Integrated geophysical exploration of the hidden gold deposit in Banbidian, Jiaodong Peninsula
-
摘要:
胶东半岛是中国重要的金矿集区,金矿床的分布严格受NE—NNE向断裂带控制,招平断裂带是其中规模最大的控矿断裂带。然而,在断裂带中段的招远—道头镇区段(半壁店地区),新生代盖层下尚未发现成规模的金矿床。在总结招平断裂带内金矿床成矿模式和控矿地质体物性差异的基础上,从区域和断裂带尺度对比分析了1:60万和1:20万2种比例尺的布格重力异常特征,厘清了区域构造和岩体分布情况;进而在招平断裂带中段的半壁店地区利用1:1万高精度磁测和代表性剖面1:1万可控源音频大地电磁测量,揭示隐伏控矿地质体的分布情况。区域布格重力异常揭示出近EW向相对低密度正值((0~6)×10-5 m/s2)表征的构造带、团状正密度值(大于2×10-5m/s2)表征的玲珑黑云母花岗岩体和NE—NNE向密度值梯级带表征的招平断裂带;3组赋矿相关地质体的空间相对展布特征显示,玲珑黑云母花岗岩体南边界被近EW向构造带围限,招平断裂带切穿了早期生成的玲珑黑云母花岗岩体。高精度磁测结果反映:①招平断裂带穿切玲珑黑云母花岗岩体;②近EW向低密度、高磁性(相对磁性场值超过100 nT)花岗闪长岩体在深部受控于EW向深大构造带;③NE向串珠状低密度、高磁异常(相对磁性场值超过40 nT)表征了矿床尺度招平次级断裂内的系列花岗岩体(主成矿期之后生成)。可控源音频大地电磁测深和测区中部钻孔均证实,这些花岗岩脉从北向南(指向主断裂方向)埋深逐渐变浅。因此,NE向招平断裂带和近EW向构造带共同控制岩体分布,其交会部位是金矿体产出的有利空间,但上侵花岗岩体本身贫矿。半壁店地区隐伏金矿床形成时间晚于招平断裂主成矿期。研究结果表明,近EW向低密度带内的金矿找矿前景不乐观。
Abstract:The distribution of gold deposits in Jiaodong peninsula, the most important gold concentration area of China, is strictly controlled by NE-NNE-trending faults.However, no large-scale gold deposits have been found under the Cenozoic rocks in Zhaoyuan-Daotouzhen section in the middle part of the fault zone.On the basis of summarizing the difference of metallogenic model and ore-controlling geological body in Zhaoping fault zone, the Bouguer gravity anomaly characteristics of 1:600 and 1:200 thousand scale are compared from regional and fault scale, and the distribution of regional structure and rock mass are clarified.Furthermore, the distribution of concealed ore-controlled geological bodies is revealed by 1:10000 high-precision magnetic survey and 1:10000 controlled-source audio magnetotelluric survey of representative section in the Banbidian area.The regional Bouguer gravity anomaly reveals the tectonic zone characterized by the relatively low density positive value((0~6)×10-5 m/s2)near EW direction, the Linglong biotite granite characterized by the positive agglomerate density value(>2×10-5 m/s2)and the Zhaoping fault characterized by the NE-NNE density step zone.The spatial distribution characteristics of the three groups of ore-bearing geological bodies show that the southern boundary of Linglong biotite granite is bounded by the EW-trending tectonic belt, and Zhaoping fault belt cuts through the early Linglong biotite granite.High precision magnetic measurements show that, ①Linglong biotite granite is cut by Zhaoping fault zone; ②The granodiorite with low density and high magnetism near EW-trending(relative magnetic field value is more than 100 nT)is controlled by the EW direction deep structural belt in depth; ③The series of granites within Zhaoping secondary fault(formed after the main mineralization period)of the ore deposit scale are characterized by NE-trending bead-like low density and high magnetic anomaly(relative magnetic field value over 40 nT).Both CSAMT sounding and boreholes in the middle of the survey area confirm that the buried depth of the granite dyke decreases gradually from south to north(towards the direction of the main fault).Therefore, the NE-trending Zhaoping fault belt and the nearly EW-trending tectonic zone jointly control the distribution of the rock mass, and the intersection of them is a favorable space for the production of gold orebodies, while the intruding granitic body itself is depleted in gold.The concealed gold deposits in Banbidian area were formed later than the main metallogenic period of Zhaoping fault.The result shows that the prospecting prospect of gold ore in the low-density zone near EW-trending is not optimistic.
