Elemental geochemical characteristics and environmental significance of Late Pleistocene sediments in the Hongsibu Basin, northeastern margin of the Qinghai–Tibet Plateau
-
摘要:
红寺堡盆地位于青藏高原东北缘弧形构造带最前缘与鄂尔多斯高原西部的交界位置,区域生态环境脆弱,但由于地表覆盖严重,缺乏完整的露头剖面,一直制约着生态环境演变过程的研究。本文基于红寺堡盆地窑山凹陷ST1钻井序列,采用光释光测年的方法,建立了晚更新世地层年代格架,同时系统分析了70个样品的主量、微量元素组成,依据地球化学指标重建晚更新世以来的气候环境演变过程。研究认为:马兰黄土与萨拉乌苏组的界限年龄约为67.57 ± 7.88 ka,预示着由古湖向风成环境的过渡,区域生态环境逐步恶化。元素地球化学特征也记录了该时期的气候环境变迁过程,CIA值、Al2O3/Na2O、K2O/Na2O值及粘土矿物含量指示了红寺堡盆地晚更新世经历了干旱−温暖−干旱的古气候演化过程;Rb/Zr、Sr/Ba值反映红寺堡盆地萨拉乌苏组沉积时期为封闭的湖盆环境,沉积水体深度自萨拉乌苏组一段开始加深,在萨拉乌苏组二段达到最大深度,萨拉乌苏组三段水体逐步变浅直至马兰黄土沉积时期古湖彻底消亡。该研究成果从元素地球化学的角度为青藏高原东北缘晚更新世地层的沉积环境演化提供了新依据。
Abstract:The Hongsibu Basin is located at the junction of the forefront of the arc-shaped structural belt on the northeastern margin of the Qinghai–Tibet Plateau and the western part of the Ordos Plateau. The regional ecological environment is fragile, yet the lack of complete outcrop profiles due to extensive surface coverage has long hindered research into the evolution of the ecological environment. This study, based on the drilling sequence of Well ST1 in the Yaoshan Sag of the Hongsibu Basin, employs optically stimulated luminescence dating to establish a Late Pleistocene stratigraphic chronology. Additionally, it systematically analyzes the major and trace element compositions of 70 samples and reconstructs the climatic and environmental evolution processes since the Late Pleistocene based on geochemical indicators. The study suggests that the boundary age between the Malan loess and the Salawusu Formation is approximately 67.57 ± 7.88 ka, indicating a transition from an ancient lake to an aeolian environment, accompanied by a gradual deterioration of the regional ecological environment. The geochemical characteristics of elements also recorded the climatic and environmental changes during this period. Geochemical indicators such as the CIA value, Al2O3/Na2O, K2O/Na2O ratios, and clay mineral content indicate a paleoclimatic evolution process of arid-warm-arid in the Hongsibu Basin since the Late Pleistocene. Rb/Zr and Sr/Ba values reflect a closed lake basin environment during the deposition of the Salawusu Formation in the Hongsibu Basin. The depth of the sedimentary water body increased from the first section of the Salawusu Formation, reaching its maximum depth in the second section, and gradually became shallower in the third section until the complete disappearance of the ancient lake during the deposition of the Malan loess. The research results provide a new basis for the sedimentary environment evolution of the Late Pleistocene in the northeastern margin of the Qinghai–Tibet Plateau from the perspective of elemental geochemistry.
-
图 1 区域构造位置图(a)和红寺堡盆地地质图(b)(据Kou et al.,2022修改)
Figure 1.
