Discovery of the Paleoproterozoic complex at Dongwayao in northern Hebei and its constraint on the extensional event of the North China Craton
-
摘要:
华北克拉通的形成时间一直存在分歧,冀北基底隆起区是研究华北克拉通形成演化过程的理想区域。在冀北新发现的东瓦窑古元古代后造山A型花岗岩杂岩体,对揭示华北克拉通的形成时限具有重要启示。以东瓦窑杂岩体为研究对象,开展了岩石学、地球化学、锆石U−Pb年龄和Hf同位素研究,讨论杂岩体的形成时代、岩石成因和构造环境。锆石LA−ICP−MS U−Pb测年表明,东瓦窑杂岩体的正长花岗岩和石英正长岩侵位年龄分别为1920±11 Ma和1902±12 Ma,表明东瓦窑杂岩体侵位于古元古代晚期,并非以前认为的早白垩世。岩石地球化学研究表明,该区正长花岗岩富SiO2(72.07%~75.03%)、Na2O+K2O(8.54%~8.99%)、K2O(5.78%~6.64%)、贫CaO、Al2O3、MgO、P2O5、TiO2、Ba、Sr、Eu、P和Ti。石英正长岩属于碱性系列,富SiO2(66.09%~66.65%)、Na2O+K2O(12.22%~12.35%)、K2O (10.00%~10.18%),贫TiO2、MgO、CaO、Sr、Eu和Ti。正长花岗岩和石英正长岩均具有较高的TFeO/MgO、K2O/MgO、(Na2O+K2O)/CaO值和较高的锆石饱和温度(平均822°C),显示A型花岗岩的地球化学特征。东瓦窑杂岩体形成于后造山伸展环境,为后造山A2型花岗岩。正长花岗岩和石英正长岩的锆石εHf (t)值分别为–2.56~+2.42和–3.27~+4.17,模式年龄tDM1分别为2262~2419 Ma和2175 ~2466 Ma,显示其岩浆主要源于古老地壳物质的部分熔融。东瓦窑古元古代晚期后造山A型花岗岩杂岩体的识别与确定,表明华北克拉通北缘存在古元古代晚期后造山伸展构造−岩浆事件,标志华北克拉通1.92 Ga前后的碰撞造山拼合作用结束,进入后造山伸展演化阶段。 华北克拉通的碰撞拼合形成时限可能为1.92 Ga前后。
Abstract:The formation time of the North China Craton (NCC) is still unclear, and the basement uplift region in northern Hebei is an ideal area for studying the formation and evolution of the NCC. A Paleoproterozoic post−orogenic A−type granite complex newly discovered at Dongwayao has important implications for understanding the formation time of the NCC. This paper present results of petrology, geochemistry, LA−ICP−MS zircon U−Pb geochronology and Hf isotopic composition of the Dongwayao complex to discusse the formation age, petrogenesis and tectonic setting.The LA−ICP−MS zircon U−Pb dating shows that the ages of the syenogranite and quartz syenite are 1920±11 Ma and 1902±12 Ma, respectively, indicating that the complex was emplaced in the Late Paleoproterozoic, not the Early Cretaceous as originally suggested. Petrogeochemical studies show that the syenogranite has high SiO2(72.07%~75.03%), Na2O+K2O (8.54%~8.99%) and K2O(5.78%~6.64%) contents, and poor in CaO, Al2O3, MgO, P2O5, TiO2, Ba, Sr, Eu, P and Ti contents. The quartz syenite belongs to alkaline series and is relatively rich SiO2(66.09%~66.65%), Na2O+K2O (12.22%~12.35%) and K2O(10.00%~10.18%) contents, and poor in TiO2, MgO, CaO, Sr, Eu and Ti contents. The syenogranite and quartz syenite have high TFeO/MgO, K2O/MgO, (Na2O+K2O)/CaO ratios and high zircon saturation temperatures (average 842°C), indicating the geochemical features of A-type granite. According to the chemical subdivision diagrams of the A−type granitoids, the complex shows the characteristics of A2−type granitoid, formed in post−orogenic extensional tectonic setting. The εHf (t) values of the syenogranite and quartz syenite range from -2.56 to+2.42 and-3.27 to+4.17, respectively, with model ages of 2262~2419 Ma and 2175~2466 Ma. The A−type granites were derived predominantly from partial melting of the ancient crustal materials with involvement of a small amount of mantle materials. The Dongwayao A−type granite complex newly discovered indicates that there is a late Paleoproterozoic post−orogenic extensional tectonic−magmatic event in the northern margin of the NCC, which marks the end of ~1.92 Ga orogenic movement in the NCC and the beginning of the postorogenic evolution.The timing for the collision and assembly of the NCC may be around 1.92 Ga.
