Late Paleozoic tectonic evolution of Ganzi-Litang Ocean in Sanjiang region, Southwest China: Constraints from U-Pb geochronology of cumulate gabbro in Litang ophiolitic mélange belt
-
摘要:
理塘县高城镇西北的擦岗隆洼岩组是一套以玄武岩为基质的蛇绿混杂岩,通过该蛇绿混杂岩中堆晶辉长岩的LA-ICP-MS 锆石U-Pb定年,显示其年龄范围介于349 ~ 274 Ma之间,形成2个年龄组:第一组斜锆石206Pb/238U年龄加权平均值为346±17 Ma,代表堆晶辉长岩早期岩浆活动的时代;第二组斜锆石206Pb/238U年龄加权平均值为286.2±5.1 Ma,代表了堆晶辉长岩晚期岩浆活动的结晶年龄。擦岗隆洼岩组的超基性—基性岩具有N-MORB(正常洋中脊玄武岩)和E-MORB(富集型洋中脊玄武岩)组合特征,指示这些岩石可能形成于洋中脊环境,岩浆物质源自N-MORB所代表的亏损上地幔源区受地幔柱交代混染后而形成的混合源区。研究认为,甘孜−理塘洋最早可能在中泥盆世,受区域地幔柱活动影响开始拉张,导致中咱地块从扬子陆块西缘裂离,并在早石炭世发育形成洋盆。在中晚三叠世甘孜−理塘洋壳开始向西俯冲,并于晚三叠世末闭合,区域进入弧陆碰撞造山阶段。
-
关键词:
- 斜锆石 U-Pb年龄 /
- 堆晶辉长岩 /
- 擦岗隆洼岩组 /
- 甘孜-理塘蛇绿混杂岩带
Abstract:Located in the northwest of Gaocheng Town, Litang County, the Caganglongwa rock Formation is a set of ophiolitic mélange with basalt as the matrix. LA-ICP-MS zircon U-Pb dating of the cumulate gabbro in the ophiolitic mélange shows an age distribution range from 274 Ma to 349 Ma, indicating two age groups. The first group of baddeleyite 206Pb/238U has a weighted average age of 346 ± 17 Ma, which represents the age of early magmatism of cumulate gabbro; the second group of baddeleyite 206Pb/238U has a weighted average age of 286.2 ± 5.1 Ma, which represents the crystallization age for late magmatism of cumulate gabbro. The ultrabasic and basic rocks in the Caganglongwa rock Formation display combined characteristics of N-MORB and E-MORB, indicating that these rocks may be formed in the mid-ocean ridge environment, and the magma material comes from a mixed source region formed by depleted upper mantle source region represented by N-MORB and metasomatically contaminated by the mantle plume. The research finds that the Ganzi-Litang Ocean may begin to stretch as early as the Middle Devonian due to the regional mantle plume activity, resulting in the split of the Zhongza block from the western margin of the Yangtze block and the Formation of an ocean basin in the Early Carboniferous. By the Mid-Late Triassic, the Ganzi-Litang oceanic crust was subducted westward and closed at the end of the Late Triassic, and the region entered the arc-continent collision orogeny stage.
-
图 4 甘孜-理塘蛇绿混杂岩带擦岗隆洼岩组岩石组合(a)与挪威Karmoy蛇绿岩剖面 (b,据Sturt et al., 1979)对比
Figure 4.
图 6 擦岗隆洼岩组超基性—基性岩岩石分类图解(底图据Winchester et al., 1977)
Figure 6.
图 7 擦岗隆洼岩组超基性—基性岩稀土元素标准化分配模式图(a)和微量元素标准化蛛网图(b)(标准化值据Sun et al., 1989)
Figure 7.
图 10 擦岗隆洼岩组超基性—基性岩构造环境判别图解(底图据Wood et al., 1980)
Figure 10.