表 1 红寺堡盆地ST1钻孔光释光年龄及其参数统计表
Table 1. Statistical table of luminescence age and parameters of ST1 borehole in the Hongsibu Basin
编号 埋深/m U/10−6 Th/10−6 K/% 环境剂量率/(Gy∙ka−1) 测试粒径/μm 测试方法 等效剂量/Gy 年龄/ka OSL-1 36.5 11.00 12.40 1.86 7.53 4 ~ 11 SMAR 508.89 ± 0.58 67.57 ± 7.88 OSL-2 50 3.44 11.90 2.28 4.79 4 ~ 11 SMAR 390.35 ± 26.05 81.43 ± 9.79 OSL-3 55 3.33 12.30 2.30 4.67 4 ~ 11 SMAR 417.53 ± 40.39 89.43 ± 12.44 OSL-4 75.2 2.78 7.31 1.82 3.85 4 ~ 11 SMAR 458.08 ± 35.46 112.64 ± 16.07 OSL-5 110 3.49 10.80 2.27 4.71 4 ~ 11 SMAR 531.08 ± 54.01 119.04 ± 15.05 表 2 红寺堡盆地ST1钻井主量元素含量均值与最值
Table 2. Mean and maximum contents of major elements in Hole ST1 of the Hongsibu Basin
% 采样位置 Al2O3 SiO2 CaO Na2O K2O 0~36.5 m马兰组
(n = 13)均值 11.10 61.32 7.44 1.80 2.33 最大值 11.65 64.01 9.10 1.90 2.46 最小值 10.55 56.27 6.55 1.70 2.19 36.5~64.9 m萨拉乌苏组三段
(n = 14)均值 11.07 62.80 6.84 1.81 2.37 最大值 12.62 68.92 10.55 1.93 2.63 最小值 10.00 53.11 5.04 1.51 2.20 64.9~80 m萨拉乌苏组二段
(n = 11)均值 11.79 50.20 11.00 1.43 2.51 最大值 13.63 65.13 14.63 1.92 2.97 最小值 10.46 40.95 6.07 1.04 2.24 80~128.9 m萨拉乌苏组一段
(n = 35)均值 11.00 61.24 6.86 1.71 2.35 最大值 12.49 73.23 14.40 1.98 2.63 最小值 7.13 43.93 4.48 0.94 1.80 全钻井
(n = 70)均值 11.26 59.83 7.61 1.70 2.38 最大值 13.63 73.23 14.63 1.98 2.97 最小值 7.13 40.95 4.48 0.94 1.80 表 3 红寺堡盆地ST1钻井微量元素含量
Table 3. The contents of trace elements in ST1 borehole of the Hongsibu Basin
10−6 采样位置 含量 Ni Cu Mn Rb Zr 0~36.5 m,马兰组
(n=13)均值 34.48 25.78 642.97 94.91 232.01 最大值 36.30 28.80 667.58 100.85 320.19 最小值 31.59 23.65 605.88 85.44 173.57 36.5~64.9 m,萨拉乌苏组三段
(n=14)均值 33.69 25.23 663.34 93.94 178.22 最大值 40.88 31.81 1166.63 109.23 280.61 最小值 28.33 20.80 468.27 83.10 123.26 64.9~80 m,萨拉乌苏组二段
(n=11)均值 40.38 34.68 798.60 108.87 14137 最大值 46.23 50.73 989.99 127.32 242.39 最小值 32.90 25.99 614.74 95.24 112.09 80~128.9 m,萨拉乌苏组一段
(n=32)均值 37.44 29.31 712.63 105.37 213.00 最大值 44.21 34.45 879.22 117.62 301.66 最小值 24.03 20.19 568.70 80.82 117.98 全钻井
(n=70)均值 36.60 28.68 703.34 101.69 198.32 最大值 46.23 50.73 1166.63 127.32 320.19 最小值 24.03 20.19 468.27 80.82 112.09 表 4 红寺堡盆地ST1钻井地球化学参数计算结果
Table 4. Calculation results of geochemical parameters of borehole ST1 in Hongsibu Basin
采样位置 CIA Al2O3/Na2O K2O/Na2O Rb/Zr Sr/Ba 0~36.5 m,马兰组
(n=13)均值 56.92 6.18 1.30 0.42 0.51 最大值 58.62 6.83 1.44 0.58 0.59 最小值 55.45 5.65 1.16 0.27 0.46 36.5~64.9 m,萨拉乌苏组三段
(n=14)均值 56.56 6.20 1.32 0.56 0.45 最大值 61.45 8.18 1.73 0.88 0.55 最小值 53.69 5.24 1.16 0.31 0.39 64.9~80 m,萨拉乌苏组二段
(n=11)均值 61.49 8.50 1.82 0.81 1.00 最大值 66.23 11.79 2.56 1.01 1.79 最小值 54.63 5.45 1.17 0.40 0.47 80~128.9 m,萨拉乌苏组一段
(n=32)均值 58.02 6.65 1.40 0.53 0.48 最大值 63.34 9.22 1.93 0.88 0.74 最小值 55.34 5.61 1.15 0.33 0.37 -
[1] Cohen A S. 2003. Paleolimnology: the history and evolution of lake systems[M]. Oxford University Press.
