状 基岩风化带岩组 1.840 23.300 0.23
    3.980 4.14 43.60 19.700 0.30
    2.300 31.600 0.18
    38.00~55.00 裂隙较发育,岩芯以柱状为主,少量碎块 二长花岗岩岩组 6.427 10.43 59.40 3.748 0.11
    340.00~400.00 4.914 5.983 0.02
    525.00~580.00 4.493 13.00 42.83 7.689 0.27
    760.00~800.00 6.049 10.81 58.07 5.302 0.40
    935.00~1000.00 裂隙发育,岩芯以柱状、块状、碎块居多,局部小段呈碎屑状 钾化花岗岩岩组 5.350 4.39 53.11 5.500 0.05
    1000.00~1050.00 裂隙密集,岩芯以块状、碎块为主 二长花岗岩岩组 5.462 7.82 44.21 4.763 0.21
    1050.00~1064.00 裂隙发育,岩芯以块状为主,局部碎块状 绢英岩化花岗岩岩组 6.151 7.89 55.86 3.958 0.24
    1140.00~1170.00 裂隙密集,岩芯以块状为主,局部碎块状 二长花岗岩岩组 5.827 3.61 44.58 2.746 0.05
    1300.00~1400.00 5.305 6.26 45.17 1.837 0.12
    1650.00~1700.00 裂隙密集,岩芯以块状、碎块为主 绢英岩化花岗岩岩组 3.251 6.00 36.43 5.165 0.27
    1722.96~1728.16 裂隙密集,岩芯以块状、碎块为主 二长花岗岩岩组 3.380 5.17 53.50 21.800 0.20
    4.560 20.500 0.11
    4.820 26.100 0.09
    1728.66~1740.46 裂隙密集,岩芯以块状、碎块为主 绢英岩化花岗质碎裂岩岩组 3.940 7.35 54.30 36.200 0.14
    4.990 38.800 0.12
    5.830 46.300 0.05
    1740.46~1756.76 7.300 10.54 53.30 43.500 0.09
    6.680 57.300 0.13
    6.530 42.300 0.06
    1800.00~1870.00 裂隙密集,岩芯以块状、碎块为主 二长花岗岩岩组 7.360 12.20 53.40 50.500 0.10
    8.310 47.900 0.09
    9.130 48.800 0.03
    1960.00~1980.00 7.160 11.47 54.40 59.800 0.07
    8.810 45.400 0.12
    6.710 47.400 0.04
    1974.00~1983.00 裂隙发育,岩芯以块状、碎块为主,线裂隙率为10条/米左右 煌斑岩岩组 7.540 14.70 58.30 85.700 0.03
    12.000 92.200 0.09
    9.480 95.200 0.10
    1990.00~2000.00 裂隙发育,岩芯以块状、碎块为主 云英岩岩组 7.580 9.54 53.60 52.500 0.11
    5.700 63.800 0.12
    6.160 53.900 0.13
    2000.00~2015.00 2.530 2.70 45.20 9.320 0.45
    2.170 11.000 0.34
    2.940 7.950 0.24
    下载: 导出CSV
  • [1]

    AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. Dordrecht: Springer: 95,doi: 10.1007/978-94-011-5346-1.

    [2]

    CAI M F, 1993. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 12(3): 275-283. (in Chinese with English abstract)

    [3]

    CAI M F, QIAO L, YU B, et al. , 1999. Results and analysis of in-situ stress measurement at deep position of NO. 2 mining area of Jinchuan Nichkel Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 18(4): 414-418,doi: 10.3321/j.issn:1000-6915.1999.04.011. (in Chinese with English abstract)

    [4]

    CAI M F, 2001. Metal mine design optimization and ground pressure control: theory and practice[M]. Beijing: Science Press: 1-310. (in Chinese)

    [5]

    CAI M F, CHEN C Z, PENG H, et al. , 2006. In-situ stress measurement by hydraulic fracturing technique in deep position of Wanfu coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 25(5): 1069-1074,doi: 10.3321/j.issn:1000-6915.2006.05.033. (in Chinese with English abstract)

    [6]

    CHEN Q C, AN M J, LI F Q, 1998. Theoretical discussion on 3-D hydraulic fracturing in situ stress measurement[J]. Journal of Geomechanics, 4(1): 37-44. (in Chinese with English abstract)

    [7]

    GAI H L, YAO SH H, YANG L P, et al. , 2021. Characteristics and causes of coseismic surface rupture triggered by the “5. 22” MS 7.4 earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912,doi: 10.12090/j.issn.1006-6616.2021.27.06.073. (in Chinese with English abstract)

    [8]

    GALE W J, BLACKWOOD R L, 1987. Stress distributions and rock failure around coal mine roadways[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(3): 165-173,doi: 10.1016/0148-9062(87)90524-9.