表 1 擦岗隆洼岩组超基性—基性岩石主量、稀土和微量元素组成
Table 1. Major, rare earth, and trace elements of ultrabasic and basic rocks in Caganglongwa rock Formation
元素 PM01-25 FX1 PM01- 33 FX1 PM01-34 FX1 PM01-37 FX1 PM01- 38FX1 PM01-39 FX1 PM02-01 FX1 PM02-01 FX2 PM02-01 FX3 蚀变杏仁状
玄武岩蚀变辉
长岩蚀变橄榄
辉石岩蚀变橄榄
辉石岩枕状玄
武岩蚀变橄榄
辉石岩蚀变堆晶
辉长岩蚀变堆晶
辉长岩蚀变堆晶
辉长岩SiO2 39.66 38.67 41.68 40.73 41.63 38.63 39.53 39.73 39.18 Al2O3 9.68 10.96 6.73 7.69 12.93 9.87 11.31 13.21 10.86 Fe2O3 12.12 18.28 11.19 11.36 10.52 12.07 17.61 16.97 19.37 CaO 8.15 10.69 3.95 5.77 16.36 8.12 10.41 10.39 10.53 MgO 22.63 8.67 26.85 25.39 10.75 23.16 7.45 7.42 7.39 K2O 0.03 1.08 0.04 0.03 0.06 0.05 0.59 0.58 0.55 Na2O 0.07 3.34 0.04 0.03 1.54 0.10 5.40 5.43 4.79 MnO 0.15 0.23 0.11 0.13 0.16 0.18 0.23 0.30 0.24 TiO2 0.75 3.53 0.49 0.61 1.03 0.83 3.63 3.76 4.07 P2O5 0.07 0.28 0.06 0.07 0.10 0.07 0.34 0.36 0.35 烧失量 6.71 4.12 8.79 8.10 4.92 6.92 3.47 0.47 2.61 总计 100.02 99.85 99.93 99.91 100.00 100.00 99.97 98.62 99.94 La 3.264 8.446 1.832 2.660 4.550 2.208 24.820 6.158 8.618 Ce 8.000 19.502 4.548 6.248 10.924 5.738 58.760 16.646 25.520 Pr 1.208 2.756 0.716 0.928 1.698 0.990 8.004 2.688 4.278 Nd 6.360 14.006 3.794 4.794 8.746 5.662 38.280 14.272 23.460 Sm 1.958 3.966 1.206 1.464 2.534 2.040 9.800 4.022 7.128 Eu 0.758 1.136 0.434 0.534 0.892 0.742 3.070 1.614 2.530 Gd 2.262 4.632 1.482 1.716 2.836 2.536 10.624 4.088 7.396 Tb 0.400 0.750 0.264 0.314 0.498 0.464 1.680 0.644 1.188 Dy 2.548 4.878 1.768 2.104 3.106 3.166 10.518 3.710 7.052 Ho 0.484 0.928 0.350 0.414 0.598 0.612 1.952 0.666 1.246 Er 1.456 2.882 1.028 1.228 1.720 1.894 5.936 1.908 3.496 Tm 0.194 0.378 0.144 0.172 0.232 0.250 0.780 0.242 0.444 Yb 1.302 2.590 0.936 1.090 1.472 1.684 5.490 1.624 2.904 Lu 0.178 0.348 0.138 0.162 0.212 0.232 0.738 0.220 0.400 Y 12.338 22.980 8.902 10.710 15.288 15.092 48.700 17.078 31.400 Li 8.02 13.90 18.49 11.79 4.55 17.03 4.84 12.89 10.75 Sc 26.78 23.70 19.96 23.68 28.50 31.20 35.72 8.75 33.36 V 181.08 205.80 154.10 169.74 243.20 227.60 297.00 166.86 338.00 Cr 2020.00 349.80 2724.00 3116.00 578.20 2250.00 97.04 124.82 63.04 Co 88.08 37.24 111.52 102.06 51.80 85.70 36.08 49.08 43.26 Ni 1065.40 179.28 1454.20 1418.40 352.20 1070.20 50.62 140.46 46.32 Cu 88.00 136.98 63.46 74.00 121.78 98.44 69.62 41.30 85.18 Zn 71.22 26.18 54.38 60.64 56.58 96.24 102.32 63.94 117.38 Ga 11.49 17.34 8.02 8.92 16.29 13.04 28.58 18.43 20.94 Rb bdl 5.66 0.97 1.30 1.05 1.95 2.32 17.47 11.86 Sr 29.68 82.10 9.71 11.69 66.92 21.58 278.20 790.60 692.20 Zr 40.48 101.66 