Zircon U–Pb age, Hf isotope composition, and their constraints on tectonic setting of the Saima alkaling complex in the eastern Liaoning Province
-
摘要:
通过LA-ICP-MS测得辽宁赛马地区浅肉红色霞霓正长岩中的锆石U-Pb年龄为225.8±1.9 Ma,赛马碱性杂岩的侵位时代为晚三叠世。地球化学分析表明,霞霓正长岩SiO2含量为55.87% ~ 60.88%,Na2O为0.41% ~ 5.32%,Al2O3为17.81% ~ 19.53%,K2O为9.46% ~ 11.91%,MgO为0.46% ~ 1.36%,里特曼指数为7.54 ~ 17.01;稀土元素总量较高,高于300×10−6,强烈富集轻稀土元素,(La/Yb)N值大于10,个别达到100以上;亏损Nb、Ta、P等高场强元素,富集Rb、Th等大离子亲石元素,总体表现出富碱性岩石特征。锆石εHf(t)值为−13.37 ~ −9.30,对应的两阶段Hf模式年龄TDM2为2102 ~ 1855 Ma。通过岩石成因分析和构造环境判别,赛马碱性杂岩可能形成于由俯冲挤压向陆内伸展、拉张转换的动力背景下的下地壳(或上地幔)部分熔融。赛马碱性杂岩侵位时代(225.8±1.9 Ma)可能代表了华北克拉通北缘岩石圈开始伸展减薄的时间,也是郯庐断裂形成的时间。
-
关键词:
- LA-ICP-MS U-Pb年龄 /
- Hf同位素组成 /
- 晚三叠世 /
- 赛马碱性杂岩 /
- 辽东地区
Abstract:The light-red aegirine nepheline syenite in Liaoning Saima area has a LA-ICP-MS U-Pb age of 225.8 ± 1.9 Ma, and the emplacement age of the Saima alkaline complex is the Late Triassic. Aegirine nepheline syenite shows SiO2 of 55.87%~60.88%, Na2O of 0.41%~5.32%, Al2O3 of 17.81%~19.53%, K2O of 9.46%~11.91%, MgO of 0.46%~1.36%, σ43 of 7.54~17.01.The total amount of rare earth elements is higher than 300×10−6, and it is strongly enriched with light rare earth elements. Depletion of high field strength elements such as Nb, Ta, P, and enrichment of large ion lithophilic elements such as Rb, Th, shows the characteristics of alkaline rich rocks. The zircon εHf (t) value is −13.37 ~ −9.30, the corresponding two-stage Hf model age TDM2 is 2102~1855 Ma. The Saima alkaline complex may be formed by the partial melting of the lower crust (or upper mantle) under the dynamic background of subduction-squeezing to inland extension and extension conversion. The age of emplacement (225.8 ± 1.9 Ma) may represent the time when the lithosphere began to stretch and thin on the northern margin of the North China Craton, and also the time when the Tanlu fault was formed.
-
图 5 辽东赛马地区碱性杂岩稀土元素配分曲线(a)和微量元素蛛网图(b)(标准值据Sun et al., 1989)
Figure 5.
图 6 辽东赛马地区霞霓正长岩锆石Lu-Hf同位素特征(底图据Yang et al.,2006)
Figure 6.
图 7 辽东赛马地区碱性杂岩构造环境图解(底图据Pearce et al.,1984)
Figure 7.