[2] Chen H, Hu J M, Gong W B, et al. 2015. Characteristics and transition mechanism of late Cenozoic structural deformation within the Niushoushan-Luoshan fault zone at the northeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 114: 73−88. doi: 10.1016/j.jseaes.2015.06.034
[3] Dypvik H, Harris N B. 2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios[J]. Chemical Geology, 181(1): 131−146.
[4] Li G H, Xia D S, Lu H, et al. 2020. Magnetic, granulometric and geochemical characterizations of loess sections in the eastern Arid Central Asia: Implication for paleoenvironmental interpretations[J]. Quaternary International, 552: 135−147. doi: 10.1016/j.quaint.2020.01.003
[5] Gabdullin R R, Puzik A Yu, Merenkova S I, et al. 2021. The lithological and geochemical characteristics and paleoclimatic conditions of formation of the Turonian–Santonian sediments of the epicontinental basin of the Russian plate in the Voronezh Anteclise region[J]. Moscow University Geology Bulletin, 76(4): 374−382.
[6] Jin Z D, Li F C, Cao J J, et al. 2006. Geochemistry of Daihai lake sediments, Inner Mongolia, North China: Implications for provenance, sedimentary sorting, and catchment weathering[J]. Geomorphology, 80(3): 147−163.
[7] Kou L L, Dong X P, Li Z H, et al. 2022. Initiation and development of the late Cenozoic uplift of Daluo Mts, northeastern margin of the Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 96(6): 1917−1931.
[8] Lu H Y, Wang X Y, Ma H Z, et al. 2004. The plateau monsoon variation during the past 130 kyr revealed by loess deposit at northeast Qinghai Tibet (China)[J]. Globaand Planetary Change, 41: 207−214. doi: 10.1016/j.gloplacha.2004.01.006
[9] Liu Z, Ageo T Y, Cuo X, et al. 2017. Paleoenvironmental cycicity in the early Silurian Yangze Sea (South China): Tectonic or glacio-eustatic control?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 59−76. doi: 10.1016/j.palaeo.2016.11.007
[10] Miliman J D. 1978. Marine carbonate[M]. Beijing: Science Press: 115-128.
[11] Mclennan S M. 1993. Weathering and global denudation[J]. Journal of Geology, 101(2): 295−303. doi: 10.1086/648222
[12] Nechaev V P. 1993. Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments[J]. Journal of Sedimentary Petrology, 63(6): 1110−1117.
[13] Nesbitt H W, Markovics G, Pric R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 44: 1659−1666. doi: 10.1016/0016-7037(80)90218-5
[14] Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motionsinferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0
[15] Nebitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 97(2): 129−147.
[16] Megha R, Murali D, Amblikuttan S, et al. 2022. Palaeoclimatic studies of the Late Quaternary sediments from Chirakkara, Kollam District, Kerala, India[J]. Nature Environment and Pollution Technology, 21(3): 1159−1165. doi: 10.46488/NEPT.2022.v21i03.020
[17] Singer A. 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles[J]. Earth-Sci Rev, 15: 303−326. doi: 10.1016/0012-8252(80)90113-0
[18] Sun L, Zhang JL, Yang L, et al. 2022. Paleosalinity and lake level fluctuations of the 3rd Member of Paleogene Shahejie Formation, Chezhen Sag, Bohai Bay Basin[J]. Frontiers of Earth Science, 16(4): 949−962.
[19] Tao J, Chen M, Xu S. 2006. A Holocene environmental record from the southern Yangtze River delta, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(3/4): 204−229.
[20] Windom H L. 1976. Lithogenous material in marine sediments[C]//Riley J P, Chester R. Chemical oceanography (2nd ed). London: Academic Press: 103-135.