    [9]

    HE M CH, 2004. Present Situation and Prospect of Rock Mechanics in Deep Mining Engineering[C]//Chinese journal of rock mechanics and engineering. Science Press: 99-105. (in Chinese with English abstract)

    [10]

    HOU K K, WU Q Z, ZHANG F P, et al. , 2022. Application of different in-situ stress test methods in the area of 2 005 m shaft construction of Sanshandao gold mine and distribution law of in-situ stress[J]. Rock and Soil Mechanics, 43(4): 1093-1102,doi: 10.16285/j.rsm.2021.1172. (in Chinese with English abstract)

    [11]

    JIA C, 2021. Application of hydraulic fracturing technology in roof with thick and hard sandstone[J]. Jiangxi Coal Science & Technology(2): 116-118,doi: 10.3969/j.issn.1006-2572.2021.02.041. (in Chinese with English abstract)

    [12]

    LI B, ZHANG W, WEN R, 2022. Study on the hydraulic fracturing in-situ stress measurement in super-long highway tunnels in southern Shaanxi: engineering geological significance[J]. Journal of Geomechanics, 28(2): 191-202,doi: 10.12090/j.issn.1006-6616.2021053. (in Chinese with English abstract)

    [13]

    LI J W, HE Y, 2021. Analysis and research on in-situ stress measurement based on hydraulic fracturing method[J]. Shanxi Architecture, 47(7): 1-5. (in Chinese with English abstract)

    [14]

    LI P, MIAO S J, 2017. Analysis and application of in-situ stress in metal mining area of Chinese mainland[J]. Chinese Journal of Engineering, 39(3): 323-334,doi: 10.13374/j.issn2095-9389.2017.03.002. (in Chinese with English abstract)

    [15]

    LI P, GUO Q F, LIU H T, et al. , 2017. Characteristics of current in-situ stress field and stress accumulation in Shandong region[J]. Chinese Journal of Rock Mechanics and Engineering, 36(9): 2220-2231. (in Chinese with English abstract)

    [16]

    LI S Q, MA M H, ZHANG X, 2017. In-situ stress distribution regularity of Sanshandao gold mine[J]. Modern Mining, 33(1): 202-205,doi: 10.3969/j.issn.1674-6082.2017.01.056. (in Chinese with English abstract)

    [17]

    MENG Q, GAO K, CHEN Q Z, et al. , 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: numerical simulation analysis[J]. Journal of Geomechanics, 27(4): 614-627,doi: 10.12090/j.issn.1006-6616.2021.27.04.051. (in Chinese with English abstract)

    [18]

    MENG W, TIAN T, SUN D S, et al. , 2022. Research on stress state in deep shale reservoirs based on in-situ stress measurement and rheological model[J]. Journal of Geomechanics, 28(4): 537-549,doi: 10.12090/j.issn.1006-6616.2022041. (in Chinese with English abstract)

    [19]

    MONTONE P, AMATO A, PONDRELLI S, 1999. Active stress map of Italy[J]. Journal of Geophysical Research, 104(B11): 25595-25610,doi: 10.1029/1999jb900181.

    [20]

    PENG H, MA X M, JIANG J J, et al. , 2011. Research on stress field and hydraulic fracturing in-situ stress measurement of 1000 m deep hole in Zhaolou coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30(8): 1638-1645. (in Chinese with English abstract)

    [21]

    QIN X H, CHEN Q C, ZHAO X G, et al. , 2020. Experimental study on the crucial effect of test system compliance on hydraulic fracturing in-situ stress measurements[J]. Chinese Journal of Rock Mechanics and Engineering, 39(6): 1189-1202,doi: 10.13722/j.cnki.jrme.2019.1204. (in Chinese with English abstract)

    [22]

    SHANG X G, ZHU S T, JIANG F X, et al. , 2021. Experimental study on the prevention and control of mine earthquake by high pressure water fracturing of huge thick strata in vertical shaft[J]. Journal of China Coal Society, 46(S2): 639-650,doi: 10.13225/j.cnki.jccs.2021.0503. (in Chinese with English abstract)

