辽东地区赛马碱性杂岩锆石U-Pb年龄、Hf同位素组成及其对构造背景的制约

杨凤超, 宋运红, 胥嘉, 顾玉超, 杨宏智. 2024. 辽东地区赛马碱性杂岩锆石U-Pb年龄、Hf同位素组成及其对构造背景的制约. 地质通报, 43(1): 76-85. doi: 10.12097/gbc.2021.12.042
引用本文: 杨凤超, 宋运红, 胥嘉, 顾玉超, 杨宏智. 2024. 辽东地区赛马碱性杂岩锆石U-Pb年龄、Hf同位素组成及其对构造背景的制约. 地质通报, 43(1): 76-85. doi: 10.12097/gbc.2021.12.042
YANG Fengchao, SONG Yunhong, XU Jia, GU Yuchao, YANG Hongzhi. 2024. Zircon U–Pb age, Hf isotope composition, and their constraints on tectonic setting of the Saima alkaling complex in the eastern Liaoning Province. Geological Bulletin of China, 43(1): 76-85. doi: 10.12097/gbc.2021.12.042
Citation: YANG Fengchao, SONG Yunhong, XU Jia, GU Yuchao, YANG Hongzhi. 2024. Zircon U–Pb age, Hf isotope composition, and their constraints on tectonic setting of the Saima alkaling complex in the eastern Liaoning Province. Geological Bulletin of China, 43(1): 76-85. doi: 10.12097/gbc.2021.12.042

辽东地区赛马碱性杂岩锆石U-Pb年龄、Hf同位素组成及其对构造背景的制约

  • 基金项目: 中国地质调查局项目《东北地区铜金稀有金属战略性矿产资源调查》(编号:DD20230028)和《辽宁甜水幅(K51E019015)、草河口幅(K51E019016)深部矿产地质调查》(编号: DD20190156-1)
详细信息
    作者简介: 杨凤超(1982− ),男,博士,正高级工程师,从事矿产地质调查及研究工作。E-mail:yangfc123@163.com
    通讯作者: 宋运红(1983− ),女,硕士,正高级工程师,从事土地质量地球化学调查及研究工作。E-mail:yunhong408@163.com
  • 中图分类号: P588.12+2; P597+3

Zircon U–Pb age, Hf isotope composition, and their constraints on tectonic setting of the Saima alkaling complex in the eastern Liaoning Province

More Information
  • 通过LA-ICP-MS测得辽宁赛马地区浅肉红色霞霓正长岩中的锆石U-Pb年龄为225.8±1.9 Ma,赛马碱性杂岩的侵位时代为晚三叠世。地球化学分析表明,霞霓正长岩SiO2含量为55.87% ~ 60.88%,Na2O为0.41% ~ 5.32%,Al2O3为17.81% ~ 19.53%,K2O为9.46% ~ 11.91%,MgO为0.46% ~ 1.36%,里特曼指数为7.54 ~ 17.01;稀土元素总量较高,高于300×10−6,强烈富集轻稀土元素,(La/Yb)N值大于10,个别达到100以上;亏损Nb、Ta、P等高场强元素,富集Rb、Th等大离子亲石元素,总体表现出富碱性岩石特征。锆石εHft)值为−13.37 ~ −9.30,对应的两阶段Hf模式年龄TDM2为2102 ~ 1855 Ma。通过岩石成因分析和构造环境判别,赛马碱性杂岩可能形成于由俯冲挤压向陆内伸展、拉张转换的动力背景下的下地壳(或上地幔)部分熔融。赛马碱性杂岩侵位时代(225.8±1.9 Ma)可能代表了华北克拉通北缘岩石圈开始伸展减薄的时间,也是郯庐断裂形成的时间。

  • 碱性岩是地壳中分布较少、产出环境独特的一种岩石类型(任康绪,2003)。碱性岩形成于岩石圈拉张环境,主要源于上地幔(阎国翰等,2002邬斌等,2020)。碱性岩具有地幔来源物质的稀有、微量元素组成(赵振华,1994),因此对碱性岩的研究是探索地球深部特征的重要途径(阎国翰等,2002)。辽东赛马地区发育碱性杂岩,在草绿色霓霞正长岩中及部分暗褐色霓霞正长岩中产有铌,表明赛马碱性杂岩与铌矿化关系密切,该类矿床除岩浆结晶作用外,还存在热液阶段铌钽成矿现象(Huang et al.,2002Wang et al.,2004Zhu et al.,20152018Xie et al.,20162018罗晨皓等,2019),而碱性花岗岩型铌钽矿床是中国最主要的碱性岩型铌钽矿床(李建康等,2019)。关于赛马碱性杂岩的年龄,前人进行了大量测年研究,测得的K-Ar年龄介于110~236 Ma之间,去掉霞石等非标准矿物的K-Ar年龄后,黑云母的K-Ar年龄平均为230 Ma;20世纪70年代, 锆石U-Pb年龄介于170~240 Ma之间,Rb-Sr等时线年龄为219 Ma(景立珍等,1995)。霓霞正长岩40Ar⁃39Ar 年龄为222 Ma 左右(钟军等,2020)。相关学者还对凤城赛马铌矿床成矿岩体的地球化学特征(鞠楠等,2019)及稀土矿化机制(邬斌等,2020)进行了研究,但是没有对赛马碱性杂岩的年龄、岩石地球化学特征及Hf同位素进行综合对比研究,也缺乏岩石成因及特点的探讨。本次对辽东地区赛马碱性杂岩的岩石学、年代学和岩石地球化学的系统研究,可以为中生代岩石圈的研究和郯庐断裂构造演化提供证据,同时为碱性岩浆的成岩成矿作用研究提供一定依据。

    赛马碱性杂岩分布于辽宁丹东市赛马地区,呈岩株状产出,东西长30~35 km,南北宽10~15 km(图1),面积逾100 km2。赛马碱性杂岩处于华北陆块北部,岩石类型复杂,主要为霓霞正长岩、云霞正长岩、白霞正长岩、霓辉正长岩等。岩石颜色呈肉红色,中粗粒—中粒结构,局部见大的长石斑晶,块状构造。侵入辽河群、青白口系及奥陶系,被侏罗系整合覆盖。辽河群岩性主要为二云片岩,夹变粒岩、变质砂岩,局部夹大理岩,分布在研究区西部和东南角;青白口系以灰白色中粒长石石英砂岩、硅质胶结石英砂岩、灰紫色钙质泥岩及砂质页岩为主;奥陶系主要为灰色微薄层白云质灰岩及灰色巨厚层含燧石结核白云质灰岩,零星分布在研究区北部;侏罗系大面积分布于研究区中部,为一套火山-沉积建造,主要为灰色凝灰质砂岩、灰紫色含砾凝灰岩、灰绿色页岩夹粉砂质泥岩、灰紫色长石石英砂岩等(图1)。

    图 1.  中国东北构造地质简图(a)和辽东赛马地区碱性杂岩地质简图(b)
    Figure 1.  Simplified geological map of eastern China, showing major tectonic units(a) and geological map of alkaline complex sampled from Saima area in the eastern Liaoning Province (b)

    TW03和TW04两个样品取自赛马碱性杂岩的主岩体上,其位置分别为北纬40°57′56″、东经124°16′15″和北纬40°58′50″、东经124°18′36″。TW03-YQ1~TW03-YQ5为与样品TW03同一位置的5个不同样品,TW04-YQ1~TW04-YQ5为与样品TW04同一位置的5个不同样品。样品为新鲜的浅肉红色中细粒霞霓正长岩,中细粒结构,块状构造,主要由正长石和特征矿物霞石、霓石组成(图2−a)。

    图 2.  辽东赛马地区浅肉红色霞霓正长岩野外照片(a)和显微镜照片(b、c)
    a—岩石标本照片;b—显微镜下正交偏光照片(25 × );c—显微镜下单偏光照片(25 × )
    Figure 2.  The original (a) and microscope (b,c) images of flesh red aegirine nepheline syenite from Saima area in the eastern Liaoning Province

    岩相学特征如下:主要由板柱状正长石、柱粒状霞石和长柱状、柱粒状碱性暗色矿物霓石矿物构成。其中正长石呈板柱状,自形程度较差,负低突起,干涉色灰白,轻微次生变化、糙面,无双晶,粒度≤1.2 mm×3.8 mm,偶见大颗粒,达5.2 mm×9.0 mm,含量大于50%;霞石呈柱粒状,钙霞石化强烈、糙面显著,但平行消光可显示,粒度≤1.2 mm×1.6 mm,含量约10%;霓石呈鲜艳绿色,具角闪石式多色性,长柱状或柱粒状,常见菱形切面,平行消光或对称消光,粒度≤0.5 mm×3.6 mm,含量大于35%(图2−b、c)。

