河南新蔡BIF铁矿床地球化学特征及矿床成因

杨崇科, 卢欣祥, 杨延伟, 刘心宁, 王丽伟. 河南新蔡BIF铁矿床地球化学特征及矿床成因[J]. 地质通报, 2022, 41(7): 1258-1268. doi: 10.12097/j.issn.1671-2552.2022.07.012
引用本文: 杨崇科, 卢欣祥, 杨延伟, 刘心宁, 王丽伟. 河南新蔡BIF铁矿床地球化学特征及矿床成因[J]. 地质通报, 2022, 41(7): 1258-1268. doi: 10.12097/j.issn.1671-2552.2022.07.012
YANG Chongke, LU Xinxiang, YANG Yanwei, LIU Xinning, WANG Liwei. Geochemical characteristics and genetic analysis of BIF iron deposit background of Xincai iron deposit in He'nan Province[J]. Geological Bulletin of China, 2022, 41(7): 1258-1268. doi: 10.12097/j.issn.1671-2552.2022.07.012
Citation: YANG Chongke, LU Xinxiang, YANG Yanwei, LIU Xinning, WANG Liwei. Geochemical characteristics and genetic analysis of BIF iron deposit background of Xincai iron deposit in He'nan Province[J]. Geological Bulletin of China, 2022, 41(7): 1258-1268. doi: 10.12097/j.issn.1671-2552.2022.07.012

河南新蔡BIF铁矿床地球化学特征及矿床成因

  • 基金项目:
    河南省科技攻关项目《河南东秦岭-大别山及邻区花岗岩和主要金属矿产分布规律图》(编号: 2018-132-1)
详细信息
    作者简介: 杨崇科(1988-), 男, 硕士, 工程师, 从事矿产资源勘查与评价研究。E-mail: 15290851067@163.com
    通讯作者: 卢欣祥(1938-), 男, 教授级高级工程师, 从事秦岭花岗岩及成矿规律研究。E-mail: luxx1938@163.com
  • 中图分类号: P618.31;P595

Geochemical characteristics and genetic analysis of BIF iron deposit background of Xincai iron deposit in He'nan Province

More Information
  • 新蔡铁矿床位于华北克拉通南缘舞阳-霍邱铁矿成矿带中部, 矿体赋存于新太古代太华岩群变质岩系中。铁矿体主要呈层状、似层状, 局部为透镜状。矿石构造主要为条带状, 少量浸染状及块状。矿石主要由TFe2O3和SiO2组成, 其次为MgO和CaO, Al2O3及其他如Na2O、K2O、P2O5、TiO2、MnO含量大多小于0.1%。微量及稀土元素分析结果显示, 大离子亲石元素Sr和高场强元素Nb、Ta、Zr、Hf、Ti明显亏损, 此外Rb、U、La、Pb、Eu元素具正异常, Ti/V值平均24.13, 稀土元素总量较低, 平均为12.8×10-6。经PAAS标准化后, 铁矿石均表现为重稀土元素相对轻稀土元素富集((La/Yb)PAAS=0.43~0.79, 平均值0.55), 具有明显的La正异常(La/LaPAAS*平均值1.15)、Eu正异常(Eu/Eu*平均值2.88)和Y异常(Y/YPAAS*平均值1.68), 微弱的Ce负异常(Ce/CePAAS*平均值0.90)。较高的Y/Ho值(平均值44)说明含铁建造形成于相对缺氧的古海洋环境, 成矿物质主要来源于与海底火山活动相关的高温热液和海水的混合溶液。对矿体围岩斜长角闪岩原岩恢复及构造环境判别结果显示, 斜长角闪岩原岩为弧后盆地玄武岩, 代表其形成于弧后盆地的构造环境, 这也基本代表了本区含铁建造沉积时的构造环境。综合分析认为, 新蔡铁矿属于与弧后盆地火山活动密切相关的Algoma型BIF。

  • 加载中
  • 图 1  河南新蔡区域地质图(a据参考文献[19]修改;b据参考文献修改)

    Figure 1. 

    图 2  练村铁矿床矿体剖面

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 3  练村铁矿区矿石主量元素划分三角图(据参考文献[20]修改,图中阴影部分表示世界BIF铁矿分布区)

    Figure 3. 

    图 4  练村铁矿石微量元素原始地幔标准化蛛网图(a)和稀土元素PAAS配分曲线图(b)

    Figure 4. 