[21] Winker A, Wolfwelling T C W, Stattegger K, et al. 2002. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene[J]. International Journal of Earth Sciences, 91(1): 133−148. doi: 10.1007/s005310100199
[22] Zhang Z J, Qian W H. 2011. ldentfying regional prolonged low temperature events in China[J]. Advances in Atmospheric Sciences, 28(2): 338−351. doi: 10.1007/s00376-010-0048-6
[23] 陈虹, 胡健民, 公王斌, 等. 2013. 青藏高原东北缘牛首山−罗山断裂带新生代构造变形与演化[J]. 地学前缘, 20(4): 18−35.
[24] 崔加伟, 李振宏, 刘锋, 等. 2018. 宁夏红寺堡盆地萨拉乌苏组地层时代重新厘定及意义[J]. 地质力学学报, 24(2): 283−292.
[25] 蔡雄飞, 叶琴, 肖明远. 2018. 对南华系下统莲沱组CIA值寒冷气候认识的几点商榷——以鄂西神农架、湘西北南华系莲沱组为例[J]. 岩石矿物学杂志, 37(4): 621−636. doi: 10.3969/j.issn.1000-6524.2018.04.008
[26] 程先钰, 张天福, 程银行, 等. 2022. 准噶尔盆地东缘中—晚侏罗世细碎屑岩地球化学特征: 物源与古沉积环境恢复[J]. 地质通报, 41(11): 1950−1966. doi: 10.12097/j.issn.1671-2552.2022.11.005
[27] 陈平, 林卫兵, 龚大建, 等. 2020. 贵州岑巩区块下寒武统变马冲组黑色页岩沉积地球化学特征及其沉积环境意义[J]. 地质科学, 55(4): 1025−1043.
[28] 陈聪, 林良彪, 余瑜, 等. 2022. 四川盆地南部CLD1井龙潭组地球化学特征及古环境意义[J]. 成都理工大学学报(自然科学版), 49(2): 225−238.
[29] 常海亮, 张宏伟, 杜春彦, 等. 2022. 鹿邑凹陷太原组-山西组泥岩元素地球化学特征及对沉积环境的指示[J]. 科学技术与工程, 22(25): 10845−10856.
[30] 董光荣, 苏志珠, 靳鹤龄. 1998. 晚更新世萨拉乌苏组时代的新认识[J]. 科学通报, (17): 1869−1872.
[31] 董晓朋, 李振宏, 黄婷, 等. 2020. 宁夏红寺堡盆地隐伏古隆起成因机制及其对区域沙漠化的影响[J]. 地球科学与环境学报, 42(5): 688−700.
[32] 冯志强, 沈梦娟, 刘永江, 等. 2023. 太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例[J]. 第四纪研究, 43(1): 1−19.
[33] 郭慧秀, 贾科利. 2015. GIS的生态脆弱移民区土地资源承载力评价: 以红寺堡区为例[J]. 宁夏工程技术, 14(4): 375−379.
[34] 公王斌, 施炜, 陈虹, 等. 2016. 牛首山−罗山断裂带北段柳木高断裂第四纪活动特征[J]. 地质力学学报, 22(4): 1004−1014.
[35] 侯献华, 郑绵平, 张成君, 等. 2010. 柴达木盆地西部大浪滩140 ka以来沉积特征与古环境[J]. 地质学报, 84(11): 1623−1630.
[36] 侯光良, 张雪莲, 王倩倩. 2015. 晚更新世以来青藏高原人类活动与环境变化[J]. 青海师范大学学报(自然科学版), 31(2): 54−63.
[37] 胡俊杰, 马寅生, 王宗秀, 等. 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报, 19(3): 480−490.
[38] 黄婷, 李振宏, 刘锋, 等. 2018. 宁夏红寺堡盆地地表沙漠化现状及其地质主控因素[J]. 地质力学学报, 24(4): 505−514.
[39] 靳建辉, 李志忠, 陈秀玲, 等. 2011. 新疆伊犁塔克尔莫乎尔沙漠全新世晚期沉积微量元素反映的古气候变化[J]. 沉积学报, 29(2): 336−345.
[40] 寇琳琳, 李振宏, 董晓朋, 等. 2021. 青藏高原东北缘隆德观音店剖面碎屑锆石年龄序列及地质意义[J]. 地质力学学报, 27(6): 1051−1064.