表 1 辽东赛马地区霞霓正长岩(TW04)锆石U-Th-Pb同位素数据
Table 1. The U-Th-Pb isotope compositions of zircons from aegirine nepheline syenite (TW04)from Saima area in the eastern Liaoning Province
点编号 含量/10−6 232Th/238U 207Pb*/206Pb* 1σ 206Pb*/238U 1σ 207Pb*/235U 1σ 误差 206Pb/238U 207Pb/235U 谐和度 206Pbc U Th /% /% /% 相关系数 年龄/Ma 年龄/Ma 01 0.21 21 1679 18.38 78.39 0.06 0.0068 0.04 0.0009 0.27 0.0229 0.3083 226 6 241 18 93% 02 0.22 33 218 3.65 6.61 0.08 0.0142 0.03 0.0010 0.29 0.0352 0.2616 198 6 258 28 73% 03 0.44 280 262 13.62 0.94 0.05 0.0014 0.04 0.0004 0.25 0.0072 0.3767 229 2 225 6 98% 04 0.00 150 396 10.02 2.64 0.06 0.0022 0.04 0.0004 0.27 0.0104 0.2730 221 2 240 8 92% 05 0.15 87 78 4.14 0.90 0.05 0.0029 0.04 0.0005 0.25 0.0136 0.2504 224 3 223 11 99% 06 0.00 247 194 11.66 0.78 0.05 0.0019 0.04 0.0004 0.25 0.0092 0.3273 231 3 229 7 98% 07 4.20 266 3051 36.25 11.45 0.28 0.0080 0.01 0.0002 0.43 0.0136 0.5663 70.3 1 364 10 -36% 08 0.00 116 73 5.06 0.62 0.06 0.0029 0.03 0.0004 0.27 0.0135 0.2440 219 3 240 11 90% 09 0.69 108 61 4.85 0.56 0.05 0.0027 0.04 0.0005 0.26 0.0123 0.2958 232 3 235 10 98% 10 0.03 737 217 29.94 0.29 0.05 0.0012 0.03 0.0003 0.25 0.0055 0.3791 221 2 224 4 98% 11 0.26 243 1829 27.46 7.53 0.05 0.0019 0.04 0.0003 0.26 0.0100 0.2575 225 2 235 8 95% 12 0.07 28 903 11.56 32.00 0.06 0.0059 0.03 0.0008 0.25 0.0189 0.3280 198 5 223 15 87% 13 0.08 92 347 7.54 3.79 0.05 0.0030 0.04 0.0005 0.25 0.0139 0.2852 222 3 230 11 96% 14 0.15 164 759 13.56 4.64 0.07 0.0033 0.03 0.0006 0.26 0.0098 0.5694 185 4 235 8 76% 15 0.00 44 4858 53.05 111.50 0.05 0.0035 0.04 0.0007 0.25 0.0179 0.2788 231 4 231 14 99% 16 0.18 62 37 2.79 0.60 0.05 0.0035 0.04 0.0006 0.25 0.0138 0.3036 228 4 223 11 97% 17 1.00 199 156 8.95 0.78 0.06 0.0023 0.03 0.0004 0.26 0.0106 0.2607 219 2 236 9 92% 18 0.00 134 41 5.31 0.31 0.05 0.0025 0.03 0.0004 0.24 0.0120 0.2493 221 3 221 10 99% 19 0.01 315 57 12.42 0.18 0.05 0.0015 0.04 0.0003 0.26 0.0073 0.3494 227 2 238 6 95% 20 1.34 192 40 7.55 0.21 0.05 0.0020 0.04 0.0004 0.25 0.0095 0.2934 223 2 230 8 96% 21 0.00 219 335 12.49 1.53 0.05 0.0021 0.04 0.0004 0.26 0.0099 0.2998 234 3 233 8 99% 22 0.65 29 686 9.20 23.50 0.05 0.0046 0.04 0.0007 0.25 0.0182 0.2802 232 5 225 15 97% 23 0.23 103 658 11.15 6.36 0.09 0.0059 0.03 0.0005 0.36 0.0188 0.3467 192 3 314 14 51% 24 0.63 40 258 4.45 6.49 0.05 0.0042 0.04 0.0006 0.23 0.0179 0.2356 227 4 214 15 94% 25 0.35 21 2915 31.11 135.98 0.06 0.0059 0.04 0.0010 0.27 0.0197 0.3842 233 6 246 16 94% 26 0.00 170 1372 20.78 8.09 0.05 0.0019 0.04 0.0004 0.24 0.0090 0.3030 225 3 214 7 95% 27 1.27 126 602 12.03 4.79 0.10 0.0038 0.03 0.0003 0.41 0.0147 0.3132 191 2 346 11 42% 28 0.61 64 279 5.53 4.40 0.05 0.0036 0.04 0.0006 0.26 0.0169 0.2743 234 4 238 14 97% 29 1.08 592 65 22.78 0.11 0.05 0.0011 0.04 0.0003 0.25 0.0059 0.3256 229 2 223 5 97% 30 0.28 169 98 7.50 0.58 0.05 0.0022 0.04 0.0004 0.25 0.0110 0.2436 230 2 226 9 98% 表 2 辽东赛马地区碱性杂岩主量、微量和稀土元素含量