    [23]

    SU K Z, 1985. Ground stress measurement methods[M]. Beijing: Seismological Press. (in Chinese)

    [24]

    WANG C H, GAO G Y, WANG H, et al. , 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167-174,doi: 10.12090/j.issn.1006-6616.2020.26.02.016. (in Chinese with English abstract)

    [25]

    WANG L J, PAN L Z, 1991. Earth stress measurements and their application in engineering[M]. Beijing: Seismological Press. (in Chinese)

    [26]

    WANG S J, 2009. Geological Nature of rock and its deduction for rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 28(3): 433-450,doi: 10.3321/j.issn:1000-6915.2009.03.001. (in Chinese with English abstract)

    [27]

    WU M L, MA Y, LIAO C T, et al. , 2008. Study on recent state of stress in depth 1 000 m of Jinchuan mine[J]. Chinese Journal of Rock Mechanics and Engineering, 27(S2): 3785-3790,doi: 10.3321/j.issn:1000-6915.2008.z2.071. (in Chinese with English abstract)

    [28]

    YIN J M, ZHOU C H, LI Y A, et al. , 2014. Correlation between tunnel stress and regional stress field in North Xinjiang[J]. Journal of Yangtze River Scientific Research Institute, 31(11): 42-46,doi: 10.3969/j.issn.1001-5485.2014.11.009. (in Chinese with English abstract)

    [29]

    ZHANG C S, WU M L, ZHANG C Y, et al. , 2016. Measurement of present-day stress and analysis of stress state in the Changbaishan Mountains of Jilin province[J]. Chinese Journal of Geophysics, 59(3): 922-930,doi: 10.6038/cjg20160314. (in Chinese with English abstract)

    [30]

    ZHANG H, SHI G, WU H, et al. , 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594,doi: 10.12090/j.issn.1006-6616.2020.26.04.051. (in Chinese with English abstract)

    [31]

    ZHANG Y Z, JI H G, ZHANG T Z, et al. , 2019-03-26. A hydraulic fracturing ground stress test device protector: CN, 201821495580.6[P]. (in Chinese)

    [32]

    ZHAO D A, CHEN Z M, CAI X L, et al. , 2007. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1265-1271,doi: 10.3321/j.issn:1000-6915.2007.06.024. (in Chinese with English abstract)

    [33]

    ZHU H C, TAO Z Y, 1994. State of in-situ stress in different rocks[J]. Acta Seismologica Sinica, 16(1): 49-63. (in Chinese)

    [34]

    蔡美峰, 1993. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 12(3): 275-283.

    [35]

    蔡美峰, 乔兰, 于波, 等, 1999. 金川二矿区深部地应力测量及其分布规律研究[J]. 岩石力学与工程学报, 18(4): 414-418,doi: 10.3321/j.issn:1000-6915.1999.04.011.

    [36]

    蔡美峰, 2001. 金属矿山采矿设计优化与地压控制: 理论与实践[M]. 北京: 科学出版社: 1-310.

    [37]

    蔡美峰, 陈长臻, 彭华, 等, 2006. 万福煤矿深部水压致裂地应力测量[J]. 岩石力学与工程学报, 25(5): 1069-1074,doi: 10.3321/j.issn:1000-6915.2006.05.033.

    [38]

    陈群策, 安美建, 李方全, 1998. 水压致裂法三维地应力测量的理论探讨[J]. 地质力学学报, 4(1): 37-44.

    [39]

    盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多“5·22”MS7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27(6): 899-912,doi: 10.12090/j.issn.1006-6616.2021.27.06.073.

    [40]

    何满潮, 2004. 深部开采工程岩石力学现状及其展望[C]//第八次全国岩石力学与工程学术大会论文集. 成都: 科学出版社: 99-105.

    [41]

    侯奎奎, 吴钦正, 张凤鹏, 等, 2022. 不同地应力测试方法在三山岛金矿2 005 m竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 43(4): 1093-1102,doi: 10.16285/j.rsm.2021.1172.

    [42]

    贾晨, 2021. 厚硬砂岩顶板水压致裂技术的应用[J]. 江西煤炭科技(2): 116-118,doi: 10.3969/j.issn.1006-2572.2021.02.041.