[41] 李保生, 董光荣, 高尚玉, 等. 1987. 鄂尔多斯萨拉乌苏河地区马兰黄土与萨拉乌苏组的关系及其地质时代问题[J]. 地质学报, (3): 218−230.
[42] 刘传联. 1998. 东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J]. 沉积学报, (3): 109−114.
[43] 刘春莲, Fürsich F T, 白雁, 等. 2004. 三水盆地古近系湖相沉积岩的氧、碳同位素地球化学记录及其环境意义[J]. 沉积学报, (1): 36−40.
[44] 刘艳蕊, 杨一博, 方小敏, 等. 2014. 沉积相变迁对内陆湖泊沉积易溶盐作为古环境指标的影响——以西宁盆地为例[J]. 沉积学报, 32(1): 101−109.
[45] 李新男, 李传友, 张培震, 等. 2016. 香山–天景山断裂带西段的运动性质变化及其成因机制[J]. 地震地质, 38(3): 732−746.
[46] 吕凤琳, 刘成林, 焦鹏程, 等. 2018. 罗布泊中更新世以来盐湖碳酸盐碳氧同位素组成及其古环境意义[J]. 地质学报, 92(8): 1589−1604.
[47] 雒聪文, 马玉贞, 王凯, 等. 2019. 东亚地区MIS5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 34(5): 540−551.
[48] 梁子若, 侯明才, 曹海洋, 等. 2020. 内蒙古大青山石拐盆地侏罗系元素地球化学特征及沉积环境指示意义[J]. 成都理工大学学报(自然科学版), 47(3): 307−317.
[49] 李振宏, 崔加伟, 李朝柱, 等. 2020. 红寺堡盆地晚更新世沉积特征及古气候背景[J]. 煤田地质与勘探, 48(6): 233−242.
[50] 吕恒志, 鹿化煜, 王逸超, 等. 2021. 中始新世晚期以来东亚气候变化的渭河盆地黏土矿物记录[J]. 中国科学:地球科学, 51(10): 1722−1741.
[51] 林景昱, 褚庆忠, 邵先杰, 等. 2023. 柳江盆地上寒武统崮山组微量元素地球化学特征及古环境指示意义[J]. 科学技术与工程, 23(7): 2749−2758.
[52] 马兆颖, 董晓朋, 张庆, 等. 2020. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 48(5): 152−164.
[53] 宁夏回族自治区区域地质调查院. 2013. 宁夏回族自治区区域地质志[M]. 北京: 地质出版社.
[54] 牛东风, 罗财宝, 陈敏. 2019. 基于化学蚀变指数的雷州半岛表土风化强度分析[J]. 热带地貌, 40(2): 8−15.
[55] 潘进礼, 马学东, 马玉学, 等. 2022. 宁夏银川盆地灵武地区古近纪—新近纪沉积岩地球化学特征及对古环境演化的启示[J]. 地质通报, 41(2/3): 296−305.
[56] 裴军令, 赵越, 周在征, 等. 2021. 南极新生代海陆格局变迁对全球气候变化的影响[J]. 地质力学学报, 27(5): 867−879.
[57] 綦琳, 乔彦松, 刘宗秀, 等. 2021. 陇东新近纪红粘土与第四纪黄土地球化学特征及其物源和风化指示意义[J]. 地质力学学报, 27(3): 475−490.
[58] 施炜, 刘源, 刘洋, 等. 2013. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 20(4): 1−17.
[59] 孙庆峰, 程波, 赵黎. 2014. 共和盆地黏土矿物与孢粉记录的末次冰消期以来的气候环境相位差[J]. 中国沙漠, 34(5): 1237−1247.
[60] 苏志珠, 董光荣, 靳鹤龄. 1997. 萨拉乌苏组地层年代学研究[J]. 地质力学学报, (4): 92−98.
[61] 苏志珠, 吴宇婧, 孔梦园, 等. 2018. 常量元素记录的毛乌素沙地东南缘全新世气候变化[J]. 中国沙漠, 38(3): 516−523.
[62] 史冀忠, 牛亚卓, 许伟等. 2021. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 51(3): 680−693.
[63] 谭聪, 袁选俊, 于炳松, 等. 2019. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质, 33(3): 615−628.