-
图 8 招平断裂金成矿时间对比图(据参考文献[27]修改)
Figure 8.
-
[1] 杨立强, 王光杰, 张中杰, 等. 胶东金矿集中区岩石圈结构与深部成矿作用[J]. 地球科学, 2000, 25(4): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004016.htm
[2] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
[3] 张瑞忠. 招平金矿带构造控矿机理及深部成矿预测[D]. 中国地质大学(北京)博士学位论文, 2017: 1-176.
[4] 孟银生. 胶东招平金矿带厚覆盖区深部矿床综合地球物理勘查模型与成矿预测[D]. 中国地质大学(北京)博士学位论文, 2016.
[5] 宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 地质学报, 2015, 89(2): 365-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502012.htm
[6] 刘殿浩, 吕古贤, 张丕建, 等. 胶东三山岛断裂构造蚀变岩三维控矿规律研究与海域超大型金矿的发现[J]. 地学前缘, 2015, 22(4): 162-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504021.htm
[7] 张宝林, 吕古贤, 梁光河, 等. 胶东金矿田的深部地球物理勘查模式初步研究[J]. 地质力学学报, 2019, 25(S1): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX2019S1026.htm
[8] Deng J and Wang Q F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36(10): 219-274. https://www.sciencedirect.com/science/article/pii/S1342937X15002427
[9] Li L, Santosh M, Li S R. The 'Jiaodong type' gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2016, 65(3): 589-611. https://www.sciencedirect.com/science/article/pii/S0169136814001541
[10] 徐述平. 招平断裂带金矿勘查模型与成矿预测[D]. 中国地质大学(北京)博士学位论文, 2009.
[11] 徐扬, 李日辉, 温珍河, 等. 胶北地块和北苏鲁超高压变质带前寒武纪基底对比研究[J]. 海洋地质与第四纪地质, 2015, 35(1): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201501016.htm
[12] 林文蔚, 赵一鸣, 徐珏. 胶东招远-平度断裂活动性质及活动时代[J]. 中国区域地质, 2000, 19(1): 43-50. doi: 10.3969/j.issn.1671-2552.2000.01.008
[13] 邓军, 吕古贤, 杨立强, 等. 构造应力场转换与界面成矿[J]. 地球学报, 1998, 19(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB803.003.htm
[14] 罗贤冬, 杨晓勇, 段留安, 等. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究[J]. 地质学报, 2014, 88(10): 1874-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201410008.htm
[15] Simon Wallis, Masaki Enami, Shohei Banno. The Sulu UHP Terrane: A review of thepetrology and structural geology[J]. International Geology Review, 1999, 41(10): 906-920. doi: 10.1080/00206819909465178
[16] 王德洪, 林润生. 山东省平度地区下元古界荆山群变质作用特征[J]. 山东地质, 1991, 7(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI199102000.htm
[17] 张文起. 胶东地区粉子山群及蓬莱群地层铅同位素组成探讨[J]. 山东地质, 1995, 11(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI501.002.htm
[18] Deng J, Wang Q F, Yang L Q. The Structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China[J]. Acta Geologica Sinica: English Edition, 2008, 82(4): 769-780.
[19] Deng J, Wang Q F, Wan L A. multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China[J]. Ore Geology Reviews, 2011, 40(1): 54-64. doi: 10.1016/j.oregeorev.2011.05.001
[20] Deng J, Yang L Q, Sun Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica, 2003, 77(4): 537-546.
[21] Faulkner D, Jackson C, Lunn R, et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010, 32(11): 1557-1575. doi: 10.1016/j.jsg.2010.06.009
[22] Kim Y, Peacock D, Sanderson D. Fault damage zones[J]. Journal of Structural Geology, 2004, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002
[23] Yang L Q, Deng J, Wang Q F, et al. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula, Eastern China[J]. Acta Geologica Sinica, 2006, 80(3): 400-411.
[24] 杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903005.htm
[25] 郭涛, 吕古贤. 胶东西北部金成矿带控矿构造系统分析[J]. 地质力学学报, 2007, 13(2): 119-130. doi: 10.3969/j.issn.1006-6616.2007.02.005
[26] 郭谱. 鲁西中生代金成矿的地球动力学背景研究[D]. 中国地质大学(北京)博士学位论文, 2014.