Table 2. Major, trace and rare earth elements data for the alkaline complex from Saima area in the eastern Liaoning Province
样品号 TW03-YQ1 TW03-YQ2 TW03-YQ3 TW03-YQ4 TW03-YQ5 TW04-YQ1 TW04-YQ2 TW04-YQ3 TW04-YQ4 TW04-YQ5 SiO2 57.27 56.95 56.49 55.87 56.01 60.85 60.60 60.42 60.88 59.81 TiO2 0.81 0.66 0.84 0.97 0.69 0.86 0.91 0.86 0.89 0.94 Al2O3 19.18 18.75 18.84 18.53 19.53 18.38 18.26 17.93 18.66 17.81 Fe2O3 1.85 1.92 2.09 2.40 1.73 4.94 5.03 5.09 4.62 6.22 MnO 0.08 0.08 0.08 0.09 0.07 0.08 0.09 0.08 0.08 0.09 MgO 0.64 0.86 0.59 0.58 0.75 0.62 1.36 0.84 0.46 0.47 CaO 0.76 0.78 0.85 0.94 0.90 0.04 0.25 0.04 0.04 0.09 Na2O 4.40 4.87 5.32 5.16 4.97 0.46 0.54 0.47 0.45 0.41 K2O 10.03 9.46 9.68 10.09 9.50 11.76 11.11 11.91 11.69 11.78 P2O5 0.10 0.10 0.08 0.10 0.10 0.03 0.04 0.03 0.03 0.04 FeO 2.29 2.35 2.31 2.46 2.15 0.42 0.47 0.54 0.58 0.49 烧失量 2.08 2.67 2.42 2.28 2.58 1.24 1.34 1.13 1.37 1.52 A/CNK 0.99 0.95 0.91 0.88 0.97 1.35 1.37 1.31 1.39 1.31 σ43 13.89 13.83 15.73 17.01 14.91 8.18 7.54 8.55 8.04 8.57 总计 99.49 99.45 99.59 99.47 98.98 99.68 100 99.34 99.75 99.67 Cr 8.94 7.92 8.56 7.98 9.34 10.9 8.53 8.63 9.39 9.28 Ni 1.95 1.79 2.21 0.96 4.14 2.41 3.56 2.52 2.73 2.95 Rb 515 297 358 360 549 317 324 323 334 323 Sr 3000 3400 3300 3600 3200 1000 794 989 889 765 Zr 819 489 644 573 1200 658 850 672 683 838 Nb 54.7 27.5 39.0 35.5 58.4 42.1 50.3 42.0 51.8 41.3 Ba 2800 2600 2500 2900 2700 1400 1400 1400 1400 1500 Hf 17.5 24.2 29.1 27.0 20.2 15.8 19.4 20.1 20.9 24.4 Ta 2.13 1.53 1.64 2.23 2.40 1.85 1.95 2.31 2.45 1.85 Th 18.6 19.4 25.4 24.3 23.9 23.2 26.2 23.7 28.0 34.0 U 4.92 3.54 4.68 3.77 6.37 5.51 7.06 6.00 4.68 7.59 Li 50.8 54.6 48.9 50.7 48.6 55.0 63.6 41.5 35.1 45.2 Be 10.3 9.64 10.4 10.8 11.6 5.48 5.47 6.23 6.36 6.72 Co 6.12 6.70 6.20 6.43 5.39 7.23 7.79 5.97 5.33 8.72 V 53.0 56.6 57.1 56.5 53.5 69.9 79.0 70.7 77.3 81.1 Ga 28.4 29.4 29.2 30.9 27.5 29.3 29.9 28.8 27.0 29.2 Sc 3.19 3.01 3.16 3.06 3.59 3.37 3.39 3.30 3.54 3.40 Pb 69.9 86.6 84.0 111 77.5 103 106 119 121 124 Y 14.3 11.8 13.7 15.0 14.9 8.84 11.4 8.43 10.1 9.62 La 224 126 152 153 137 86.0 145 85.2 125 70.8 Ce 347 280 354 359 318 261 337 259 388 327 Pr 25.2 20.2 26.2 27.2 24.4 14.6 24.5 15.4 21.4 13.2 Nd 78.0 61.6 81.9 87.7 80.2 47.1 76.2 49.3 66.6 43.5 Sm 11.1 8.85 11.5 12.8 11.3 6.99 10.9 7.78 10.1 7.22 Eu 3.53 3.00 3.46 3.75 3.35 2.07 2.72 2.20 2.50 2.21 Gd 8.49 6.78 8.86 9.40 8.79 5.72 8.35 5.98 7.99 6.20 Tb 0.99 0.78 1.01 1.12 1.03 0.63 0.89 0.65 0.85 0.65 Dy 3.74 