30.32 35.32 61.74 46.02 369.20 94.82 161.10 Nb 3.31 8.96 2.26 3.55 3.17 1.93 25.52 4.37 7.27 Cs 0.58 0.07 0.76 0.96 0.19 0.25 0.30 1.35 1.10 Ba 4.18 66.68 6.90 1.95 14.08 bdl 104.78 129.04 215.60 Hf 1.18 2.63 0.92 1.05 1.78 1.38 9.00 2.58 4.57 Ta 0.56 0.86 0.09 0.21 0.18 0.13 1.67 0.38 0.48 Pb bdl bdl 0.11 0.05 1.63 2.85 bdl 0.87 3.09 Th 0.36 1.08 0.23 0.33 0.47 0.23 3.10 0.56 0.87 U 0.07 0.24 0.05 0.08 0.14 0.06 0.78 0.14 0.22 元素 PM02-
08FX1PM06-
43FX1PM06-
43 FX2PM06-
43FX3PM06-
46 FX1PM06-
46FX2PM09-
57FX1PM09-
58 FX1PM09-
64FX1PM09-
66FX1蚀变玄
武岩蚀变堆
晶辉长岩蚀变堆
晶辉长岩蚀变堆
晶辉长岩蚀变杏
仁状玄武岩枕状玄
武岩橄榄玄
武岩块状玄
武岩杏仁状
玄武岩斑状玄
武岩SiO2 36.45 38.87 39.58 40.16 45.53 45.98 37.68 39.35 45.14 42.48 Al2O3 10.20 11.84 12.42 11.50 13.18 14.84 9.61 15.74 15.06 12.23 Fe2O3 12.68 13.89 11.65 13.54 12.05 11.28 11.50 9.90 12.41 12.38 CaO 4.97 15.77 16.85 16.83 9.44 12.48 6.53 19.81 11.76 7.85 MgO 25.71 10.35 10.88 8.66 11.16 7.37 25.15 2.74 6.84 15.93 K2O 0.06 1.45 1.23 0.26 0.50 0.138 0.03 0.07 0.88 0.12 Na2O 0.03 2.16 2.34 3.55 3.02 2.82 0.05 2.66 2.84 2.49 MnO 0.17 0.24 0.18 0.19 0.16 0.160 0.16 0.12 0.17 0.16 TiO2 0.72 1.69 1.31 1.92 1.47 1.582 0.80 1.02 1.51 1.17 P2O5 0.07 0.21 0.19 0.27 0.13 0.174 0.08 0.09 0.16 0.11 烧失量 8.90 3.44 3.36 3.09 3.34 3.98 8.41 7.86 3.21 4.96 总计 99.96 99.91 99.99 99.97 99.98 100.80 100.00 99.36 99.98 99.88 La 1.798 5.802 5.406 8.894 5.624 6.384 2.602 6.650 7.224 3.682 Ce 4.776 14.254 12.972 21.340 14.362 14.470 6.672 13.560 16.054 9.868 Pr 0.802 2.108 1.914 3.012 2.238 2.117 1.034 2.098 2.380 1.674 Nd 4.530 10.836 9.644 14.766 11.950 10.270 5.706 10.150 12.192 9.180 Sm 1.622 3.086 2.752 4.028 3.620 2.697 1.868 2.792 3.628 2.838 Eu 0.678 1.256 1.124 1.456 1.336 1.000 0.682 0.990 1.440 1.050 Gd 2.054 3.486 3.108 4.394 4.170 2.366 2.276 3.228 4.316 3.260 Tb 0.414 0.564 0.492 0.698 0.692 0.453 0.408 0.558 0.758 0.570 Dy 2.810 3.474 3.088 4.200 4.538 2.806 2.746 3.550 4.998 3.646 Ho 0.576 0.632 0.562 0.766 0.844 0.609 0.524 0.688 0.988 0.714 Er 1.726 1.848 1.640 2.230 2.512 1.723 1.632 2.032 2.858 2.034 Tm 0.244 0.236 0.210 0.288 0.324 0.296 0.218 0.278 0.386 0.274 Yb 1.574 1.542 1.378 1.864 2.186 2.071 1.456 1.778 2.554 1.718 Lu 0.226 0.208 0.186 0.242 0.294 0.359 0.202 0.258 0.362 0.246 Y 14.520 15.938 14.288 19.242 20.780 16.030 12.764 17.606 25.200 17.838 Li 22.64 20.26 22.50 12.24 9.32 5.20 22.86 3.11 28.42 7.40 Sc 29.96 42.18 45.34 43.06 37.84 39.16 28.18 17.33 41.58 34.54 V 209.20 280.00 221.00 306.00 326.60 322.10 207.40 288.60 332.20 274.40 Cr 2372 