    图 5  Al2O3-SiO2判别图解(a,底图据参考文献[30])和海水及热液混合比例Sm/Yb-Y/Ho(b)、Eu/Sm-Sm/Yb(c)、Eu/Sm-Y/Ho(d,底图据参考文献[39])模式图

    Figure 5. 

    图 6  练村铁矿石Pr/Pr*-Ce/Ce*异常判别图解(底图据参考文献[41])

    Figure 6. 

    表 1  练村铁矿矿石主量、微量和稀土元素组成及相关参数

    Table 1.  Composition and related parameters of major, trace and rare earth elements in Liancun iron ore

    岩性 磁铁角闪石英岩
    样品号 练31 练32 练33 练34 练35 练36 练37 练38
    TFe2O3 47.79 40.77 47.92 47.69 49.88 45.42 42.76 53.13
    SiO2 45.47 45.28 43.26 41.31 40.93 47.23 46.27 40.43
    Al2O3 0.39 1.87 0.33 1.64 0.80 0.66 0.76 0.48
    MgO 0.46 1.24 1.88 1.88 2.15 1.23 1.77 1.42
    CaO 1.32 2.44 2.18 3.06 1.91 1.77 1.38 2.91
    Na2O 0.078 0.064 0.037 0.051 0.026 0.050 0.062 0.020
    K2O 0.18 0.88 0.034 0.46 0.19 0.062 0.36 0.043
    P2O5 0.055 0.14 0.19 0.11 0.10 0.10 0.12 0.089
    TiO2 0.025 0.14 0.018 0.075 0.072 0.042 0.038 0.032
    MnO 0.076 0.063 0.093 0.13 0.22 0.066 0.092 0.19
    Li 6.65 3.52 0.57 5.99 0.82 1.38 8.83 0.24
    Be 0.36 0.81 0.11 0.22 0.30 0.04 0.56 0.12
    P 362 670 974 488 531 520 899 485
    Sc 0.44 1.68 0.31 0.98 0.99 0.65 1.04 0.45
    Ti 138 571 65.5 357 284 192 220 123
    V 8.65 19.10 4.26 12.80 10.30 6.42 8.09 6.38
    Cr 5.32 10.50 3.83 5.13 24.00 4.52 8.35 3.73
    Mn 752 445 690 901 1620 453 895 1330
    Co 4.95 5.32 4.45 4.95 4.68 4.71 5.31 3.63
    Ni 3.38 6.77 3.21 5.14 4.54 2.62 5.17 3.15
    Cu 1.77 6.56 1.48 11.80 1.59 1.01 1.31 0.63
    Zn 10.80 11.80 9.55 25.80 15.20 15.30 15.30 12.00
    Ga 1.26 3.12 0.84 3.45 1.70 3.87 1.97 1.36
    Ge 3.18 4.66 1.72 2.45 3.20 1.59 3.60 3.05
    Rb 16.50 65.2 1.15 25.3 7.77 2.10 34.6 1.55
    Sr 24.5 95.9 41.7 24.8 22.1 13.8 26.5 73.4
    Y 2.80 6.22 6.09 4.71 4.57 4.97 7.47 3.80
    Zr 5.73 20.0 4.27 10.4 8.94 5.36 7.54 2.93
    Nb 0.36 1.21 0.14 0.26 0.47 0.17 0.55 0.28
    Mo 0.13 0.16 0.10 0.16 0.66 0.18 0.29 0.09
    Sn 0.21 0.22 0.09 0.19 0.17 0.12 0.31 0.11
    Cs 3.25 5.21 0.12 2.19 0.27 0.27 3.06 0.10
    Ba 68.6 82.9 9.34 40.0 26.2 4.66 62.7 7.94
    Hf 0.15 0.49 0.09 0.27 0.23 0.14 0.22 0.08