    定年样品采自辽宁赛马地区新鲜浅肉红色霞霓正长岩(TW04),挑选代表性的锆石制靶。锆石的U、Th和Pb同位素组成分析在武汉上谱分析科技有限责任公司进行。在LA-ICP-MS U-Pb分析前,进行了透射光、背散射电子图像(BSE)及阴极发光(CL)分析。仪器为安捷伦电感耦合等离子体质谱仪(Agilent 7900),相干193 nm准分子激光剥蚀系统(GeoLas HD)。用标准玻璃样品NIST610校正待测锆石U元素含量,标准锆石样品91500和GJ-1分别用于校正待测锆石同位素分馏和监控仪器状态。激光能量80 mJ,频率5 Hz,激光束斑直径32 µm。具体分析条件及流程详见Liu et al.(2008)。

    主量、微量元素测试样品为新鲜的浅肉红色霞霓正长岩。测试工作在自然资源部东北矿产资源监督检测中心完成。主量元素测试仪器为飞利浦PW2404 X射线荧光光谱仪,分析精度优于5%。微量元素测试仪器为HR-ICPMS(Element I)电感耦合等离子体质谱测试,分析精度:含量大于10×10−6,精度优于5%;含量小于10×10−6,精度优于10%(杨凤超等,2016)。

    锆石Hf同位素分析在武汉上谱分析科技有限责任公司完成,使用仪器为多接收质谱仪 MC-ICP-MS(Neptune Plus)。束斑44 μm,能量强度8 mJ/cm2,频率8 Hz,载气(氦):600 mL/mi。

    辽东赛马地区浅肉红色霞霓正长岩(TW04)的锆石呈自形晶,长90~180 μm,长短轴比为1.1∶1.0~2.1∶1.0。阴极发光(CL)图像显示,锆石多发育振荡环带(图3)。锆石微量元素测试数据显示,U含量为21.4×10−6~737.4×10−6,Th为37×10−6~4858×10−6,锆石Th/U值均大于0.1。锆石发育的振荡环带和U、Th含量指示岩浆锆石特征(Belousova et al.,2002)。30个LA-ICP−MS锆石U-Pb分析结果(表1)中,02、07、12、14、23、27点的谐和度均小于90%,剔除,没有参与206Pb/238U年龄加权平均值计算,余下24个点得到的206Pb/238U年龄加权平均值为225.8±1.9 Ma(图4),代表了霞霓正长岩的结晶年龄。

    图 3.  辽东赛马地区霞霓正长岩(TW04)锆石阴极发光(CL)图像及年龄
    Figure 3.  Zircon CL images and ages(TW04) of aegirine nepheline syenite from Saima area in the eastern Liaoning Province
    表 1.  辽东赛马地区霞霓正长岩(TW04)锆石U-Th-Pb同位素数据
    Table 1.  The U-Th-Pb isotope compositions of zircons from aegirine nepheline syenite (TW04)from Saima area in the eastern Liaoning Province
    点编号含量/10−6232Th/238U
    207Pb*/206Pb*
    206Pb*/238U
    207Pb*/235U
    误差206Pb/238U207Pb/235U谐和度
    206PbcUTh/%/%/%相关系数年龄/Ma年龄/Ma
    010.2121167918.3878.390.060.00680.040.00090.270.02290.308322662411893%
    020.22332183.656.610.080.01420.030.00100.290.03520.261619862582873%
    030.4428026213.620.940.050.00140.040.00040.250.00720.37672292225698%
    040.0015039610.022.640.060.00220.040.00040.270.01040.27302212240892%
    050.1587784.140.900.050.00290.040.00050.250.01360.250422432231199%
    060.0024719411.660.780.050.00190.040.00040.250.00920.32732313229798%
    074.20266305136.2511.450.280.00800.010.00020.430.01360.566370.3136410-36%
    080.00116735.060.620.060.00290.030.00040.270.01350.244021932401190%
    090.69108614.850.560.050.00270.040.00050.260.01230.295823232351098%
    100.0373721729.940.290.050.00120.030.00030.250.00550.37912212224498%
    110.26243182927.467.530.050.00190.040.00030.260.01000.25752252235895%
    120.072890311.5632.000.060.00590.030.00080.250.01890.328019852231587%
    130.08923477.543.790.050.00300.040.00050.250.01390.285222232301196%
    140.1516475913.564.640.070.00330.030.00060.260.00980.56941854235876%
    150.0044485853.05111.500.050.00350.040.00070.250.01790.278823142311499%
    160.1862372.790.600.050.00350.040.00060.250.01380.303622842231197%
    171.001991568.950.780.060.00230.030.00040.260.01060.26072192236992%
    180.00134415.310.310.050.00250.030.00040.240.01200.249322132211099%
    190.013155712.420.180.050.00150.040.00030.260.00730.34942272238695%
    201.34192407.550.210.050.00200.040.00040.250.00950.29342232230896%
    210.0021933512.491.530.050.00210.040.00040.260.00990.29982343233899%
    220.65296869.2023.500.050.00460.040.00070.250.01820.280223252251597%
    230.2310365811.156.360.090.00590.030.00050.360.01880.346719233141451%
    240.63402584.456.490.050.00420.040.00060.230.01790.235622742141594%
    250.3521291531.11135.980.060.00590.040.00100.270.01970.384223362461694%
    260.00170137220.788.090.050.00190.040.00040.240.00900.30302253214795%
    271.2712660212.034.790.100.00380.030.00030.410.01470.313219123461142%
    280.61642795.534.400.050.00360.040.00060.260.01690.274323442381497%
    291.085926522.780.110.050.00110.040.00030.250.00590.32562292223597%
    300.28169987.500.580.050.00220.040.00040.250.01100.24362302226998%
     | Show Table
    DownLoad: CSV
    图 4.  辽东赛马地区霞霓正长岩(TW04)锆石U-Pb谐和年龄图(a)和年龄加权平均值图(b)
    Figure 4.  Zircon U-Pb concordia diagram (a) and weighted mean agegraph (b) of aegirine nepheline syenite from Saima area in the eastern Liaoning Province

    辽东赛马碱性杂岩地球化学研究结果(表2)表明,浅肉红色霞霓正长岩具有较低的SiO2(55.87%~60.88%)、Na2O(0.41%~5.32%),同时具有较高的Al2O3(17.81%~19.53%)、K2O(9.46%~11.91%)、MgO(0.46%~1.36%)。里特曼指数σ43为7.54~17.01。