2.92 3.76 4.09 3.86 2.25 3.01 2.32 2.97 2.32 Ho 0.56 0.46 0.57 0.61 0.60 0.35 0.44 0.35 0.44 0.36 Er 1.61 1.25 1.57 1.69 1.66 0.97 1.27 0.99 1.20 1.04 Tm 0.21 0.18 0.20 0.23 0.22 0.13 0.17 0.13 0.16 0.16 Yb 1.15 1.02 1.13 1.24 1.20 0.79 1.00 0.75 0.94 1.00 Lu 0.17 0.16 0.17 0.19 0.17 0.12 0.16 0.12 0.14 0.17 ΣREE 706 513 647 661 592 428 611 430 628 476 LREE 689 499 629 643 574 418 596 419 613 464 HREE 16.91 13.54 17.27 18.57 17.53 10.97 15.28 11.29 14.69 11.90 LREE/HREE 40.73 36.86 36.44 34.62 32.75 38.08 39.02 37.13 41.74 39.01 (La/Yb)N 140 88.5 96.9 88.3 81.9 78.1 104 81.2 95.6 50.9 δEu 1.11 1.18 1.05 1.05 1.03 1.00 0.87 0.98 0.85 1.01 注:σ43为里特曼指数,σ43=[w(Na2O+K2O)]2/[w(SiO2)]−43 表 3 辽东赛马地区霞霓正长岩(TW04)锆石Hf同位素含量
Table 3. Hf isotope data of aegirine nepheline syenite (TW04) from Saima area in the eastern Liaoning Province
测点编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ 176Hf/177Hfi εHf(0) εHf(t) TDM1 /Ma TDM2 /Ma fLu/Hf 01 226 0.053437 0.001291 0.282290 0.000013 0.282267 −17.86 −13.09 1402 2088 −0.96 03 229 0.000917 0.000021 0.282333 0.000012 0.282310 −16.34 −11.32 1297 1979 −1.00 04 221 0.001844 0.000041 0.282333 0.000013 0.282310 −16.34 −11.50 1298 1984 −1.00 05 224 0.001043 0.000023 0.282302 0.000012 0.282279 −17.43 −12.52 1340 2051 −1.00 08 219 0.001057 0.000018 0.282333 0.000019 0.282310 −16.34 −11.54 1297 1985 −1.00 09 232 0.000687 0.000016 0.282293 0.000015 0.282270 −17.75 −12.67 1352 2066 −1.00 10 221 0.003449 0.000068 0.282322 0.000016 0.282299 −16.73 −11.89 1314 2009 −1.00 11 225 0.001295 0.000030 0.282306 0.000019 0.282283 −17.29 −12.36 1335 2042 −1.00 13 222 0.000242 0.000004 0.282286 0.000013 0.282263 −18.00 −13.13 1361 2088 −1.00 15 231 0.042501 0.000941 0.282331 0.000012 0.282308 −16.41 −11.48 1332 1990 −0.97 16 228 0.000353 0.000008 0.282301 0.000012 0.282278 −17.47 −12.47 1341 2051 −1.00 17 219 0.000479 0.000010 0.282323 0.000013 0.282300 −16.69 −11.89 1311 2007 −1.00 18 221 0.000507 0.000011 0.282280 0.000017 0.282257 −18.21 −13.37 1369 2102 −1.00 19 227 0.001331 0.000032 0.282315 0.000018 0.282292 −16.97 −12.00 1322 2020 −1.00 20 223 0.000626 0.000016 0.282284 0.000015 0.282261 −18.07 −13.18 1364 2092 −1.00 21 234 0.029693 0.000765 0.282310 0.000015 0.282287 −17.15 −12.14 1355 2034 −0.98 22 232 0.035978 0.000832 0.282320 0.000012 0.282297 −16.80 −11.84 1343 2013 −0.97 24 227 0.000551 0.000012 0.282286 0.000010 0.282263 −18.00 −13.02 1361 2085 −1.00 25 233 0.144341 0.003151 0.282332 0.000015 0.282309 −16.37 −11.75 1413 2008 −0.91 26 225 0.001419 0.000023 0.282330 0.000013 0.282307 −16.44 −11.51 1302 1988 −1.00 28 234 0.001903 0.000044 0.282387 0.000014 0.282364 −14.43 −9.30 1224 1855 −1.00 29 229 0.003627 0.000085 0.282304 0.000016 0.282281 −17.36 −12.35 1339 2044 −1.00 30 230 0.000404 0.000010 0.282288 0.000012 0.282265 −17.93 −12.89 1358 2078 −1.00 注:TDM1=ln[(176Hf/177Hf样品−176Hf/177HfDM)/(176Lu/177Hf样品−176Lu/177HfDM)+1]/λ,TDM2=ln{[176Hf/177Hf样品−176Hf/177HfDM−(176Lu/177Hf样品−176Lu/177HfCrust) ×(eλt−1)] /(176Lu/177HfCrust−176Lu/177HfDM) +1}/λ -