    Ta 0.02 0.04 0.01 0.02 0.02 0.02 0.06 0.02
    Pb 1.52 5.23 1.05 2.68 3.68 1.24 0.88 1.39
    Th 0.26 0.58 0.11 0.49 0.27 0.24 0.81 0.16
    U 0.09 0.30 0.07 0.24 0.11 0.02 0.24 0.06
    Sm/Yb 1.24 1.76 1.27 1.72 1.17 0.94 1.22 1.24
    Eu/Sm 0.61 0.47 0.67 0.47 0.66 0.78 0.60 0.63
    Sr/Ba 0.36 1.16 4.46 0.62 0.84 2.96 0.42 9.24
    Ti/V 15.95 29.90 15.38 27.89 27.57 29.91 27.19 19.28
    La 1.65 4.08 1.84 3.49 2.56 2.30 2.93 1.46
    Ce 2.76 8.03 3.30 6.67 4.58 3.99 5.46 2.83
    Pr 0.32 0.99 0.43 0.79 0.55 0.46 0.66 0.36
    Nd 1.23 3.94 1.80 3.04 2.12 1.82 2.66 1.49
    Sm 0.23 0.80 0.40 0.57 0.40 0.34 0.58 0.31
    Eu 0.14 0.38 0.27 0.26 0.26 0.27 0.35 0.20
    Gd 0.26 0.83 0.51 0.57 0.46 0.41 0.69 0.35
    Tb 0.04 0.12 0.08 0.08 0.07 0.07 0.11 0.05
    Dy 0.25 0.74 0.52 0.52 0.46 0.48 0.70 0.35
    Y 2.8 6.22 6.09 4.71 4.57 4.97 7.47 3.8
    Ho 0.06 0.16 0.13 0.12 0.11 0.12 0.16 0.08
    Er 0.19 0.48 0.37 0.34 0.34 0.38 0.50 0.26
    Tm 0.03 0.07 0.05 0.05 0.05 0.06 0.08 0.04
    Yb 0.19 0.46 0.31 0.33 0.34 0.37 0.47 0.25
    Lu 0.03 0.07 0.05 0.05 0.06 0.05 0.08 0.04
    ΣREE 7.36 21.15 10.06 16.88 12.36 11.13 15.42 8.07
    LREE 6.33 18.22 8.03 14.81 10.47 9.18 12.64 6.64
    HREE 1.04 2.93 2.03 2.07 1.89 1.95 2.78 1.42
    LREE/HREE 6.10 6.22 3.96 7.17 5.54 4.71 4.54 4.67
    (La/Yb)PAAS 0.65 0.66 0.43 0.79 0.55 0.46 0.46 0.43
    Eu/EuPAAS* 2.93 2.34 3.04 2.33 3.10 3.47 2.80 3.03
    Ce/CePAAS* 0.88 0.92 0.86 0.93 0.89 0.89 0.90 0.91
    La/LaPAAS* 1.24 1.05 1.26 1.04 1.11 1.22 1.13 1.16
    Y/YPAAS* 1.84 1.43 1.88 1.53 1.61 1.63 1.76 1.77
    Pr/PrPAAS* 1.01 1.03 1.02 1.03 1.03 1.01 1.02 1.01
    Y/Ho 47 38 48 41 41 41 46 46
    注:La/LaPAAS* = LaPAAS(3×PrPASS-2×NdPASS);Ce/CePAAS*=2CePAAS/(LaPAAS+PrPAAS); Pr/Pr* PAAS =2Pr PAAS /(Ce PAAS +Nd PAAS); Eu/EuPAAS*=Eu PAAS /(0.67Sm PAAS +0.33Tb PAAS); Y/Y* PAAS =2Y PAAS /(Dy PAAS +Ho PAAS); 标准化数据据参考文献[21-22];主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 2  Algoma型和Superior型BIF铁矿类型判别[19]