    表 2.  辽东赛马地区碱性杂岩主量、微量和稀土元素含量
    Table 2.  Major, trace and rare earth elements data for the alkaline complex from Saima area in the eastern Liaoning Province
    样品号 TW03-YQ1 TW03-YQ2 TW03-YQ3 TW03-YQ4 TW03-YQ5 TW04-YQ1 TW04-YQ2 TW04-YQ3 TW04-YQ4 TW04-YQ5
    SiO2 57.27 56.95 56.49 55.87 56.01 60.85 60.60 60.42 60.88 59.81
    TiO2 0.81 0.66 0.84 0.97 0.69 0.86 0.91 0.86 0.89 0.94
    Al2O3 19.18 18.75 18.84 18.53 19.53 18.38 18.26 17.93 18.66 17.81
    Fe2O3 1.85 1.92 2.09 2.40 1.73 4.94 5.03 5.09 4.62 6.22
    MnO 0.08 0.08 0.08 0.09 0.07 0.08 0.09 0.08 0.08 0.09
    MgO 0.64 0.86 0.59 0.58 0.75 0.62 1.36 0.84 0.46 0.47
    CaO 0.76 0.78 0.85 0.94 0.90 0.04 0.25 0.04 0.04 0.09
    Na2O 4.40 4.87 5.32 5.16 4.97 0.46 0.54 0.47 0.45 0.41
    K2O 10.03 9.46 9.68 10.09 9.50 11.76 11.11 11.91 11.69 11.78
    P2O5 0.10 0.10 0.08 0.10 0.10 0.03 0.04 0.03 0.03 0.04
    FeO 2.29 2.35 2.31 2.46 2.15 0.42 0.47 0.54 0.58 0.49
    烧失量 2.08 2.67 2.42 2.28 2.58 1.24 1.34 1.13 1.37 1.52
    A/CNK 0.99 0.95 0.91 0.88 0.97 1.35 1.37 1.31 1.39 1.31
    σ43 13.89 13.83 15.73 17.01 14.91 8.18 7.54 8.55 8.04 8.57
    总计 99.49 99.45 99.59 99.47 98.98 99.68 100 99.34 99.75 99.67
    Cr 8.94 7.92 8.56 7.98 9.34 10.9 8.53 8.63 9.39 9.28
    Ni 1.95 1.79 2.21 0.96 4.14 2.41 3.56 2.52 2.73 2.95
    Rb 515 297 358 360 549 317 324 323 334 323
    Sr 3000 3400 3300 3600 3200 1000 794 989 889 765
    Zr 819 489 644 573 1200 658 850 672 683 838
    Nb 54.7 27.5 39.0 35.5 58.4 42.1 50.3 42.0 51.8 41.3
    Ba 2800 2600 2500 2900 2700 1400 1400 1400 1400 1500
    Hf 17.5 24.2 29.1 27.0 20.2 15.8 19.4 20.1 20.9 24.4
    Ta 2.13 1.53 1.64 2.23 2.40 1.85 1.95 2.31 2.45 1.85
    Th 18.6 19.4 25.4 24.3 23.9 23.2 26.2 23.7 28.0 34.0
    U 4.92 3.54 4.68 3.77 6.37 5.51 7.06 6.00 4.68 7.59
    Li 50.8 54.6 48.9 50.7 48.6 55.0 63.6 41.5 35.1 45.2
    Be 10.3 9.64 10.4 10.8 11.6 5.48 5.47 6.23 6.36 6.72
    Co 6.12 6.70 6.20 6.43 5.39 7.23 7.79 5.97 5.33 8.72
    V 53.0 56.6 57.1 56.5 53.5 69.9 79.0 70.7 77.3 81.1
    Ga 28.4 29.4 29.2 30.9 27.5 29.3 29.9 28.8 27.0 29.2
    Sc 3.19 3.01 3.16 3.06 3.59 3.37 3.39 3.30 3.54 3.40
    Pb 69.9 86.6 84.0 111 77.5 103 106 119 121 124
    Y 14.3 11.8 13.7 15.0 14.9 8.84 11.4 8.43 10.1 9.62
    La 224 126 152 153 137 86.0 145 85.2 125 70.8
    Ce 347 280 354 359 318 261 337 259 388 327
    Pr 25.2 20.2 26.2 27.2 24.4 14.6 24.5 15.4 21.4 13.2
    Nd 78.0 61.6 81.9 87.7 80.2 47.1 76.2 49.3 66.6 43.5
    Sm 11.1 8.85 11.5 12.8 11.3 6.99 10.9 7.78 10.1 7.22
    Eu 3.53 3.00 3.46 3.75 3.35 2.07 2.72 2.20 2.50 2.21
    Gd 8.49 6.78 8.86 9.40 8.79 5.72 8.35 5.98 7.99 6.20
    Tb 0.99 0.78 1.01 1.12 1.03 0.63 0.89 0.65 0.85 0.65
    Dy 3.74 2.92 3.76 4.09 3.86 2.25 3.01 2.32 2.97 2.32
    Ho 0.56 0.46 0.57 0.61 0.60 0.35 0.44 0.35 0.44 0.36
    Er 1.61 1.25 1.57 1.69 1.66 0.97 1.27 0.99 1.20 1.04
    Tm 0.21 0.18 0.20 0.23 0.22 0.13 0.17 0.13 0.16 0.16
    Yb 1.15 1.02 1.13 1.24 1.20 0.79 1.00 0.75 0.94 1.00
    Lu 0.17 0.16 0.17 0.19 0.17 0.12 0.16 0.12 0.14 0.17
    ΣREE 706 513 647 661 592 428 611 430 628 476
    LREE 689 499 629 643 574 418 596 419 613 464
    HREE 16.91 13.54 17.27 18.57 17.53 10.97 15.28 11.29 14.69 11.90
    LREE/HREE 40.73 36.86 36.44 34.62 32.75 38.08 39.02 37.13 41.74 39.01
    (La/Yb)N 140 88.5 96.9 88.3 81.9 78.1 104 81.2 95.6 50.9
    δEu 1.11 1.18 1.05 1.05 1.03 1.00 0.87 0.98 0.85 1.01
      注:σ43为里特曼指数,σ43=[w(Na2O+K2O)]2/[w(SiO2)]−43
     | Show Table
    DownLoad: CSV

    浅肉红色霞霓正长岩的稀土元素总量ΣREE为428×10−6~706×10−6,平均569×10−6,其中(La/Yb)N值为50.9~140,LREE/HREE值为32.75~41.74,平均37.64,δEu值为0.85~1.18,平均1.01(表2)。

    稀土元素总量较高,高于300×10−6,轻、重稀土元素之间的分馏强烈,强烈富集轻稀土元素,(La/Yb)N值大于10,个别达到100以上,具Eu正异常或无异常,以及陡右倾斜平滑型稀土元素分布模式(图5−a)。以上岩石物质组分的特征表现出富碱性岩石特征(赵振华,1994周玲棣等,1994)。

    图 5.  辽东赛马地区碱性杂岩稀土元素配分曲线(a)和微量元素蛛网图(b)(标准值据Sun et al., 1989
    Figure 5.  Rare earth element distribution curves (a) and trace element spider diagrams (b) for alkaline complex sampled from Saima area in the eastern Liaoning Province

    在原始地幔标准化微量元素蛛网图(图5−b)上,Nb、Ta、P等高场强元素明显亏损,而Rb、Th等大离子亲石元素富集。Ta和Nb的氟络合物在富碱溶液中会导致铌、钽的分离富集(Kaeter et al.,2018)。Nb亏损可能与岩石局部富集成矿有关。Nb/Ta值为15.9~25.8,平均为21.8。

    Hf同位素测试时的测点位置与U-Pb同位素测试的位置相同。共测得23个Hf同位素数据(表3)。176Hf/177Hf值分布于0.282280~0.282387之间,εHft)值为−13.37~−9.30,单阶段Hf模式年龄TDM1为1224~1413 Ma,两阶段Hf模式年龄TDM2为1855~2102 Ma。

    表 3.  辽东赛马地区霞霓正长岩(TW04)锆石Hf同位素含量
    Table 3.  Hf isotope data of aegirine nepheline syenite (TW04) from Saima area in the eastern Liaoning Province
    测点编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hfi εHf(0) εHf(t) TDM1 /Ma TDM2 /Ma fLu/Hf
    01 226 0.053437 0.001291 0.282290 0.000013 0.282267 −17.86 −13.09 1402 2088 −0.96
    03 229 0.000917 0.000021 0.282333 0.000012 0.282310 −16.34 −11.32 1297 1979 −1.00
    04 221 0.001844 0.000041 0.282333 0.000013 0.282310 −16.34 −11.50 1298 1984 −1.00
    05 224 0.001043 0.000023 0.282302 0.000012 0.282279 −17.43 −12.52 1340 2051 −1.00
    08 219 0.001057 0.000018 0.282333 0.000019 0.282310 −16.34 −11.54 1297 1985 −1.00
    09 232 0.000687 0.000016 0.282293 0.000015 0.282270 −17.75 −12.67 1352 2066 −1.00
    10 221 0.003449 0.000068 0.282322 0.000016 0.282299 −16.73 −11.89 1314 2009 −1.00
    11 225 0.001295 0.000030 0.282306 0.000019 0.282283 −17.29 −12.36 1335 2042 −1.00
    13 222 0.000242 0.000004 0.282286 0.000013 0.282263 −18.00 −13.13 1361 2088 −1.00
    15 231 0.042501 0.000941 0.282331 0.000012 0.282308 −16.41 −11.48 1332 1990 −0.97
    16 228 0.000353 0.000008 0.282301 0.000012 0.282278 −17.47 −12.47 1341 2051 −1.00
    17 219 0.000479 0.000010 0.282323 0.000013 0.282300 −16.69 −11.89 1311 2007 −1.00
    18 221 0.000507 0.000011 0.282280 0.000017 0.282257 −18.21 −13.37 1369 2102 −1.00
    19 227 0.001331 0.000032 0.282315 0.000018 0.282292 −16.97 −12.00 1322 2020 −1.00
    20 223 0.000626 0.000016 0.282284 0.000015 0.282261 −18.07 −13.18 1364 2092 −1.00
    21 234 0.029693 0.000765 0.282310 0.000015 0.282287 −17.15 −12.14 1355 2034 −0.98
    22 232 0.035978 0.000832 0.282320 0.000012 0.282297 −16.80 −11.84 1343 2013 −0.97
    24 227 0.000551 0.000012 0.282286 0.000010 0.282263 −18.00 −13.02 1361 2085 −1.00
    25 233 0.144341 0.003151 0.282332 0.000015 0.282309 −16.37 −11.75 1413 2008 −0.91
    26 225 0.001419 0.000023 0.282330 0.000013 0.282307 −16.44 −11.51 1302 1988 −1.00
    28 234 0.001903 0.000044 0.282387 0.000014 0.282364 −14.43 −9.30 1224 1855 −1.00
    29 229 0.003627 0.000085 0.282304 0.000016 0.282281 −17.36 −12.35 1339 2044 −1.00
    30 230 0.000404 0.000010 0.282288 0.000012 0.282265 −17.93 −12.89 1358 2078 −1.00
      注:TDM1=ln[(176Hf/177Hf样品176Hf/177HfDM)/(176Lu/177Hf样品176Lu/177HfDM)+1]/λ,TDM2=ln{[176Hf/177Hf样品176Hf/177HfDM−(176Lu/177Hf样品176Lu/177HfCrust) ×(eλt−1)] /(176Lu/177HfCrust176Lu/177HfDM) +1}/λ
     | Show Table
    DownLoad: CSV