[1] Belousova E, Griffin W, O'Reilly S Y, et al. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602−622. doi: 10.1007/s00410-002-0364-7
[2] Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3/4): 347−359.
[3] Huang X L, Wang R C, Chen X M, et al. 2002. Vertical variations in the mineralogy of the Yichun topaz lepidolite granite, Jiangxi Province, southern China[J]. Can. Miner., 40: 1047−1068. doi: 10.2113/gscanmin.40.4.1047
[4] Kaeter D, Barros R, Menuge J F, et al. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscoviteand columbite-tantalite[J]. Geochimet Cosmochim Acta, 240: 98−130. doi: 10.1016/j.gca.2018.08.024
[5] Linnen R L. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits[C]//Holland H D, Turekian K K. Treatise on geochemistry. Amsterdam: Elsevier Ltd., 13: 543–568.
[6] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004
[7] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956
[8] Rollison H R. 1993. Using geochemical data: Evaluation, pre-Sentation, interpretation[M]. London, Longman Group UK: 1–20.
[9] Sun S S, McDonough, W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[10] Wang R C, Hu H, Zhang A C, et al. 2004. Pollucite and the cesiumdominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China[J]. Can. Miner., 42: 883−896. doi: 10.2113/gscanmin.42.3.883
[11] Xie L, Wang R C, Che X D, et al. 2016. Tracking magmatic and hydrothermal Nb-Ta-W -Sn fractionation using mineral textures and composition: A case study from the late Cretaceous Jiepailing ore district in the Nanling Range in South China[J]. Ore Geol. Rev., 78: 300−321. doi: 10.1016/j.oregeorev.2016.04.003
[12] Xie L, Wang Z, Wang R, et al. 2018. Mineral ogical constraints onthe genesis of W-Nb-T a mineralization in the Laiziling granite (Xianghua ling District, South China)[J]. Ore Geol. Rev., 95: 695−712. doi: 10.1016/j.oregeorev.2018.03.021
[13] Yang J, Wu F, Shao J, et al. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 246(3/4): 336−352.
[14] Zhu Z Y, Wang R C, Che X D, et al. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals[J]. Ore Geol. Rev., 65: 749−760. doi: 10.1016/j.oregeorev.2014.07.021
[15] Zhu Z Y, Wang R C, Marignac C, et al. 2018. The Early Cretaceous Huangshan rare metalgranite complex, northeast Jiangxi Province, southeast China: A new style of Nb-rich rare metalgranite[J]. Am. Mineral, 65: 1−11.