220.00 429.80 50.86 636.60 245.90 2044.00 60.40 98.70 1164.20 Co 95.78 45.94 40.58 40.04 49.28 51.26 79.04 27.86 43.78 65.58 Ni 1289 115.24 123.24 113.22 247.40 63.10 946.00 45.86 82.02 591.60 Cu 101.74 117.70 72.54 93.88 153.36 124.70 95.58 46.56 146.32 86.46 Zn 62.68 69.76 41.30 76.20 56.38 76.34 58.16 40.78 71.90 65.72 Ga 10.86 17.78 16.50 21.12 16.17 14.83 11.12 33.72 18.07 14.77 Rb 3.41 27.12 25.64 4.60 7.75 3.77 1.04 0.75 17.60 1.79 Sr 13.00 377.00 408.80 162.92 268.00 91.15 15.58 148.38 415.00 151.42 Zr 36.92 67.16 60.86 85.18 89.92 95.37 46.40 70.38 80.78 69.08 Nb 1.97 5.00 3.93 6.01 4.50 6.71 2.80 5.94 7.36 3.17 Cs 2.91 1.86 0.65 0.29 0.12 0.29 0.67 0.04 0.35 0.14 Ba 41.98 304.00 130.32 50.90 59.84 23.25 bdl 26.56 308.60 31.98 Hf 1.16 1.99 1.75 2.49 2.47 10.03 1.36 1.90 2.32 2.02 Ta 0.19 0.46 0.34 0.59 0.30 0.67 0.20 0.29 0.41 0.17 Pb 0.00 3.01 0.64 bdl 2.67 1.00 2.76 0.92 0.45 0.33 Th 0.20 0.77 0.69 1.14 0.75 0.97 0.35 0.62 0.76 0.30 U 0.05 0.19 0.15 0.21 0.17 0.25 0.08 0.13 0.17 0.09 注:主量元素含量单位为%,微量和稀土元素含量单位为10−6;bdl表示低于检测限 表 2 擦岗隆洼岩组堆晶辉长岩斜锆石U-Th-Pb分析结果
Table 2. Baddeleyite U-Th-Pb analysis data of cumulate gabbro in Caganglongwa rock Formation
分析点 含量/10−6 Th/U 同位素比值 年龄/Ma Pb* Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ rho 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ PM2-01DN-1-11 1746 1168 29742 0.04 0.0787 0.0058 0.4945 0.0322 0.0459 0.0013 0.4303 1165 145 408 22 289 8 PM2-01DN-1-12 576 288 8828 0.03 0.6033 0.1225 2.6314 0.2445 0.0540 0.0034 0.6840 4516 332 1309 68 339 21 PM2-01DN-1-13 55 19 573 0.03 0.2688 0.0348 1.8646 0.1952 0.0557 0.0022 0.3825 3299 210 1069 69 349 14 PM2-01DN-1-14 637 1002 11282 0.09 0.1467 0.0135 0.7794 0.0519 0.0449 0.0017 0.5529 2309 158 585 30 283 10 PM2-01DN-1-15 362 544 6320 0.09 0.0954 0.0077 0.6277 0.0581 0.0463 0.0013 0.2934 1536 152 495 36 292 8 PM2-01DN-1-16 149 399 2558 0.16 0.1905 0.0261 1.0445 0.0948 0.0455 0.0017 0.4122 2747 233 726 47 287 10 PM2-01DN-1-17 809 690 10423 0.07 0.4043 0.0509 2.4573 0.2881 0.0550 0.0028 0.4327 3925 190 1260 85 345 17 PM2-01DN-1-18 2044 2583 38422 0.07 0.1231 0.0116 0.7516 0.0455 0.0486 0.0017 0.5822 2002 168 569 26 306 11 PM2-01DN-1-19 2536 4823 52409 0.09 0.0824 0.0072 0.4804 0.0368 0.0438 0.0011 0.3199 1257 170 398 25 276 7 PM2-01DN-1-20 31 32 550 0.06 0.2948 0.0338 1.5713 0.1739 0.0466 0.0021 0.4009 3444 179 959 69 294 13 PM2-01DN-1-21 81 134 1314 0.10 0.3164 0.0452 1.7025 0.1468 0.0475 0.0022 0.5315 3552 222 1009 55 299 13 PM2-01DN-1-22 991 891 21093 0.04 