-
Key words:
- A-type granite /
- Paleoproterozoic /
- post-orogenic extension /
- North China Craton /
- northern Hebei
-
图 1 冀北东瓦窑杂岩体区域构造图(a)、区域地质图(b)和地质图(c) ( a,据Zhao et al.,2005修改;b,据刘树文等,2007修改)
Figure 1.
图 4 东瓦窑正长花岗岩、石英正长岩TAS分类图解(a)和SiO2−K2O分类图解(b)(a,底图据Middlemost,1994; b,底图据Peccerillo et al., 1976)
Figure 4.
图 5 东瓦窑正长花岗岩、石英正长岩稀土元素球粒陨石标准化配分模式(a)和微量元素原始地幔标准化蛛网图(b)(a,标准化值据Boynton, 1984; b,标准化值据Sun et al, 1989)
Figure 5.
图 7 东瓦窑正长花岗岩和石英正长岩10000×Ga/Al与(K2O+Na2O)/CaO(a)、K2O/MgO(b)、TFeO/MgO(c)、K2O+Na2O(d)、Ce(e)和(Zr+Nb+Ce+Y)−(K2O+Na2O)/CaO(f)判别图解(底图据Whalen et al.,1987)
Figure 7.
图 8 东瓦窑正长花岗岩和石英正长岩Y−Nb−Ce(a)、(Y+Nb)−Rb(b)和 R1−R2(c) 构造环境判别图解(a,底图据Eby,1992;b,底图据Pearce et al.,1984;c,底图据Delaroche et al.,1980)
Figure 8.
表 1 东瓦窑正长花岗岩(SG06)和石英正长岩(QS11)LA−ICP−MS 锆石U−Th−Pb测试结果
Table 1. LA−ICP−MS U−Th−Pb dating results of zircons from the Dongwayao syenogranite(SG06) and quartz syenite(QS11)
点号 元素含量/10−6 Th/U 同位素原子比率 表面年龄/Ma Pb Th U 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 正长花岗岩(SG06) 01 5601.5 2779.3 3389.7 0.82 5.7830 0.0690 0.3557 0.0024 0.1177 0.0014 1944 10 1961 12 1925 21 02 3261.5 1159.8 2021.2 0.57 5.8530 0.0880 0.3600 0.0031 0.1179 0.0017 1957 13 1982 15 1922 27 03 2377.7 1631.7 1622.1 1.01 5.7800 0.1600 0.3597 0.0087 0.1201 0.0024 1952 25 1977 42 1955 34 04 1993.6 799.8 1267.2 0.63 5.6900 0.1200 0.3489 0.0029 0.1181 0.0024 1927 17 1929 14 1931 38 05 2526.5 1010.1 1590.1 0.64 5.5600 0.1000 0.3493 0.0029 0.1145 0.0021 1907 15 1931 14 1871 33 06 3458.0 2461.5 2318.8 1.06 5.7900 0.1400 0.3598 0.0061 0.1181 0.0019 1948 20 1980 29 1920 29 07 5421.5 5454.8 4004.4 1.36 5.1320 0.0620 0.3084 0.0032 0.1210 0.0015 1840 10 1734 16 1972 22 08 8444.6 6874.4 6102.5 1.13 5.2200 0.1100 0.3077 0.0077 0.1233 0.0011 1855 18 1727 38 2004 17 09 5373.0 2832.7 3662.9 0.77 5.4230 0.0770 0.3300 0.0038 0.1200 0.0013 1887 12 1838 19 1956 19 10 3712.6 1533.1 2276.1 0.67 5.6120 0.0890 0.3525 0.0028 0.1164 0.0018 1920 13 1948 14 1902 28 11 3447.4 3017.7 2273.5 1.33 5.4290 0.0930 0.3385 0.0038 0.1186 0.0019 1887 15 1879 18 1928 28 12 5727.6 7765.0 4428.2 1.75 5.2100 0.1500 0.3162 0.0096 0.1213 0.0012 1853 24 1766 47 1979 18 13 5630.9 5333.8 3723.3 1.43 5.3850 0.0690 0.3282 0.0035 0.1199 0.0014 1881 11 1829 17 1955 21 14 3777.5 2823.7 2657.7 1.06 5.2040 0.0960 0.3172 0.0039 0.1193 0.0017 1852 16 1775 19 1943 26 15 2712.8 872.3 1702.7 0.51 5.6290 0.0990 0.3503 