[64] 王益友, 郭文莹, 张国栋. 1979. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报, (2): 51−60.
[65] 王敏芳, 黄传炎, 徐志诚, 等. 2006. 综述沉积环境中古盐度的恢复[J]. 新疆石油天然气, 2(1): 9−12.
[66] 王伟涛, 张培震, 雷启云. 2013. 牛首山-罗山断裂带的变形特征及其构造意义[J]. 地震地质, 35(2): 195−207.
[67] 王明振, 吴朝东, 王陆新, 等. 2014. 准噶尔盆地南缘侏罗系泥岩黏土矿物组合及地球化学特征[J]. 矿物岩石地球化学通报, 33(4): 421−430.
[68] 魏志福, 王永莉, 吴陈君, 等. 2015. 四川盆地上二叠统龙潭组经源岩的地球化学特征及对有机质来源和沉积环境的指示意义[J]. 天然气地球科学, 26(8): 1613−1618.
[69] 瓦西拉里, 王建华, 陈慧娴, 等. 2016. 伶仃洋ZK19孔晚第四纪沉积地球化学特征及其古环境意义[J]. 热带地理, 36(3): 343−354.
[70] 王琳霖, 浮昀, 方诗杰. 2018. 鄂尔多斯盆地东缘马家沟组元素地球化学特征及古沉积环境[J]. 石油实验地质, 40(4): 519−525. doi: 10.11781/sysydz201804519
[71] 吴芳, 马杰, 刘博华等. 2023. 六盘山西缘前庄地区水资源特征及开发利用建议[J]. 水利水电技术(中英文), 54(10): 49−58.
[72] 徐叔鹰. 1994. 青藏高原东北部的古土壤及其对环境变迁的反映[J]. 地理科学, 3: 225−232, 295.
[73] 熊小辉, 肖加飞. 2011. 沉积环境的地球化学示踪[J]. 地球与环境, 39(3): 405−414.
[74] 殷科, 洪汉烈, 高文鹏, 等. 2012. 末次间冰期以来临夏地区气候变化的黏土矿物学及地球化学记录[J]. 土壤学报, 49(2): 246−259.
[75] 杨庆华, 侯献华, 杨振京, 等. 2017. 柴达木盆地西部末次间冰期以来植被特征及其环境变化[J]. 山地学报, 35(5): 742−752.
[76] 余继峰, 曹慧涛, 付文钊, 等. 2021. 胶莱盆地止凤庄组、红土崖组微量元素地球化学特征及古环境分析[J]. 山东科技大学学报(自然科学版), 40(2): 1−11.
[77] 颜钰, 蒋富清, 曾志刚, 等. 2022. 近2.1 Ma以来帕里西维拉海盆黏土矿物输入变化及其对中更新世气候转型的响应[J]. 海洋地质与第四纪地质, 42(6): 150−161.
[78] 杨晓璇, 李雪峰, 郭进京, 等. 2022. 西秦岭北缘漳县渐新统—中新统湖相碳酸盐岩碳、氧同位素特征及意义[J]. 西北地质, 55(2): 106−115.
[79] 赵璐璐, 洪汉烈, 殷科, 等. 2015. 成都盆地红土沉积物中黏土矿物的特征及其古气候指示意义[J]. 地质科技情报, 34(3): 80−86.
[80] 赵明, 季峻峰, 陈小明, 等. 2015. 古盐度对塔北隆起泥岩中粘土矿物组合和绿泥石成分的影响[J]. 高校地质学报, 21(3): 365−375.
[81] 张国涛, 彭中勤, 王传尚, 等. 2016. 贵州独山下二叠统梁山组地球化学特征及其沉积环境意义[J]. 中国地质, 43(4): 1291−1303.
[82] 赵帮胜, 李荣西, 王香增, 等. 2016. 鄂尔多斯盆地延长探区山西组泥页岩沉积地球化学特征及有机质保存条件分析[J]. 地质科技情报, 35(6): 103−111.
[83] 张存杰, 肖潺, 李帅, 等. 2023. 极端气候事件综合危险性等级指标构建及近60年来长江流域极端气候综合分析[J]. 地球物理学报, 66(3): 920−938.