    区域上,辽东半岛中生代花岗质岩浆作用划分为3期:早白垩世(131~117Ma)、侏罗纪(180~156 Ma)和晚三叠世(233~212 Ma)(吴福元等,2005)。辽宁青城子地区双顶沟岩体LA-ICP-MS锆石U-Pb年龄为224.2±1.2 Ma,辽东弟兄山岩体SHRIMP U-Pb年龄为205.2±2.1 Ma(宋运红等,2015),可以看出辽东地区存在三叠纪岩浆活动。赛马碱性岩Rb-Sr等时代年龄为219 Ma(景立珍等,1995)。本次测得赛马碱性杂岩体中浅肉红色霞霓正长岩的LA-ICP-MS锆石U-Pb年龄为225.8±1.9 Ma,此年龄可代表赛马碱性杂岩体的侵位时代,即晚三叠世。

    岩石中含霞石和霓石,主量元素特征表现为SiO2较低,铝和碱较高的特点,里特曼指数σ43>4,浅肉红色正长岩表现出典型的碱性岩特征(李石,1992邱家骧,1993周玲棣等,1994赵振华,1994)。稀土元素总量高于300×10−6,强烈富集轻稀土元素,(La/Yb)N值大于10,个别达到100以上,陡右倾斜平滑型稀土元素分布模式表现出富碱性岩石特征(赵振华,1994周玲棣等,1994)。Nb/Ta值为15.9~25.8,平均为21.8,位于碱性岩中Nb/Ta值范围(25~10)(Linnen et al.,2014)。因此,赛马碱性杂岩为典型的富碱性岩。

    赛马碱性杂岩亏损Nb、Ta、P等高场强元素,富集Rb、Th等大离子亲石元素。Nb/Ta值为15.92~21.79,高于原始地幔的Nb/Ta值17.5±2.0(Green et al.,1995),说明碱性杂岩源区受地壳组分的影响较小,Nb、Ta相对亏损,可能有少量地壳物质混合(Rollison et al.,1993)。P偏低可能与磷灰石的结晶分异有关(高永宝等,2014孙雷等,2021于喜洹等,2022)。

    赛马碱性杂岩体锆石Hf同位素组成方面,εHft)值为−13.37~−9.30,位于地壳范围(图6−a),说明岩体形成时有壳源物质参与。两阶段Hf模式年龄(TDM2)代表了锆石寄主岩石源区物质脱离亏损地幔进入地壳的时间,大体反映了地壳生长时间(李梦玲等,2022常翔等,2023),样品对应的二阶段Hf模式年龄(TDM2)为2102~1855 Ma(图6−b),表明锆石寄主岩石源于古老下地壳深熔。以上证据指示,赛马碱性杂岩体来自古元古代地壳物质的熔融。

    图 6.  辽东赛马地区霞霓正长岩锆石Lu-Hf同位素特征(底图据Yang et al.,2006)
    Figure 6.  Zircon Lu-Hf isotope characteristics diagram of aegirine nepheline syenite from Saima area in the eastern Liaoning Province

    综上,赛马碱性杂岩物源区主要为加厚的下地壳(或上地幔),在由俯冲挤压向陆内伸展、拉张转换的动力背景下,下地壳(或上地幔)部分熔融产生富碱岩浆顺大断裂上升,与硅铝层混染较小时形成碱性岩。

    研究区大地构造背景属于华北克拉通东部,辽宁赛马碱性岩反映了板内大断裂-郯庐大断裂的地质背景。富碱侵入岩赋存于裂谷、地堑、地幔上拱带,与拉张的条件更密切,多形成于拉张环境下,富碱侵入岩的出现则意味着造山旋回的结束和转入非造山状态(涂光炽,1989)。在微量元素构造环境图解(图7)中,赛马碱性杂岩投在同碰撞与火山弧区交界处,表现出由挤压到拉张的构造环境。碱性岩浆活动的时代可能为岩石圈发生减薄作用的起始时间,辽宁赛马碱性杂岩的侵位时代为225.8±1.9 Ma,可能代表了华北克拉通北缘岩石圈开始伸展减薄的时间,同时,也是郯庐断裂形成的时间。

    图 7.  辽东赛马地区碱性杂岩构造环境图解(底图据Pearce et al.,1984
    WPG—板内环境;ORG—洋中脊环境;VAG—火山弧环境;syn-COLG—同碰撞环境
    Figure 7.  Structure environment diagram of alkaline complex from Saima area in the eastern Liaoning Province

    (1)用LA-ICP-MS测得辽宁赛马地区浅肉红色霞霓正长岩中的锆石U-Pb年龄为225.8±1.9 Ma,赛马碱性杂岩侵位时代为晚三叠世。

    (2)赛马碱性杂岩中含霞石和霓石,表现为SiO2含量较低,铝和碱较高的特点,里特曼指数σ43大于4。稀土元素总量高于300×10−6,强烈富集轻稀土元素,(La/Yb)N值大于10,个别达到100,表现出富碱性岩石特征。锆石εHf(t)值为−13.37~−9.30,对应的两阶段Hf模式年龄TDM2为2102~1855 Ma。

    (3)结合岩体地球化学特征和区域演化背景,赛马碱性杂岩可能形成于由俯冲挤压向陆内伸展、拉张转换的动力学背景下的下地壳(或上地幔)部分熔融。侵位时代(225.8±1.9 Ma)可能代表了华北克拉通北缘岩石圈开始伸展减薄的时间,同时,也是郯庐断裂形成的时间。

    致谢:锆石U-Pb和Hf同位素实验测试和数据分析过程中得到武汉上谱分析科技有限责任公司陈红芳老师的帮助,审稿专家对本文提出宝贵的修改意见与建议,在此一并表示感谢。

  • 图 1  中国东北构造地质简图(a)和辽东赛马地区碱性杂岩地质简图(b)

    Figure 1. 

    图 2  辽东赛马地区浅肉红色霞霓正长岩野外照片(a)和显微镜照片(b、c)

    Figure 2. 

    图 3  辽东赛马地区霞霓正长岩(TW04)锆石阴极发光(CL)图像及年龄

    Figure 3. 

    图 4  辽东赛马地区霞霓正长岩(TW04)锆石U-Pb谐和年龄图(a)和年龄加权平均值图(b)

    Figure 4. 

    图 5  辽东赛马地区碱性杂岩稀土元素配分曲线(a)和微量元素蛛网图(b)(标准值据Sun et al., 1989

    Figure 5. 

    图 6  辽东赛马地区霞霓正长岩锆石Lu-Hf同位素特征(底图据Yang et al.,2006)

    Figure 6. 

    图 7  辽东赛马地区碱性杂岩构造环境图解(底图据Pearce et al.,1984

    Figure 7. 