    [43]

    李彬, 张文, 文冉, 2022. 陕南特长公路隧道水压致裂法地应力测量结果及工程地质意义分析[J]. 地质力学学报, 28(2): 191-202,doi: 10.12090/j.issn.1006-6616.2021053.

    [44]

    李剑伟, 何勇, 2021. 基于水压致裂法的原地应力测试分析与研究[J]. 山西建筑, 47(7): 1-5. doi: 10.13719/j.cnki.1009-6825.2021.07.001

    [45]

    李鹏, 苗胜军, 2017. 中国大陆金属矿区实测地应力分析及应用[J]. 工程科学学报, 39(3): 323-334,doi: 10.13374/j.issn2095-9389.2017.03.002.

    [46]

    李鹏, 郭奇峰, 刘洪涛, 等, 2017. 山东地区现今地应力场特征与应力积累水平分析[J]. 岩石力学与工程学报, 36(9): 2220-2231.

    [47]

    李书强, 马明辉, 张旭, 2017. 三山岛金矿矿区地应力分布特征[J]. 现代矿业, 33(1): 202-205,doi: 10.3969/j.issn.1674-6082.2017.01.056.

    [48]

    孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟[J]. 地质力学学报, 27(4): 614-627,doi: 10.12090/j.issn.1006-6616.2021.27.04.051.

    [49]

    孟文, 田涛, 孙东生, 等, 2022. 基于原位地应力测试及流变模型的深部泥页岩储层地应力状态研究[J]. 地质力学学报, 28(4): 537-549,doi: 10.12090/j.issn.1006-6616.2022041.

    [50]

    彭华, 马秀敏, 姜景捷, 等, 2011. 赵楼煤矿1000m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30(8): 1638-1645.

    [51]

    秦向辉, 陈群策, 赵星光, 等. 2020. 水压致裂地应力测量中系统柔度影响试验研究[J]. 岩石力学与工程学报, 39(6): 1189-1202,doi: 10.13722/j.cnki.jrme.2019.1204.

    [52]

    尚晓光, 朱斯陶, 姜福兴, 等, 2021. 地面直井水压致裂防控巨厚硬岩运动型矿震试验研究[J]. 煤炭学报, 46(S2): 639-650,doi: 10.13225/j.cnki.jccs.2021.0503.

    [53]

    苏恺之, 1985. 地应力测量方法[M]. 北京: 地震出版社.

    [54]

    王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167-174,doi: 10.12090/j.issn.1006-6616.2020.26.02.016.

    [55]

    王连捷, 潘立宙, 1991. 地应力测量及其在工程中的应用[M]. 北京: 地震出版社.

    [56]

    王思敬, 2009. 论岩石的地质本质性及其岩石力学演绎[J]. 岩石力学与工程学报, 28(3): 433-450,doi: 10.3321/j.issn:1000-6915.2009.03.001.

    [57]

    吴满路, 马宇, 廖椿庭, 等, 2008. 金川二矿深部1000m中段地应力测量及应力状态研究[J]. 岩石力学与工程学报, 27(S2): 3785-3790,doi: 10.3321/j.issn:1000-6915.2008.z2.071.

    [58]

    尹健民, 周春华, 李云安, 等, 2014. 北疆深埋隧洞地应力与区域应力场相关性研究[J]. 长江科学院院报, 31(11): 42-46,doi: 10.3969/j.issn.1001-5485.2014.11.009.

    [59]

    张春山, 吴满路, 张重远, 等, 2016. 长白山地区现今地应力测量结果与应力状态分析[J]. 地球物理学报, 59(3): 922-930,doi: 10.6038/cjg20160314.

    [60]

    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594,doi: 10.12090/j.issn.1006-6616.2020.26.04.051

    [61]

    张月征, 纪洪广, 张同钊, 等, 2019-03-26. 一种水压致裂地应力测试装置保护器: 中国, 201821495580.6[P].

    [62]

    赵德安, 陈志敏, 蔡小林, 等, 2007. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 26(6): 1265-1271,doi: 10.3321/j.issn:1000-6915.2007.06.024.

    [63]

    朱焕春, 陶振宇, 1994. 不同岩石中地应力分布[J]. 地震学报, 16(1): 49-63.

  • 加载中

(13)

(2)

计量
  • 文章访问数:  949
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2023-02-28
修回日期:  2023-04-25
刊出日期:  2023-06-28

目录