0.0034 0.1164 0.0019 1918 15 1936 16 1908 30 16 3663.7 1380.7 2306.2 0.60 5.5610 0.0820 0.3473 0.0031 0.1169 0.0017 1910 13 1923 15 1907 25 17 6754.4 10566.9 6628.7 1.59 3.9070 0.0530 0.2340 0.0025 0.1206 0.0012 1614 11 1355 13 1965 18 18 9788.8 8943.9 8062.4 1.11 4.6840 0.0640 0.2802 0.0035 0.1216 0.0013 1764 11 1592 18 1977 19 19 3491.4 1426.6 2281.8 0.63 5.5410 0.0870 0.3379 0.0039 0.1187 0.0018 1905 14 1876 19 1934 27 20 7381.8 7165.2 5488.8 1.31 5.0300 0.1400 0.3096 0.0087 0.1189 0.0016 1822 24 1735 43 1937 24 21 3625.5 3468.5 2641.0 1.31 5.1800 0.1300 0.3196 0.0067 0.1177 0.0018 1845 21 1785 33 1922 28 22 6915.0 4282.4 4366.2 0.98 5.3880 0.0620 0.3418 0.0029 0.1148 0.0013 1882 9.8 1895 14 1876 21 23 6261.1 5640.9 4064.6 1.39 5.4090 0.0900 0.3370 0.0035 0.1183 0.0014 1886 14 1872 17 1928 21 24 2935.5 1161.5 1862.0 0.62 5.6500 0.0950 0.3500 0.0041 0.1175 0.0019 1926 15 1934 20 1921 29 25 4729.8 2181.1 3012.8 0.72 5.5220 0.0880 0.3447 0.0027 0.1166 0.0018 1905 13 1909 13 1907 29 26 2409.8 817.8 1519.3 0.54 5.5700 0.1100 0.3480 0.0030 0.1160 0.0021 1917 17 1925 14 1916 32 27 3413.5 1227.2 2146.1 0.57 5.5890 0.0920 0.3495 0.0032 0.1168 0.0019 1915 14 1933 16 1907 28 28 2655.3 1028.6 1819.8 0.57 5.3200 0.1000 0.3232 0.0026 0.1200 0.0021 1869 17 1805 13 1955 32 29 7047.4 8671.0 4996.7 1.74 5.4900 0.1000 0.3222 0.0080 0.1239 0.0020 1897 16 1797 39 2006 29 30 3694.1 1843.9 2483.7 0.74 5.3440 0.0950 0.3276 0.0034 0.1202 0.0020 1878 15 1826 17 1954 31 31 5053.9 3649.1 3210.9 1.14 5.7600 0.1000 0.3508 0.0044 0.1202 0.0017 1939 15 1940 21 1967 25 32 3539.9 2938.7 2322.3 1.27 5.6200 0.1200 0.3502 0.0062 0.1189 0.0017 1915 19 1934 30 1937 25 石英正长岩(QS11) 01 2605.9 1060.1 1659.1 0.64 5.4840 0.0950 0.3439 0.0029 0.1164 0.0019 1897 15 1905 14 1904 30 02 8335.3 10863.8 7473.1 1.45 4.3300 0.1000 0.2513 0.0061 0.1262 0.0012 1699 19 1443 32 2043 17 03 4085.2 4182.1 3392.9 1.23 4.9400 0.1900 0.3010 0.0140 0.1196 0.0016 1806 35 1692 68 1952 24 04 3447.9 1244.5 2158.7 0.58 5.5820 0.0810 0.3529 0.0025 0.1155 0.0019 1914 12 1948 12 1896 28 05 4224.6 3126.2 2956.7 1.06 5.4500 0.1300 0.3397 0.0082 0.1193 0.0019 1898 20 1882 40 1955 30 06 2127.8 1367.3 1549.8 0.88 4.7830 0.0940 0.3029 0.0031 0.1148 0.0023 1780 17 1705 16 1878 35 07 2198.7 823.1 1353.0 0.61 5.7900 0.1000 0.3577 0.0029 0.1178 0.0020 1943 16 1971 14 1923 31 08 5564.8 6338.4 4211.4 1.51 5.1500 