    表 1  辽东赛马地区霞霓正长岩(TW04)锆石U-Th-Pb同位素数据

    Table 1.  The U-Th-Pb isotope compositions of zircons from aegirine nepheline syenite (TW04)from Saima area in the eastern Liaoning Province

    点编号含量/10−6232Th/238U
    207Pb*/206Pb*
    206Pb*/238U
    207Pb*/235U
    误差206Pb/238U207Pb/235U谐和度
    206PbcUTh/%/%/%相关系数年龄/Ma年龄/Ma
    010.2121167918.3878.390.060.00680.040.00090.270.02290.308322662411893%
    020.22332183.656.610.080.01420.030.00100.290.03520.261619862582873%
    030.4428026213.620.940.050.00140.040.00040.250.00720.37672292225698%
    040.0015039610.022.640.060.00220.040.00040.270.01040.27302212240892%
    050.1587784.140.900.050.00290.040.00050.250.01360.250422432231199%
    060.0024719411.660.780.050.00190.040.00040.250.00920.32732313229798%
    074.20266305136.2511.450.280.00800.010.00020.430.01360.566370.3136410-36%
    080.00116735.060.620.060.00290.030.00040.270.01350.244021932401190%
    090.69108614.850.560.050.00270.040.00050.260.01230.295823232351098%
    100.0373721729.940.290.050.00120.030.00030.250.00550.37912212224498%
    110.26243182927.467.530.050.00190.040.00030.260.01000.25752252235895%
    120.072890311.5632.000.060.00590.030.00080.250.01890.328019852231587%
    130.08923477.543.790.050.00300.040.00050.250.01390.285222232301196%
    140.1516475913.564.640.070.00330.030.00060.260.00980.56941854235876%
    150.0044485853.05111.500.050.00350.040.00070.250.01790.278823142311499%
    160.1862372.790.600.050.00350.040.00060.250.01380.303622842231197%
    171.001991568.950.780.060.00230.030.00040.260.01060.26072192236992%
    180.00134415.310.310.050.00250.030.00040.240.01200.249322132211099%
    190.013155712.420.180.050.00150.040.00030.260.00730.34942272238695%
    201.34192407.550.210.050.00200.040.00040.250.00950.29342232230896%
    210.0021933512.491.530.050.00210.040.00040.260.00990.29982343233899%
    220.65296869.2023.500.050.00460.040.00070.250.01820.280223252251597%
    230.2310365811.156.360.090.00590.030.00050.360.01880.346719233141451%
    240.63402584.456.490.050.00420.040.00060.230.01790.235622742141594%
    250.3521291531.11135.980.060.00590.040.00100.270.01970.384223362461694%
    260.00170137220.788.090.050.00190.040.00040.240.00900.30302253214795%
    271.2712660212.034.790.100.00380.030.00030.410.01470.313219123461142%
    280.61642795.534.400.050.00360.040.00060.260.01690.274323442381497%
    291.085926522.780.110.050.00110.040.00030.250.00590.32562292223597%
    300.28169987.500.580.050.00220.040.00040.250.01100.24362302226998%
    下载: 导出CSV

    表 2  辽东赛马地区碱性杂岩主量、微量和稀土元素含量

    Table 2.  Major, trace and rare earth elements data for the alkaline complex from Saima area in the eastern Liaoning Province

    样品号 TW03-YQ1 TW03-YQ2 TW03-YQ3 TW03-YQ4 TW03-YQ5 TW04-YQ1 TW04-YQ2 TW04-YQ3 TW04-YQ4 TW04-YQ5
    SiO2 57.27 56.95 56.49 55.87 56.01 60.85 60.60 60.42 60.88 59.81
    TiO2 0.81 0.66 0.84 0.97 0.69 0.86 0.91 0.86 0.89 0.94
    Al2O3 19.18 18.75 18.84 18.53 19.53 18.38 18.26 17.93 18.66 17.81
    Fe2O3 1.85 1.92 2.09 2.40 1.73 4.94 5.03 5.09 4.62 6.22
    MnO 0.08 0.08 0.08 0.09 0.07 0.08 0.09 0.08 0.08 0.09
    MgO 0.64 0.86 0.59 0.58 0.75 0.62 1.36 0.84 0.46 0.47
    CaO 0.76 0.78 0.85 0.94 0.90 0.04 0.25 0.04 0.04 0.09
    Na2O 4.40 4.87 5.32 5.16 4.97 0.46 0.54 0.47 0.45 0.41
    K2O 10.03 9.46 9.68 10.09 9.50 11.76 11.11 11.91 11.69 11.78
    P2O5 0.10 0.10 0.08 0.10 0.10 0.03 0.04 0.03 0.03 0.04
    FeO 2.29 2.35 2.31 2.46 2.15 0.42 0.47 0.54 0.58 0.49
    烧失量 2.08 2.67 2.42 2.28 2.58 1.24 1.34 1.13 1.37 1.52
    A/CNK 0.99 0.95 0.91 0.88 0.97 1.35 1.37 1.31 1.39 1.31
    σ43 13.89 13.83 15.73 17.01 14.91 8.18 7.54 8.55 8.04 8.57
    总计 99.49 99.45 99.59 99.47 98.98 99.68 100 99.34 99.75 99.67
    Cr 8.94 7.92 8.56 7.98 9.34 10.9 8.53 8.63 9.39 9.28
    Ni 1.95 1.79 2.21 0.96 4.14 2.41 3.56 2.52 2.73 2.95
    Rb 515 297 358 360 549 317 324 323 334 323
    Sr 3000 3400 3300 3600 3200 1000 794 989 889 765
    Zr 819 489 644 573 1200 658 850 672 683 838
    Nb 54.7 27.5 39.0 35.5 58.4 42.1 50.3 42.0 51.8 41.3
    Ba 2800 2600 2500 2900 2700 1400 1400 1400 1400 1500
    Hf 17.5 24.2 29.1 27.0 20.2 15.8 19.4 20.1 20.9 24.4
    Ta 2.13 1.53 1.64 2.23 2.40 1.85 1.95 2.31 2.45 1.85
    Th 18.6 19.4 25.4 24.3 23.9 23.2 26.2 23.7 28.0 34.0
    U 4.92 3.54 4.68 3.77 6.37 5.51 7.06 6.00 4.68 7.59
    Li 50.8 54.6 48.9 50.7 48.6 55.0 63.6 41.5 35.1 45.2
    Be 10.3 9.64 10.4 10.8 11.6 5.48 5.47 6.23 6.36 6.72
    Co 6.12 6.70 6.20 6.43 5.39 7.23 7.79 5.97 5.33 8.72
    V 53.0 56.6 57.1 56.5 53.5 69.9 79.0 70.7 77.3 81.1
    Ga 28.4 29.4 29.2 30.9 27.5 29.3 29.9 28.8 27.0 29.2
    Sc 3.19 3.01 3.16 3.06 3.59 3.37 3.39 3.30 3.54 3.40
    Pb 69.9 86.6 84.0 111 77.5 103 106 119 121 124
    Y 14.3 11.8 13.7 15.0 14.9 8.84 11.4 8.43 10.1 9.62
    La 224 126 152 153 137 86.0 145 85.2 125 70.8
    Ce 347 280 354 359 318 261 337 259 388 327
    Pr 25.2 20.2 26.2 27.2 24.4 14.6 24.5 15.4 21.4 13.2
    Nd 78.0 61.6 81.9 87.7 80.2 47.1 76.2 49.3 66.6 43.5
    Sm 11.1 8.85 11.5 12.8 11.3 6.99 10.9 7.78 10.1 7.22
    Eu 3.53 3.00 3.46 3.75 3.35 2.07 2.72 2.20 2.50 2.21
    Gd 8.49 6.78 8.86 9.40 8.79 5.72 8.35 5.98 7.99 6.20
    Tb 0.99 0.78 1.01 1.12 1.03 0.63 0.89 0.65 0.85 0.65
    Dy 3.74 2.92 3.76 4.09 3.86 2.25 3.01 2.32 2.97 2.32
    Ho 0.56 0.46 0.57 0.61 0.60 0.35 0.44 0.35 0.44 0.36
    Er 1.61 1.25 1.57 1.69 1.66 0.97 1.27 0.99 1.20 1.04
    Tm 0.21 0.18 0.20 0.23 0.22 0.13 0.17 0.13 0.16 0.16
    Yb 1.15 1.02 1.13 1.24 1.20 0.79 1.00 0.75 0.94 1.00
    Lu 0.17 0.16 0.17 0.19 0.17 0.12 0.16 0.12 0.14 0.17
    ΣREE 706 513 647 661 592 428 611 430 628 476
    LREE 689 499 629 643 574 418 596 419 613 464
    HREE 16.91 13.54 17.27 18.57 17.53 10.97 15.28 11.29 14.69 11.90
    LREE/HREE 40.73 36.86 36.44 34.62 32.75 38.08 39.02 37.13 41.74 39.01
    (La/Yb)N 140 88.5 96.9 88.3 81.9 78.1 104 81.2 95.6 50.9
    δEu 1.11 1.18 1.05 1.05 1.03 1.00 0.87 0.98 0.85 1.01
      注:σ43为里特曼指数,σ43=[w(Na2O+K2O)]2/[w(SiO2)]−43
    下载: 导出CSV