[27] Zhang L, Weinberg R F, Yang L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441. doi: 10.5382/econgeo.4716
[28] Zhao Z, Zhao Z X, Xu J R. Velocity structure heterogeneity and tectonic motion in and around the Tan-Lu fault of China[J]. Journal of Asian Earth Sciences, 2012, 57: 6-14. doi: 10.1016/j.jseaes.2012.05.019
[29] Yang J H, Zhong S L, Wilder S A, et al. Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, east China: Geochronology, geochemical and Nd-Sr isotopic evidence[J]. Chemical Geology, 2005, 214(1/2): 99-125. https://www.sciencedirect.com/science/article/pii/S0009254104003535
[30] Hou M L, Jiang Y H, Jiang S Y, et al. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: Implications for crustal thickening to delamination[J]. Geological Magazine, 2007, 144(4): 619-631. doi: 10.1017/S0016756807003494
[31] Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning[J]. Ore Geology Reviews, 2003, 23(3/4): 123-152. https://www.sciencedirect.com/science/article/pii/S0169136803000337
[32] 徐贵忠, 王艺芬, 周瑞, 等. 胶东和鲁西地区中生代成矿作用重大差异性的内在因素[J]. 现代地质, 2002, 16(1): 9-18. doi: 10.3969/j.issn.1000-8527.2002.01.002
[33] 李瑞红. 焦家金矿带构造控矿模式[D]. 中国地质大学(北京)博士学位论文, 2017.
[34] 王中亮. 焦家金矿田成矿系统[D]. 中国地质大学(北京)博士学位论文, 2012.
[35] Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implication for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105
[36] Deng J, Liu X F, Wang Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking-lithospheric extension in the North China Craton, eastern Asia[J]. The Geological Society of America Bulletin, 2017, 129: 1379-1407. doi: 10.1130/B31609.1
[37] Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid and gold deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72(1): 585-602. https://www.sciencedirect.com/science/article/pii/S0169136815300214
[38] 张宝林, 苏艳平, 张国梁, 等. 胶东典型含矿构造岩相带的地质-地球物理信息预测方法与找矿实践[J]. 地学前缘, 2017, 24(2): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702015.htm
[39] 孟银生, 张瑞忠. 招平金矿带半壁店矿区地球物理勘查模型及成矿预测[J]. 金属矿山, 2016, 483: 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201609029.htm
[40] Deng J, Wang C M, Bagas L, et al. Crustal architecture and metallogenesis in the southeastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. doi: 10.1016/j.earscirev.2018.05.001
[41] Deng J, Qiu K F, Wang Q F, et al. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. doi: 10.5382/econgeo.4711
[42] Yang L Q, Dilek Y, Wang Z L. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton[J]. Geological Magazine, 2017, 155(5): 1040-1062. https://research.monash.edu/en/publications/late-jurassic-high-basr-linglong-granites-in-the-jiaodong-peninsu
[43] Cagniard L. Basic theory of the magnetotelluric method of geophysical prospecting[J]. Geophysics, 1953, 18(3): 605-635. doi: 10.1190/1.1437915
[44] Deng J, Yang L Q, Li R H. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 2019, 54(1): 378-391. doi: 10.1002/gj.3186
[45] 翟裕生. 关于构造-流体-成矿作用研究的几个问题[J]. 地学前缘, 1996, 3(4): 230-236. doi: 10.3321/j.issn:1005-2321.1996.04.010
[46] Groves D I, Santosh M, Deng J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55: 275-292. doi: 10.1007/s00126-019-00877-5
[47] Deng J, Wang Q F, Santosh M, et al. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55: 257-274. doi: 10.1007/s00126-019-00925-0
[48] Zhang K, Lyu Q T, Yan J Y, et al. Crustal structure beneath the Jiaodong Peninsula, North China, revealed with a 3D inversion model of magnetotelluric data[J]. Journal of Geophysics and Engineering, 2018, 15(6): 2442-2454. doi: 10.1088/1742-2140/aaca5e
[49] 俞贵平, 徐涛, 刘俊彤, 等. 胶东地区晚中生代伸展构造与金成矿: 短周期密集台阵背景噪声成像的启示[J]. 地球物理学报, 2020, 63(5): 1878-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202005013.htm
[50] 孙伟清, 刘燊, 冯彩霞, 等. 招平断裂带中段金矿床控矿条件与成矿规律研究[J]. 黄金科学技术, 2019, 27(3): 315-327. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201903003.htm
[51] 吕古贤, 霍庆龙, 袁月蕾, 等. 胶东金矿陆内构造岩浆核杂岩隆起-拆离带蚀变成矿[J]. 地学前缘, 2017, 24(2): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702016.htm