0.1100 0.3136 0.0072 0.1207 0.0016 1843 19 1756 36 1964 23 09 1334.0 759.6 864.9 0.88 5.4500 0.1100 0.3405 0.0035 0.1169 0.0023 1891 16 1889 17 1911 34 10 3732.8 1676.1 2429.3 0.69 5.4090 0.0970 0.3360 0.0034 0.1168 0.0017 1886 15 1867 16 1914 26 11 3321.3 1264.4 2091.6 0.60 5.6810 0.0910 0.3517 0.0029 0.1173 0.0019 1928 14 1942 14 1924 30 12 3476.7 1418.6 2257.1 0.63 5.4830 0.0950 0.3360 0.0031 0.1184 0.0017 1898 15 1867 15 1941 26 13 4327.8 2067.4 2798.9 0.74 5.4400 0.0720 0.3378 0.0029 0.1175 0.0015 1891 11 1876 14 1916 23 14 6164.7 3337.3 3937.2 0.85 5.3770 0.0580 0.3355 0.0024 0.1169 0.0012 1881 9 1867 11 1909 19 15 3544.7 1213.6 2289.0 0.53 5.5720 0.0780 0.3491 0.0030 0.1173 0.0015 1913 12 1930 14 1913 23 16 9097.2 9091.3 6628.1 1.37 5.2100 0.1000 0.3084 0.0054 0.1239 0.0014 1851 17 1731 27 2010 21 17 5210.3 2512.8 3235.0 0.78 5.6880 0.0860 0.3527 0.0032 0.1178 0.0018 1930 13 1947 15 1919 27 18 7279.4 10234.6 5413.4 1.89 4.9000 0.1000 0.3036 0.0062 0.1186 0.0013 1800 18 1711 31 1937 20 19 8561.6 5629.3 6409.3 0.88 4.8500 0.1000 0.2992 0.0070 0.1187 0.0013 1791 18 1685 35 1935 19 20 5858.2 4525.5 4688.6 0.97 4.6630 0.0720 0.2833 0.0036 0.1210 0.0014 1760 13 1608 18 1969 21 21 2911.7 1225.3 1847.0 0.66 5.5400 0.1000 0.3476 0.0033 0.1162 0.0019 1907 15 1923 16 1898 29 22 3228.9 1097.7 2103.6 0.52 5.6020 0.0930 0.3459 0.0027 0.1179 0.0020 1915 14 1915 13 1931 28 注:实验测试由北京锆年领航科技有限公司完成 表 2 东瓦窑正长花岗岩和石英正长岩主量、微量和稀土元素分析结果
Table 2. Major element, trace element and REE analyses of the Dongwayao syenogranite and quartz syenite
元素 SG01
正长花岗岩SG02
正长花岗岩SG03
正长花岗岩SG04
正长花岗岩SG05
正长花岗岩SG06
正长花岗岩QS11
石英正长岩QS12
石英正长岩SiO2 74.88 75.03 74.11 74.34 72.07 74.99 66.65 66.09 TiO2 0.18 0.24 0.29 0.30 0.38 0.20 0.18 0.21 Al2O3 12.93 12.67 13.36 13.21 14.13 13.17 16.56 16.77 Fe2O3 1.68 1.86 1.86 1.71 2.24 1.38 1.57 1.67 FeO 0.12 0.12 0.07 0.13 0.15 0.08 0.12 0.14 MnO 0.010 0.019 0.013 0.004 0.012 0.010 0.013 0.02 MgO 0.06 0.11 0.10 0.10 0.22 0.10 0.11 0.13 CaO 0.27 0.17 0.21 0.26 0.23 0.42 0.80 0.93 Na2O 2.87 2.40 3.01 2.95 2.11 2.75 2.17 2.22 K2O 6.07 6.16 5.98 5.82 6.64 5.78 10.18 10.0 P2O5 0.030 0.036 0.044 0.047 0.063 0.054 0.486 0.59 烧失量 0.74 1.01 0.80 0.94 1.56 0.91 0.90 0.90 总计 99.87 99.85 99.85 99.84 99.83 99.86 99.74 99.71 La 68.0 62.0 82.8 70.5 91.2 42.9 76.9 59.3 Ce 112 117 157 130 175 78.0 172 131 Pr 13.7 12.7 17.5 14.4 18.3 8.19 17.3 13.3 Nd 43.8 