    表 3  辽东赛马地区霞霓正长岩(TW04)锆石Hf同位素含量

    Table 3.  Hf isotope data of aegirine nepheline syenite (TW04) from Saima area in the eastern Liaoning Province

    测点编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hfi εHf(0) εHf(t) TDM1 /Ma TDM2 /Ma fLu/Hf
    01 226 0.053437 0.001291 0.282290 0.000013 0.282267 −17.86 −13.09 1402 2088 −0.96
    03 229 0.000917 0.000021 0.282333 0.000012 0.282310 −16.34 −11.32 1297 1979 −1.00
    04 221 0.001844 0.000041 0.282333 0.000013 0.282310 −16.34 −11.50 1298 1984 −1.00
    05 224 0.001043 0.000023 0.282302 0.000012 0.282279 −17.43 −12.52 1340 2051 −1.00
    08 219 0.001057 0.000018 0.282333 0.000019 0.282310 −16.34 −11.54 1297 1985 −1.00
    09 232 0.000687 0.000016 0.282293 0.000015 0.282270 −17.75 −12.67 1352 2066 −1.00
    10 221 0.003449 0.000068 0.282322 0.000016 0.282299 −16.73 −11.89 1314 2009 −1.00
    11 225 0.001295 0.000030 0.282306 0.000019 0.282283 −17.29 −12.36 1335 2042 −1.00
    13 222 0.000242 0.000004 0.282286 0.000013 0.282263 −18.00 −13.13 1361 2088 −1.00
    15 231 0.042501 0.000941 0.282331 0.000012 0.282308 −16.41 −11.48 1332 1990 −0.97
    16 228 0.000353 0.000008 0.282301 0.000012 0.282278 −17.47 −12.47 1341 2051 −1.00
    17 219 0.000479 0.000010 0.282323 0.000013 0.282300 −16.69 −11.89 1311 2007 −1.00
    18 221 0.000507 0.000011 0.282280 0.000017 0.282257 −18.21 −13.37 1369 2102 −1.00
    19 227 0.001331 0.000032 0.282315 0.000018 0.282292 −16.97 −12.00 1322 2020 −1.00
    20 223 0.000626 0.000016 0.282284 0.000015 0.282261 −18.07 −13.18 1364 2092 −1.00
    21 234 0.029693 0.000765 0.282310 0.000015 0.282287 −17.15 −12.14 1355 2034 −0.98
    22 232 0.035978 0.000832 0.282320 0.000012 0.282297 −16.80 −11.84 1343 2013 −0.97
    24 227 0.000551 0.000012 0.282286 0.000010 0.282263 −18.00 −13.02 1361 2085 −1.00
    25 233 0.144341 0.003151 0.282332 0.000015 0.282309 −16.37 −11.75 1413 2008 −0.91
    26 225 0.001419 0.000023 0.282330 0.000013 0.282307 −16.44 −11.51 1302 1988 −1.00
    28 234 0.001903 0.000044 0.282387 0.000014 0.282364 −14.43 −9.30 1224 1855 −1.00
    29 229 0.003627 0.000085 0.282304 0.000016 0.282281 −17.36 −12.35 1339 2044 −1.00
    30 230 0.000404 0.000010 0.282288 0.000012 0.282265 −17.93 −12.89 1358 2078 −1.00
      注:TDM1=ln[(176Hf/177Hf样品176Hf/177HfDM)/(176Lu/177Hf样品176Lu/177HfDM)+1]/λ,TDM2=ln{[176Hf/177Hf样品176Hf/177HfDM−(176Lu/177Hf样品176Lu/177HfCrust) ×(eλt−1)] /(176Lu/177HfCrust176Lu/177HfDM) +1}/λ
    下载: 导出CSV
  • [1]

    Belousova E, Griffin W, O'Reilly S Y, et al. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602−622. doi: 10.1007/s00410-002-0364-7

    [2]

    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3/4): 347−359.

    [3]

    Huang X L, Wang R C, Chen X M, et al. 2002. Vertical variations in the mineralogy of the Yichun topaz lepidolite granite, Jiangxi Province, southern China[J]. Can. Miner., 40: 1047−1068. doi: 10.2113/gscanmin.40.4.1047

    [4]

    Kaeter D, Barros R, Menuge J F, et al. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscoviteand columbite-tantalite[J]. Geochimet Cosmochim Acta, 240: 98−130. doi: 10.1016/j.gca.2018.08.024

    [5]

    Linnen R L. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits[C]//Holland H D, Turekian K K. Treatise on geochemistry. Amsterdam: Elsevier Ltd., 13: 543–568.

    [6]

    Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    [7]

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    [8]

    Rollison H R. 1993. Using geochemical data: Evaluation, pre-Sentation, interpretation[M]. London, Longman Group UK: 1–20.

    [9]

    Sun S S, McDonough, W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    [10]

    Wang R C, Hu H, Zhang A C, et al. 2004. Pollucite and the cesiumdominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China[J]. Can. Miner., 42: 883−896. doi: 10.2113/gscanmin.42.3.883

    [11]

    Xie L, Wang R C, Che X D, et al. 2016. Tracking magmatic and hydrothermal Nb-Ta-W -Sn fractionation using mineral textures and composition: A case study from the late Cretaceous Jiepailing ore district in the Nanling Range in South China[J]. Ore Geol. Rev., 78: 300−321. doi: 10.1016/j.oregeorev.2016.04.003

    [12]

    Xie L, Wang Z, Wang R, et al. 2018. Mineral ogical constraints onthe genesis of W-Nb-T a mineralization in the Laiziling granite (Xianghua ling District, South China)[J]. Ore Geol. Rev., 95: 695−712. doi: 10.1016/j.oregeorev.2018.03.021

    [13]

    Yang J, Wu F, Shao J, et al. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 246(3/4): 336−352.

    [14]

    Zhu Z Y, Wang R C, Che X D, et al. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals[J]. Ore Geol. Rev., 65: 749−760. doi: 10.1016/j.oregeorev.2014.07.021

    [15]

    Zhu Z Y, Wang R C, Marignac C, et al. 2018. The Early Cretaceous Huangshan rare metalgranite complex, northeast Jiangxi Province, southeast China: A new style of Nb-rich rare metalgranite[J]. Am. Mineral, 65: 1−11.

    [16]

    常翔, 孙景贵, 陈旭, 等. 2023. 吉林省南部集安大石湖-大台子铜矿化区中生代中酸性杂岩岩石成因与地球动力学背景[J]. 吉林大学学报(地球科学版), 53(3): 920−945.

    [17]

    高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    [18]

    景立珍, 郭裕嘉, 丁彩霞. 1995. 辽宁赛马碱性岩的年代学及碱性岩桨的形成[J]. 辽宁地质, 4: 257−271.

    [19]

    鞠楠, 张森, 毕中伟, 等. 2019. 辽宁凤城赛马铌矿床成矿岩体地球化学特征及其地质意义[J]. 世界地质, 38(1): 130−153. doi: 10.3969/j.issn.1004-5589.2019.01.012

    [20]

    李建康, 李鹏, 王登红, 等. 2019. 中国铌钽矿成矿规律[J]. 科学通报, 64: 1545−1566.

    [21]

    李梦玲, 孙珍军, 于赫楠, 等. 2022. 秦皇岛茹各庄火山碎屑岩地球化学、锆石U-Pb定年、Hf同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 52(5): 1688−1706.

    [22]

    李石. 1992. 论碱性岩的定义和碱性花岗岩的分标[J]. 湖北地质, 6(1): 70−78.

    [23]

    罗晨皓, 周晔, 沈阳. 2019. 云南姚安Au-Pb-Ag矿床含矿富碱岩浆岩地球化学特征及岩石成因[J]. 地球科学, 44(6): 2063−2083.

    [24]

    邱家骧. 1993. 秦巴碱性岩[M]. 北京: 地质出版社: 139–141.

    [25]

    任康绪. 2003. 碱性岩研究进展述评[J]. 化工矿产地质, 25(3): 151−163.