[16] 常翔, 孙景贵, 陈旭, 等. 2023. 吉林省南部集安大石湖-大台子铜矿化区中生代中酸性杂岩岩石成因与地球动力学背景[J]. 吉林大学学报(地球科学版), 53(3): 920−945.
[17] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.
[18] 景立珍, 郭裕嘉, 丁彩霞. 1995. 辽宁赛马碱性岩的年代学及碱性岩桨的形成[J]. 辽宁地质, 4: 257−271.
[19] 鞠楠, 张森, 毕中伟, 等. 2019. 辽宁凤城赛马铌矿床成矿岩体地球化学特征及其地质意义[J]. 世界地质, 38(1): 130−153. doi: 10.3969/j.issn.1004-5589.2019.01.012
[20] 李建康, 李鹏, 王登红, 等. 2019. 中国铌钽矿成矿规律[J]. 科学通报, 64: 1545−1566.
[21] 李梦玲, 孙珍军, 于赫楠, 等. 2022. 秦皇岛茹各庄火山碎屑岩地球化学、锆石U-Pb定年、Hf同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 52(5): 1688−1706.
[22] 李石. 1992. 论碱性岩的定义和碱性花岗岩的分标[J]. 湖北地质, 6(1): 70−78.
[23] 罗晨皓, 周晔, 沈阳. 2019. 云南姚安Au-Pb-Ag矿床含矿富碱岩浆岩地球化学特征及岩石成因[J]. 地球科学, 44(6): 2063−2083.
[24] 邱家骧. 1993. 秦巴碱性岩[M]. 北京: 地质出版社: 139–141.
[25] 任康绪. 2003. 碱性岩研究进展述评[J]. 化工矿产地质, 25(3): 151−163.
[26] 宋运红, 郝立波, 杨凤超, 等. 2015. 辽东三叠纪弟兄山岩体SHRIMP U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 24(5): 444−452. doi: 10.3969/j.issn.1671-1947.2015.05.009
[27] 孙雷, 曾振, 崔维龙, 等. 2021. 黑龙江省东部晚三叠世—中侏罗世硅质岩地球化学特征及形成环境[J]. 地质与资源, 30(6): 637−645. doi: 10.13686/j.cnki.dzyzy.2021.06.001
[28] 涂光炽. 1989. 关于富碱侵入岩[J]. 矿产与地质, 13: 1−4.
[29] 邬斌, 王汝成, 郭国林, 等. 2020. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义[J]. 地球科学, 45(2): 467−478.
[30] 吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 11(3): 305−317. doi: 10.3969/j.issn.1006-7493.2005.03.003
[31] 阎国翰, 牟保磊, 许保良, 等. 2002. 中国北方显生宙富碱侵入岩年代学和Nd、Pb、Sr同位素特征及其意义[J]. 地质论评, 48(增刊): 69−76.
[32] 杨凤超, 孙景贵, 宋运红, 等. 2016. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 地球科学, 41(12): 2008−2018.
[33] 于喜洹, 李新鹏, 陈旭峰, 等. 2022. 大兴安岭潮满林场地区新元古代花岗质片麻岩——锆石U-Pb测年、地球化学特征及构造环境探讨[J]. 地质与资源, 31(2): 123−130. doi: 10.13686/j.cnki.dzyzy.2022.02.001
[34] 赵振华. 1994. 富碱侵入岩-窥探地慢成分的窗口[C]//欧阳自远. 中国矿物岩石地球化学研究进展. 兰州: 兰州大学出版社: 113–114.
[35] 钟军, 范洪海, 陈金勇, 等. 2020. 辽宁赛马霓霞正长岩黑云母地球化学特征、40Ar−39Ar 年龄及其地质意义[J]. 地球科学, 45(1): 131−144.
[36] 周玲棣, 赵振华. 1994. 我国富碱侵入岩的岩石学和岩石化学特征[J]. 中国科学(B辑), 20(10): 1093−1101.