0.0793 0.0063 0.4755 0.0330 0.0456 0.0013 0.3981 1189 156 395 23 288 8 PM2-01DN-1-23 550 552 11903 0.05 0.2337 0.0308 1.1230 0.0893 0.0438 0.0018 0.5302 3077 212 764 43 276 11 PM2-01DN-1-24 1352 1886 27114 0.07 0.1541 0.0121 0.8795 0.0528 0.0474 0.0017 0.6048 2392 134 641 29 299 11 PM2-01DN-1-25 42 87 663 0.13 0.4334 0.0611 2.5905 0.2537 0.0549 0.0031 0.5706 4029 212 1298 72 344 19 PM2-01DN-1-26 286 355 5759 0.06 0.1042 0.0082 0.6244 0.0432 0.0451 0.0010 0.3186 1702 146 493 27 284 6 PM2-01DN-1-27 2376 2093 48303 0.04 0.1028 0.0101 0.6180 0.0532 0.0482 0.0014 0.3324 1676 181 489 33 304 8 PM2-01DN-1-28 2017 1467 43658 0.03 0.0941 0.0085 0.5072 0.0350 0.0441 0.0013 0.4282 1510 171 417 24 278 8 PM2-01DN-1-29 1008 1154 21480 0.05 0.0924 0.0065 0.5306 0.0343 0.0434 0.0011 0.4073 1476 103 432 23 274 7 PM2-01DN-1-30 bdl bdl bdl bdl 0.1326 0.0112 0.7765 0.0591 0.0444 0.0015 0.4436 2133 148 583 34 280 9 注:bdl表示低于检测限;rho代表谐协和图中单点误差图的半径 -
[1] Dunning G R, Peterson R B. 1988. U/Pb ages of ophiolites and arc-related cratons of the Norwegian Caledonides: Implications for the development of impetus[J]. Contribution to Mineralogy and Petrology, 98: 13−23. doi: 10.1007/BF00371904
[2] Sturt B A, Thon A, Furnes H. 1979. The karmoy ophiolite, southwest Norway[J]. Geology, 7: 316−320.
[3] Sun S S, MacDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes[J]. Geological Society London, Special Publication, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[4] Wang B Q, Zhou M F, Chen W T, et al. 2013. Petrogenesis and tectonic implications of the Triassic volcanic rocks in the northern Yidun Terrane, Eastern Tibet[J]. Lithos, 175/176: 285−301. doi: 10.1016/j.lithos.2013.05.013
[5] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series their differentiation products using immobile elements[J]. Chem. Geol., 20: 325−345. doi: 10.1016/0009-2541(77)90057-2
[6] Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Plaetary Science Letters, 50: 11−30. doi: 10.1016/0012-821X(80)90116-8
[7] 范蔚茗, 王岳军, 彭头平, 等. 2004. 桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束[J]. 科学通报, 49(18): 1892−1900.
[8] 侯增谦, 卢记仁, 李红阳, 等. 1996. 中国西南特提斯构造演化——幔柱构造控制[J]. 地球学报, 17(4): 439−453.
[9] 侯增谦, 曲晓明, 周继荣, 等. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录[J]. 地质学报, 75(4): 484−497.
[10] 黄豪擎. 2019. 川理塘地区蛇绿混杂岩地质特征及其构造演化[D]. 中国地质大学(北京)硕士学位论文.
[11] 简平, 刘敦一, 张旗, 等. 2003. 蛇绿岩及蛇绿岩中浅色岩SHRIMP U-Pb测年[J]. 地学前缘, 10(4): 439−456.
[12] 简平, 汪啸风, 何龙清, 等. 1998. 中国西南哀牢山蛇绿岩同位素地质年代学及大地构造意义[J]. 华南地质与矿产, (1): 1−11.