    [26]

    宋运红, 郝立波, 杨凤超, 等. 2015. 辽东三叠纪弟兄山岩体SHRIMP U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 24(5): 444−452. doi: 10.3969/j.issn.1671-1947.2015.05.009

    [27]

    孙雷, 曾振, 崔维龙, 等. 2021. 黑龙江省东部晚三叠世—中侏罗世硅质岩地球化学特征及形成环境[J]. 地质与资源, 30(6): 637−645. doi: 10.13686/j.cnki.dzyzy.2021.06.001

    [28]

    涂光炽. 1989. 关于富碱侵入岩[J]. 矿产与地质, 13: 1−4.

    [29]

    邬斌, 王汝成, 郭国林, 等. 2020. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义[J]. 地球科学, 45(2): 467−478.

    [30]

    吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 11(3): 305−317. doi: 10.3969/j.issn.1006-7493.2005.03.003

    [31]

    阎国翰, 牟保磊, 许保良, 等. 2002. 中国北方显生宙富碱侵入岩年代学和Nd、Pb、Sr同位素特征及其意义[J]. 地质论评, 48(增刊): 69−76.

    [32]

    杨凤超, 孙景贵, 宋运红, 等. 2016. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 地球科学, 41(12): 2008−2018.

    [33]

    于喜洹, 李新鹏, 陈旭峰, 等. 2022. 大兴安岭潮满林场地区新元古代花岗质片麻岩——锆石U-Pb测年、地球化学特征及构造环境探讨[J]. 地质与资源, 31(2): 123−130. doi: 10.13686/j.cnki.dzyzy.2022.02.001

    [34]

    赵振华. 1994. 富碱侵入岩-窥探地慢成分的窗口[C]//欧阳自远. 中国矿物岩石地球化学研究进展. 兰州: 兰州大学出版社: 113–114.

    [35]

    钟军, 范洪海, 陈金勇, 等. 2020. 辽宁赛马霓霞正长岩黑云母地球化学特征、40Ar−39Ar 年龄及其地质意义[J]. 地球科学, 45(1): 131−144.

    [36]

    周玲棣, 赵振华. 1994. 我国富碱侵入岩的岩石学和岩石化学特征[J]. 中国科学(B辑), 20(10): 1093−1101.

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、PDF下载量统计信息摘要浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 10.4 %DOWNLOAD: 10.4 %摘要: 89.6 %摘要: 89.6 %DOWNLOAD摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 19.5 %其他: 19.5 %其他: 0.5 %其他: 0.5 %上海: 10.0 %上海: 10.0 %北京: 5.5 %北京: 5.5 %南京: 2.0 %南京: 2.0 %南昌: 1.0 %南昌: 1.0 %台州: 2.5 %台州: 2.5 %合肥: 3.0 %合肥: 3.0 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %常德: 1.0 %常德: 1.0 %广州: 3.5 %广州: 3.5 %弗吉: 0.5 %弗吉: 0.5 %张家口: 2.0 %张家口: 2.0 %杭州: 0.5 %杭州: 0.5 %武汉: 1.5 %武汉: 1.5 %湖州: 0.5 %湖州: 0.5 %漯河: 1.5 %漯河: 1.5 %班加罗尔: 1.0 %班加罗尔: 1.0 %石家庄: 3.0 %石家庄: 3.0 %芒廷维尤: 26.0 %芒廷维尤: 26.0 %芝加哥: 5.0 %芝加哥: 5.0 %莫斯科: 1.5 %莫斯科: 1.5 %衢州: 0.5 %衢州: 0.5 %西宁: 2.0 %西宁: 2.0 %西安: 1.0 %西安: 1.0 %诺沃克: 1.0 %诺沃克: 1.0 %郑州: 0.5 %郑州: 0.5 %长沙: 2.5 %长沙: 2.5 %其他其他上海北京南京南昌台州合肥哥伦布嘉兴常德广州弗吉张家口杭州武汉湖州漯河班加罗尔石家庄芒廷维尤芝加哥莫斯科衢州西宁西安诺沃克郑州长沙Highcharts.com

(7)

(3)

计量
  • 文章访问数:  769
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2021-12-31
修回日期:  2022-12-09
刊出日期:  2024-01-15