42.1 57.4 47.0 57.7 26.7 73.6 63.7 Sm 5.54 5.81 8.04 7.01 7.10 3.92 12.13 12.4 Eu 0.64 0.86 0.77 0.92 1.45 0.76 1.86 1.68 Gd 4.94 5.21 7.31 6.66 6.67 3.75 10.9 10.4 Tb 0.50 0.56 0.80 0.88 0.64 0.46 1.48 1.69 Dy 1.90 2.28 3.24 4.33 2.03 2.05 7.06 8.61 Ho 0.35 0.41 0.57 0.84 0.35 0.38 1.26 1.59 Er 1.10 1.22 1.68 2.50 1.30 1.11 3.43 3.78 Tm 0.15 0.17 0.21 0.36 0.16 0.15 0.43 0.47 Yb 0.85 1.02 1.29 2.05 0.84 0.89 2.15 2.50 Lu 0.14 0.16 0.21 0.31 0.14 0.14 0.29 0.35 ΣREE 253.87 251.22 338.88 287.33 363.20 169.42 380.96 310.45 δEu 0.37 0.47 0.30 0.40 0.63 0.60 0.49 0.44 (La/Yb)N 53.66 41.11 43.32 23.22 73.61 32.64 24.15 16.00 Y 9.45 10.9 16.1 24.9 12.0 10.4 30.9 35.9 Ba 636 818 717 878 839 737 1715 1568 Rb 155 188 179 201 217 181 266 298 Sr 91 91 101 101 93 104 131 131 Zr 190 224 275 314 406 163 130 146 Hf 6.27 7.12 8.59 9.58 10.7 4.85 4.41 4.11 Nb 8.89 11.8 15.2 16.7 11.4 8.09 10.3 11.56 Ta 0.21 0.73 0.72 0.87 0.25 0.31 0.57 0.70 Th 30.5 27.3 39.0 29.8 23.1 16.4 10.5 11.03 U 1.34 1.82 2.70 2.30 2.77 1.27 1.52 1.82 Pb 32.1 22.9 23.6 21.7 22.1 22.5 26.4 27.7 Ga 16.5 17.0 18.0 18.3 20.5 16.3 17.1 15.2 Cr 4.57 2.61 2.64 2.67 3.28 1.79 1.84 6.80 Co 1.57 1.90 1.48 1.43 2.31 1.62 1.64 1.81 Ni 1.55 4.16 1.02 0.54 1.04 0.95 1.17 0.86 Cs 0.39 0.48 0.70 0.77 1.19 0.85 0.65 0.80 注:主量元素含量单位为%,稀土、微量元素含量单位为10−6, (La/Yb)N为经球粒陨石标准化后的数值(据Boynton, 1984) 表 3 东瓦窑正长花岗岩(SG06)和石英正长岩(QS11)锆石Lu−Hf同位素分析结果
Table 3. Zircons Lu−Hf isotopic analytical results of the Dongwayao syenogranite(SG06) and quartz syenite(QS11)
点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) tDM/Ma tDM2/Ma fLu/Hf 正长花岗岩(SG06) 01 1922 0.041083 0.001296 0.281576 0.000021 0.281529 −42.3 −1.07 2362 2616 −0.96 02 1955 0.034497 0.001090 0.281541 0.000024 0.281500 −43.5 −1.31 2397 2658 −0.97 03 1931 0.050928 0.001674 0.281621 0.000023 0.281560 −40.7 0.24 2323 2544 −0.95 04 1920 0.037011 0.001168 0.281574 0.000022 0.281531 −42.4 −1.01 2357 2609 −0.96 05 1967 0.028951 0.000938 0.281633 0.000025 0.281598 −40.3 2.42 2262 2437 −0.97 06 1928 0.028189 0.000881 0.281553 0.000019 0.281521 −43.1 −1.21 2368 2628 −0.97 07 1937 0.016730 0.000539 0.281582 0.000021 0.281562 −42.1 0.47 2308 2533 −0.98 08 1956 0.027600 0.000896 0.281531 0.000022 0.281498 −43.9 −1.39 2399 2661 −0.97 09 1934 0.012785 0.000442 0.281495 0.000015 0.281479 −45.2 −2.56 2419 2720 −0.99 10 1916 0.043283 0.001322 0.281551 0.000022 0.281503 −43.2 −2.12 2398 2676 −0.96 11 1928 0.051382 0.001597 0.281647 0.000021 0.281588 −39.8 1.20 2282 2481 −0.95 石英正长岩(QS11) 01 1904 0.052215 0.001628 0.281722 0.000024 0.281663 −37.1 3.30 2179 2334 −0.95 02 1931 0.022029 0.000742 0.281488 0.000022 0.281461 −45.4 −3.27 2448 2761 −0.98 03 1909 0.033417 0.001068 0.281560 0.000022 0.281521 −42.9 −1.63 2370 2643 −0.97 04 1924 0.022184 0.000706 0.281600 0.000020 0.281574 −41.4 0.62 2293 2516 −0.98 05 1914 0.038406 0.001187 0.281590 0.000022 0.281547 −41.8 −0.60 2336 2580 −0.96 06 1941 0.044654 0.001361 0.281714 0.000023 0.281664 −37.4 4.17 2175 2310 −0.96 07 1916 0.037664 0.001144 0.281560 0.000023 0.281518 −42.9 −1.57 2374 2645 −0.97 08 1955 0.033866 0.001081 0.281490 0.000020 0.281450 −45.3 −3.11 2466 2768 −0.97 09 1913 0.045408 0.001409 0.281578 0.000025 0.281527 −42.2 −1.34 2366 2628 −0.96 10 1911 0.021336 0.000660 0.281511 0.000021 0.281487 −44.6 −2.80 2411 2714 −0.98 -
[1] Bonin B. 2007. A−type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97: 1−29. doi: 10.1016/j.lithos.2006.12.007
[2] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies/Henderson P. Rare earth element geochemistry[M]. Elsevier: 63−114.
[3] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 80(2): 189−200.
[4] Delaroche H, Leteeeier J, Grande Claude P. 1980. A classification of volcanic and plutonic rocks using R1−R2 diagrams and major element analyses−Its relationships and current nomenclature[J]. Chem. Geol., 29: 183−210. doi: 10.1016/0009-2541(80)90020-0
[5] Eby G N. 1992. Chemical subdivision of the A−type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20: 641−644.
[6] Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma mixing, SE China: In−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237−269.
[7] King P L, Chappell B W, Allen C M, et al. 2001. Are A−type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah suite[J]. Australian Journal of Earth Sciences, 48(4): 501−514. doi: 10.1046/j.1440-0952.2001.00881.x
[8] Kröner A. 2005. Age and evolution of a late Archean to Palaeoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China[J]. J. Asian Earth Sci., 24: 577−595. doi: 10.1016/j.jseaes.2004.01.001
[9] Kusky T, Li J H, Santosh M. 2007. The Paleoproterozoic North Hebei orogen: North China Craton's collisional suture with the Columbia supercontinent[J]. Condwana Research, 12(1/2): 4−28.