[13] 李春昱. 1980. 中国板块构造的轮廓[J]. 中国地质科学院院报, 2(1): 11−22.
[14] 李文昌, 潘桂棠, 侯增谦, 等. 2010. 西南三江多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社: 38−40.
[15] 李艳广, 汪双双, 刘民武, 等. 2015. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418.
[16] 林金录. 1987. 中国古地磁数据表(Ⅰ)[J]. 地质科学, (2): 183−187.
[17] 刘宝田, 江耀明, 曲景川. 1983. 四川理塘—甘孜一带古洋壳的发现及其对板块构造的意义[C]//青藏高原地质文集. 北京: 地质出版社, 119−127.
[18] 莫宣学, 路凤香, 沈上越, 等. 1993. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社: 19−32.
[19] 潘桂棠, 陈智梁, 李兴振, 等. 1997. 东特提斯构造的形成与演化[M]. 北京: 地质出版社: 41−43.
[20] 曲晓明, 侯增谦. 2002. 从潘拥枕状玄武岩的40Ar-39Ar年龄论金沙江缝合带和甘孜—理塘缝合带的演化关系[J]. 地质论评, 48(增刊): 115−121.
[21] 宋谢炎, 王玉兰, 曹志敏, 等. 1998. 峨眉山玄武岩、峨眉地裂运动与幔热柱[J]. 地质地球化学, 1: 47−52.
[22] 王保弟, 王立全, 潘桂棠, 等. 2013. 昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J]. 科学通报, 58(4): 344−354.
[23] 王连城, 张旗. 1985. 四川理塘蛇绿混杂岩——一个以火山岩为基质的蛇绿混杂带[J]. 岩石学报, 1(2): 17−27.
[24] 肖龙, 徐义刚, 何斌. 2005. 试论地幔柱构造与川滇西部古特提斯的演化[J]. 地质科技情报, 24(4): 1−6.
[25] 谢力, 杨文强, 刘桂春, 等. 2012. 云南香格里拉上三叠统沉积混杂岩中的晚古生代和中三叠世放射虫及其地质意义[J]. 微体古生物学报, 3: 253−269.
[26] 闫全人, 王宗起, 刘树文, 等. 2005. 西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解: 来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据[J]. 科学通报, 50(2): 158−166.
[27] 严松涛, 谭昌海, 秦蒙, 等. 2021. 甘孜——理塘蛇绿混杂岩带中段理塘地区混杂岩物质组成及其地质演化[J]. 中国地质, 48(6): 1825−1845.
[28] 严松涛, 吴青松, 朱利东, 等. 2023. 甘孜-理塘蛇绿混杂岩带晚三叠世洋岛型岩石组合识别及其对甘孜-理塘洋盆构造演化的制约[J]. 地质通报, 42(10): 1684−1695. doi: 10.12097/j.issn.1671-2552.2023.10.006
[29] 杨文强, 冯庆来, 刘桂春. 2010. 滇西北甘孜-理塘构造带放射虫地层、硅质岩地球化学及其构造古地理意义[J]. 地质学报, 84(1): 78−89.
[30] 尹福光, 罗亮, 任飞. 2022. 再造西南"三江"造山带洋陆转换过程中的构造与古地理[J]. 地质通报, 41(11): 1899−1914. doi: 10.12097/j.issn.1671-2552.2022.11.001
[31] 张世红, 朱鸿, 孟小红. 2001. 扬子地块泥盆纪石炭纪古地磁新结果及其古地理意义[J]. 地质学报, 75(3): 303−313.
[32] 张世涛, 冯庆来, 王义昭. 2000. 甘孜-理塘构造带泥盆系的深水沉积[J]. 地质科技情报, 19(3): 17−20.
[33] 张之孟, 金蒙. 1979. 川西南乡城-得荣地区的两种混杂岩及其构造意义[J]. 地质科学, (3): 205−213.
[34] 钟大赉. 1998. 滇川西部古特提斯造山带[M]. 北京: 科学出版社: 1−231.
[35] 周晨. 2018. 理塘擦岗隆洼岩组含放射虫硅质岩地球化学特征与形成环境[D]. 中国地质大学(北京)硕士学位论文.