目录

  • 表 1.  辽东赛马地区霞霓正长岩(TW04)锆石U-Th-Pb同位素数据
    Table 1.  The U-Th-Pb isotope compositions of zircons from aegirine nepheline syenite (TW04)from Saima area in the eastern Liaoning Province
    点编号含量/10−6232Th/238U
    207Pb*/206Pb*
    206Pb*/238U
    207Pb*/235U
    误差206Pb/238U207Pb/235U谐和度
    206PbcUTh/%/%/%相关系数年龄/Ma年龄/Ma
    010.2121167918.3878.390.060.00680.040.00090.270.02290.308322662411893%
    020.22332183.656.610.080.01420.030.00100.290.03520.261619862582873%
    030.4428026213.620.940.050.00140.040.00040.250.00720.37672292225698%
    040.0015039610.022.640.060.00220.040.00040.270.01040.27302212240892%
    050.1587784.140.900.050.00290.040.00050.250.01360.250422432231199%
    060.0024719411.660.780.050.00190.040.00040.250.00920.32732313229798%
    074.20266305136.2511.450.280.00800.010.00020.430.01360.566370.3136410-36%
    080.00116735.060.620.060.00290.030.00040.270.01350.244021932401190%
    090.69108614.850.560.050.00270.040.00050.260.01230.295823232351098%
    100.0373721729.940.290.050.00120.030.00030.250.00550.37912212224498%
    110.26243182927.467.530.050.00190.040.00030.260.01000.25752252235895%
    120.072890311.5632.000.060.00590.030.00080.250.01890.328019852231587%
    130.08923477.543.790.050.00300.040.00050.250.01390.285222232301196%
    140.1516475913.564.640.070.00330.030.00060.260.00980.56941854235876%
    150.0044485853.05111.500.050.00350.040.00070.250.01790.278823142311499%
    160.1862372.790.600.050.00350.040.00060.250.01380.303622842231197%
    171.001991568.950.780.060.00230.030.00040.260.01060.26072192236992%
    180.00134415.310.310.050.00250.030.00040.240.01200.249322132211099%
    190.013155712.420.180.050.00150.040.00030.260.00730.34942272238695%
    201.34192407.550.210.050.00200.040.00040.250.00950.29342232230896%
    210.0021933512.491.530.050.00210.040.00040.260.00990.29982343233899%
    220.65296869.2023.500.050.00460.040.00070.250.01820.280223252251597%
    230.2310365811.156.360.090.00590.030.00050.360.01880.346719233141451%
    240.63402584.456.490.050.00420.040.00060.230.01790.235622742141594%
    250.3521291531.11135.980.060.00590.040.00100.270.01970.384223362461694%
    260.00170137220.788.090.050.00190.040.00040.240.00900.30302253214795%
    271.2712660212.034.790.100.00380.030.00030.410.01470.313219123461142%
    280.61642795.534.400.050.00360.040.00060.260.01690.274323442381497%
    291.085926522.780.110.050.00110.040.00030.250.00590.32562292223597%
    300.28169987.500.580.050.00220.040.00040.250.01100.24362302226998%
     | Show Table
    DownLoad: CSV
  • 表 2.  辽东赛马地区碱性杂岩主量、微量和稀土元素含量
    Table 2.  Major, trace and rare earth elements data for the alkaline complex from Saima area in the eastern Liaoning Province
    样品号 TW03-YQ1 TW03-YQ2 TW03-YQ3 TW03-YQ4 TW03-YQ5 TW04-YQ1 TW04-YQ2 TW04-YQ3 TW04-YQ4 TW04-YQ5
    SiO2 57.27 56.95 56.49 55.87 56.01 60.85 60.60 60.42 60.88 59.81
    TiO2 0.81 0.66 0.84 0.97 0.69 0.86 0.91 0.86 0.89 0.94
    Al2O3 19.18 18.75 18.84 18.53 19.53 18.38 18.26 17.93 18.66 17.81
    Fe2O3 1.85 1.92 2.09 2.40 1.73 4.94 5.03 5.09 4.62 6.22
    MnO 0.08 0.08 0.08 0.09 0.07 0.08 0.09 0.08 0.08 0.09
    MgO 0.64 0.86 0.59 0.58 0.75 0.62 1.36 0.84 0.46 0.47
    CaO 0.76 0.78 0.85 0.94 0.90 0.04 0.25 0.04 0.04 0.09
    Na2O 4.40 4.87 5.32 5.16 4.97 0.46 0.54 0.47 0.45 0.41
    K2O 10.03 9.46 9.68 10.09 9.50 11.76 11.11 11.91 11.69 11.78
    P2O5 0.10 0.10 0.08 0.10 0.10 0.03 0.04 0.03 0.03 0.04
    FeO 2.29 2.35 2.31 2.46 2.15 0.42 0.47 0.54 0.58 0.49
    烧失量 2.08 2.67 2.42 2.28 2.58 1.24 1.34 1.13 1.37 1.52
    A/CNK 0.99 0.95 0.91 0.88 0.97 1.35 1.37 1.31 1.39 1.31
    σ43 13.89 13.83 15.73 17.01 14.91 8.18 7.54 8.55 8.04 8.57
    总计 99.49 99.45 99.59 99.47 98.98 99.68 100 99.34 99.75 99.67
    Cr 8.94 7.92 8.56 7.98 9.34 10.9 8.53 8.63 9.39 9.28
    Ni 1.95 1.79 2.21 0.96 4.14 2.41 3.56 2.52 2.73 2.95
    Rb 515 297 358 360 549 317 324 323 334 323
    Sr 3000 3400 3300 3600 3200 1000 794 989 889 765
    Zr 819 489 644 573 1200 658 850 672 683 838
    Nb 54.7 27.5 39.0 35.5 58.4 42.1 50.3 42.0 51.8 41.3
    Ba 2800 2600 2500 2900 2700 1400 1400 1400 1400 1500
    Hf 17.5 24.2 29.1 27.0 20.2 15.8 19.4 20.1 20.9 24.4
    Ta 2.13 1.53 1.64 2.23 2.40 1.85 1.95 2.31 2.45 1.85
    Th 18.6 19.4 25.4 24.3 23.9 23.2 26.2 23.7 28.0 34.0
    U 4.92 3.54 4.68 3.77 6.37 5.51 7.06 6.00 4.68 7.59
    Li 50.8 54.6 48.9 50.7 48.6 55.0 63.6 41.5 35.1 45.2
    Be 10.3 9.64 10.4 10.8 11.6 5.48 5.47 6.23 6.36 6.72
    Co 6.12 6.70 6.20 6.43 5.39 7.23 7.79 5.97 5.33 8.72
    V 53.0 56.6 57.1 56.5 53.5 69.9 79.0 70.7 77.3 81.1
    Ga 28.4 29.4 29.2 30.9 27.5 29.3 29.9 28.8 27.0 29.2
    Sc 3.19 3.01 3.16 3.06 3.59 3.37 3.39 3.30 3.54 3.40
    Pb 69.9 86.6 84.0 111 77.5 103 106 119 121 124
    Y 14.3 11.8 13.7 15.0 14.9 8.84 11.4 8.43 10.1 9.62
    La 224 126 152 153 137 86.0 145 85.2 125 70.8
    Ce 347 280 354 359 318 261 337 259 388 327
    Pr 25.2 20.2 26.2 27.2 24.4 14.6 24.5 15.4 21.4 13.2
    Nd 78.0 61.6 81.9 87.7 80.2 47.1 76.2 49.3 66.6 43.5
    Sm 11.1 8.85 11.5 12.8 11.3 6.99 10.9 7.78 10.1 7.22
    Eu 3.53 3.00 3.46 3.75 3.35 2.07 2.72 2.20 2.50 2.21
    Gd 8.49 6.78 8.86 9.40 8.79 5.72 8.35 5.98 7.99 6.20
    Tb 0.99 0.78 1.01 1.12 1.03 0.63 0.89 0.65 0.85 0.65
    Dy 3.74 2.92 3.76 4.09 3.86 2.25 3.01 2.32 2.97 2.32
    Ho 0.56 0.46 0.57 0.61 0.60 0.35 0.44 0.35 0.44 0.36
    Er 1.61 1.25 1.57 1.69 1.66 0.97 1.27 0.99 1.20 1.04
    Tm 0.21 0.18 0.20 0.23 0.22 0.13 0.17 0.13 0.16 0.16
    Yb 1.15 1.02 1.13 1.24 1.20 0.79 1.00 0.75 0.94 1.00
    Lu 0.17 0.16 0.17 0.19 0.17 0.12 0.16 0.12 0.14 0.17
    ΣREE 706 513 647 661 592 428 611 430 628 476
    LREE 689 499 629 643 574 418 596 419 613 464
    HREE 16.91 13.54 17.27 18.57 17.53 10.97 15.28 11.29 14.69 11.90
    LREE/HREE 40.73 36.86 36.44 34.62 32.75 38.08 39.02 37.13 41.74 39.01
    (La/Yb)N 140 88.5 96.9 88.3 81.9 78.1 104 81.2 95.6 50.9
    δEu 1.11 1.18 1.05 1.05 1.03 1.00 0.87 0.98 0.85 1.01
      注:σ43为里特曼指数,σ43=[w(Na2O+K2O)]2/[w(SiO2)]−43
     | Show Table
    DownLoad: CSV
  • 表 3.  辽东赛马地区霞霓正长岩(TW04)锆石Hf同位素含量
    Table 3.  Hf isotope data of aegirine nepheline syenite (TW04) from Saima area in the eastern Liaoning Province
    测点编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 176Hf/177Hfi εHf(0) εHf(t) TDM1 /Ma TDM2 /Ma fLu/Hf
    01 226 0.053437 0.001291 0.282290 0.000013 0.282267 −17.86 −13.09 1402 2088 −0.96
    03 229 0.000917 0.000021 0.282333 0.000012 0.282310 −16.34 −11.32 1297 1979 −1.00
    04 221 0.001844 0.000041 0.282333 0.000013 0.282310 −16.34 −11.50 1298 1984 −1.00
    05 224 0.001043 0.000023 0.282302 0.000012 0.282279 −17.43 −12.52 1340 2051 −1.00
    08 219 0.001057 0.000018 0.282333 0.000019 0.282310 −16.34 −11.54 1297 1985 −1.00
    09 232 0.000687 0.000016 0.282293 0.000015 0.282270 −17.75 −12.67 1352 2066 −1.00
    10 221 0.003449 0.000068 0.282322 0.000016 0.282299 −16.73 −11.89 1314 2009 −1.00
    11 225 0.001295 0.000030 0.282306 0.000019 0.282283 −17.29 −12.36 1335 2042 −1.00
    13 222 0.000242 0.000004 0.282286 0.000013 0.282263 −18.00 −13.13 1361 2088 −1.00
    15 231 0.042501 0.000941 0.282331 0.000012 0.282308 −16.41 −11.48 1332 1990 −0.97
    16 228 0.000353 0.000008 0.282301 0.000012 0.282278 −17.47 −12.47 1341 2051 −1.00
    17 219 0.000479 0.000010 0.282323 0.000013 0.282300 −16.69 −11.89 1311 2007 −1.00
    18 221 0.000507 0.000011 0.282280 0.000017 0.282257 −18.21 −13.37 1369 2102 −1.00
    19 227 0.001331 0.000032 0.282315 0.000018 0.282292 −16.97 −12.00 1322 2020 −1.00
    20 223 0.000626 0.000016 0.282284 0.000015 0.282261 −18.07 −13.18 1364 2092 −1.00
    21 234 0.029693 0.000765 0.282310 0.000015 0.282287 −17.15 −12.14 1355 2034 −0.98
    22 232 0.035978 0.000832 0.282320 0.000012 0.282297 −16.80 −11.84 1343 2013 −0.97
    24 227 0.000551 0.000012 0.282286 0.000010 0.282263 −18.00 −13.02 1361 2085 −1.00
    25 233 0.144341 0.003151 0.282332 0.000015 0.282309 −16.37 −11.75 1413 2008 −0.91
    26 225 0.001419 0.000023 0.282330 0.000013 0.282307 −16.44 −11.51 1302 1988 −1.00
    28 234 0.001903 0.000044 0.282387 0.000014 0.282364 −14.43 −9.30 1224 1855 −1.00
    29 229 0.003627 0.000085 0.282304 0.000016 0.282281 −17.36 −12.35 1339 2044 −1.00
    30 230 0.000404 0.000010 0.282288 0.000012 0.282265 −17.93 −12.89 1358 2078 −1.00
      注:TDM1=ln[(176Hf/177Hf样品176Hf/177HfDM)/(176Lu/177Hf样品176Lu/177HfDM)+1]/λ,TDM2=ln{[176Hf/177Hf样品176Hf/177HfDM−(176Lu/177Hf样品176Lu/177HfCrust) ×(eλt−1)] /(176Lu/177HfCrust176Lu/177HfDM) +1}/λ
     | Show Table
    DownLoad: CSV