[10] Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton[J]. Condwana Research, 20(1): 26−35. doi: 10.1016/j.gr.2011.01.004
[11] Liu S W, Fu J H, Lu Y J, et al. 2019. Precambrian Hongqiyingzi Complex at the northern margin of the North China Craton: Its zircon U−Pb−Hf systematics, geochemistry and constraints on crustal evolution[J]. Precambrian Research, 326: 58−83. doi: 10.1016/j.precamres.2018.05.019
[12] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224.
[13] Pankhurst M J, Schaefer B F, Turner S P, et al. 2013. The source of A−type magmas in two contrasting settings: U−Pb, Lu−Hf and Re−Os isotopic constraints[J]. Chemical Geology, 351: 175−194. doi: 10.1016/j.chemgeo.2013.05.010
[14] Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra−subduction zone ophiolites[C]// Kokelaar B P, Howells M F. Marginal basin geology. Geological Society of London Special Publication, 16: 77−94.
[15] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, NorthernTurkey[J]. Contributions to Mineralogy and Petrology, 58: 63−81. doi: 10.1007/BF00384745
[16] Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8−32kbar: Implications for continental growth and crust−mantle recycling[J]. Journal of Petrology, 36: 891−931. doi: 10.1093/petrology/36.4.891
[17] Sun S S, McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[18] Whalen J B, Currie K, Chappel B W. 1987. A−type granite: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407−419. doi: 10.1007/BF00402202
[19] Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 136(2): 177−202. doi: 10.1016/j.precamres.2004.10.002
[20] 邓小芹, 彭头平, 赵太平, 等. 2019. 华北克拉通南缘古元古代末(~1.84 Ga)垣头A−型花岗岩成因及其构造意义[J]. 岩石学报, 35(8): 2455−2469.
[21] 董春艳, 王世进, 刘敦一, 等. 2011. 华北克拉通古元古代晚期地壳演化和荆山群形成时代制约——胶东地区变质中—基性侵入岩锆石SHRIMP U−Pb定年[J]. 岩石学报, 27(6): 1699−1706.
[22] 高山林, 张仲培, 刘士林, 等. 2018. 塔里木克拉通北部沙雅隆起古元古代A型花岗岩的发现及其构造意义[J]. 岩石学报, 34(7): 2017−2029.
[23] 河北省区域地质矿产调查研究所. 2004. K50C003001(张北县幅)1: 250000区域地质调查[R].
[24] 康健丽, 王惠初, 肖志斌, 等. 2021. 云中山地区古元古代霞石正长岩的发现及其对中部带造山作用的限定[J]. 地质通报, 40(12): 2183−2185.
[25] 李江海, 钱祥麟, 黄雄南. 2000. 华北陆块基底构造格局及早期大陆克拉通化过程[J]. 岩石学报, 16: 1−10.
[26] 李江海, 牛向龙, 程素华, 等. 2006. 大陆克拉通早期构造演化历史探讨: 以华北为例[J]. 地球科学, (3): 285−293.
[27] 李三忠, 赵国春, 孙敏. 2016. 华北克拉通早元古代拼合与Columbia超大陆形成研究进展[J]. 科学通报, 61(9): 919−925.
[28] 李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981−991.
[29] 刘超辉, 刘福来, 赵国春. 2012. 华北克拉通中部造山带早元古代盆地演化[J]. 岩石学报, 28(9): 2770−2784.
[30] 刘建峰, 李锦轶, 曲军峰, 等. 2016. 华北克拉通北缘隆化地区蓝旗镇古元古代石榴石花岗岩的成因及地质意义[J]. 地质学报, 90(9): 2365−2383.
[31] 刘树文, 吕勇军, 凤永刚, 等. 2007. 冀北红旗营子杂岩的锆石、独居石年代学及地质意义[J]. 地质通报, 26(9): 1086−1100.
[32] 师江朋, 杨德彬, 霍腾飞, 等. 2017. 华北克拉通南缘A型花岗岩的年代学和Nd−Hf同位素组成: 对古元古代晚期伸展事件的制约[J]. 岩石学报, 33(10): 3042−3056.
[33] 王芳, 彭澎, 陈超, 等. 2021. 冀北独石口古元古代变辉长闪长岩的成因及其地质意义[J]. 岩石学报, 37(1): 269−283.
[34] 王惠初, 陆松年, 赵风清, 等. 2005. 华北克拉通古元古代地质记录及其构造意义[J]. 地质调查与研究, 28(3): 129−143.
[35] 王惠初, 初 航, 相振群, 等. 2012. 华北克拉通北缘崇礼—赤城地区的红旗营子(岩)群: 一套晚古生代的变质杂岩[J]. 地学前缘, 19(5): 100−113.
[36] 王金芳, 李英杰, 李红阳, 等. 2018. 内蒙古西乌旗石匠山晚侏罗世—早白垩世A型花岗岩锆石U−Pb年龄及构造环境[J]. 地质通报, 37(2/3): 382−396.
[37] 王金芳, 李英杰, 李红阳, 等. 2020a. 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U−Pb年龄、地球化学特征及构造意义[J]. 地质通报, 39(1): 51−61.
[38] 王金芳, 李英杰, 李红阳, 等. 2020b. 古亚洲洋俯冲板片断离与后造山伸展: 贺根山缝合带火山岩年代学和地球化学证据[J]. 地质学报, 94(12): 3561−3580.
[39] 王金芳, 李英杰, 李红阳, 等. 2021. 贺根山缝合带阿萨格图钾玄质火山岩锆石LA−ICP−MS U−Pb年龄、地球化学特征及构造意义[J]. 地质论评, 67(4): 918−935.
[40] 王洛娟, 郭敬辉, 彭澎. 2021. 华北克拉通孔兹岩带古元古代凉城石榴石花岗岩成因机制及其岩石学意义[J]. 岩石学报, 37(2): 375−390.
[41] 王智, 王惠初, 施建荣, 等. 2020. 内蒙古集宁地区徐武家变质辉长岩的形成背景及其地质意义[J]. 地质调查与研究, 43(2): 97−113.
[42] 魏春景. 2018. 华北中部造山带五台—恒山地区古元古代变质作用与构造演化[J]. 地球科学, 43(1): 24−43.
[43] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220. doi: 10.3969/j.issn.1000-0569.2007.02.001
[44] 杨进辉, 吴福元, 谢烈文, 等. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U−Pb年龄和Hf同位素制约[J]. 岩石学报, 23(2): 263−276.
[45] 尤佳, 罗金海, 程佳孝, 等. 2014. 华北地块西南缘古元古代花岗斑岩及其构造意义[J]. 高校地质学报, 20(3): 368−377.
[46] 翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解[J]. 中国科学(D辑), 30(增1): 129−137.
[47] 翟明国. 2004. 华北克拉通21~17亿年地质事件群的分解和构造意义探讨[J]. 岩石学报, 20(6): 1343−1354.
[48] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件[J]. 岩石学报, 23: 2665−2687.
[49] 翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学(地球科学), 41(8): 1037−1046.
[50] 张华锋, 翟明国, 彭澎. 2006. 华北克拉通桑干地区古元古代高压麻粒岩锆石SHR1MP U−Pb年龄及其地质含义[J]. 地学前缘, 13(3): 190−199.
[51] 张华锋, 罗志波, 周志广, 等. 2009. 华北克拉通中北部古元古代碰撞造山时限: 来自强过铝花岗岩和韧性剪切时代的制约[J]. 矿物岩石, 29(1): 60−67.
[52] 张家辉, 王惠初, 郭敬辉, 等. 2020. 天镇—怀安地区变质基性岩墙群: 华北克拉通古元古代末期碰撞−伸展构造体制转换标志[J]. 地球科学, 45(9): 3239−3257.
[53] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么[J]. 岩石矿物学杂志, 31(4): 621−626.
[54] 张永旺, 刘汇川, 于志琪, 等. 2021. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 37(4): 1122−1138.
[55] 张玉清, 张婷, 陈海东. 2016. 内蒙古凉城蛮汗山石榴石二长花岗岩LA−MC−ICP−MS锆石U−Pb年龄及成因讨论[J]. 中国地质, 43(3): 768−779.
[56] 赵国春, 孙敏, Wilde S A. 2002.华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学(D辑), 32(7): 538−549.
[57] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772−1792.
[58] 钟长汀, 邓晋福, 万渝生, 等. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄[J]. 地球化学, 36(6): 633−637.