    Table 2.  The BIFs contrast of Algoma and Superior types

    判别标志 Algoma型 Superior型
    形成时代 中新太古代为主,2.8~2.5 Ga为高峰期 古元古代为主,2.5~1.8 Ga为高峰期
    含铁建造类型 与超基性、基性火山岩-火山沉积岩相关 与碎屑岩-碳酸盐岩相关
    构造环境 岛弧、弧后盆地或扩张大洋中脊附近 被动大陆边缘,大陆架浅海环境,克拉通内部盆地
    矿物相 主要为磁铁矿相 具有明显的相分带,可见磁铁矿、碳酸盐和赤铁矿相
    变质相 绿片岩相—角闪岩相,混合岩化较强 一般为绿片岩相变,混合岩化不明显
    下载: 导出CSV
  • [1]

    沈保丰, 翟安民, 陈文明, 等. 中国前寒武纪成矿作用[M]. 北京: 地质出版社, 2006: 55-63.

    [2]

    沈保丰. 中国BIF型铁矿床地质特征和资源远景[J]. 地质学报, 2012, 86(9): 1376-1395. doi: 10.3969/j.issn.0001-5717.2012.09.005

    [3]

    James H L. Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49(3): 235-293. doi: 10.2113/gsecongeo.49.3.235

    [4]

    James H L. Distribution of banded iron-formation in space andtime[C]//Trendall A F, Morris R C. Developments in Precambrian Geology, 1983, 6: 471-490.

    [5]

    Gross G A. A classification of iron formations based on depositional environments[J]. Canadian Mineralogist, 1980, 18(2): 215-222. doi: 10.1016/S0304-3991(79)80026-1

    [6]

    代堰锫, 朱玉娣, 张连昌, 等. 国内外前寒武纪条带状铁建造研究现状[J]. 地质论评, 2016, 62(3): 735-757. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201603016.htm

    [7]

    Hou K J, Li Y H, Gao J F, et al. Geochemistry and Si-O-Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China[J]. Ore Geology Reviews, 2014, 57: 288-298. doi: 10.1016/j.oregeorev.2013.09.018

    [8]

    程裕淇. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题[J]. 地质学报, 1957, 37(2): 153-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195702001.htm

    [9]

    万渝生, 董春艳, 颉颃强, 等. 华北克拉通早前寒武纪条带状铁建造形成时代-SHRIMP锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008

    [10]

    张连昌, 代堰锫, 王长乐, 等. 鞍山-本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境[J]. 地球科学与环境学报, 2014, 36(4): 1-15. doi: 10.3969/j.issn.1672-6561.2014.04.001

    [11]

    李延河, 侯可军, 万德芳, 等. Algoma型和Suerior型硅铁建造地球化学对比研究[J]. 岩石学报, 2012, 28(11): 3513-3519. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211008.htm

    [12]

    刘磊, 杨晓勇. 华北克拉通南苑霍邱杂岩岩石成因及BIF成矿作用[J]. 矿物学报, 2015, 增刊: 531. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1383.htm

    [13]

    刘磊, 杨晓勇. 安徽霍邱BIF铁矿地球化学特征及其成矿意义——以班台子和周油坊矿床为例[J]. 岩石学报, 2013, 29(7): 2551-2566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201307021.htm

    [14]

    杨晓勇, 王波华, 杜贞保, 等. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制[J]. 岩石学报, 2012, 28(11): 3476-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211006.htm

    [15]

    姚通, 李厚民, 肇创, 等. 河南舞阳地区铁山庙式铁矿: 一种特殊的BIF[J]. 矿床地质, 2014, 33(增刊): 153-154. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1079.htm

    [16]

    张阔, 沈保丰, 孙丰月, 等. 河南舞阳地区赵案庄铁矿床成矿时代及地质意义——中国最古老的岩浆型铁矿床[J]. 矿床地质, 2016, 35(5): 889-901. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605001.htm

    [17]

    Lan C Y, Yang A Y, Wang C L, et al. Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincaibanded iron formation in the southern margin of the North China Craton: Implications on Neoarchean seawater compositions and solute sources[J]. Precambrian Research, 2017, 326: 240-257. https://www.sciencedirect.com/science/article/pii/S0301926817303455

    [18]

    杨崇科, 卢欣祥, 杨延伟, 等. 河南新蔡练村铁矿床地质特征与成矿构造背景[J]. 矿产与地质, 2018, 32(6): 1027-1034. doi: 10.3969/j.issn.1001-5663.2018.06.008

    [19]

    张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11): 3431-3445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211002.htm

    [20]

    沈其韩, 宋会侠, 赵子然. 山东韩旺新太古代条带状铁矿的稀土和微量元素特征[J]. 地球学报, 2009, 30(6): 693-699. doi: 10.3321/j.issn:1006-3021.2009.06.002

    [21]

    Sun S S, Mcmonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London. Geological Society, 1989, 42: 301-315.

    [22]

    Mclennan S M. Rare erath elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Review in Minerlogy and Geochemistry, 1989, 21: 169-200. https://www.researchgate.net/publication/331162328_Rare_earth_elements_in_sedimentary_rocks_Influence_of_provenance_and_sedimentary_processes

    [23]

    Bau M. Effects of syn-and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations[J]. European Journal of Mineralogy, 1993, 5(2): 257-267. doi: 10.1127/ejm/5/2/0257

    [24]

    Beukes N J, Klein C. Geochemistry and sedimentology of afacies transiton-from microbanded to granular iron-formation-in the Early Proterozoic Transvaal Supergroup, South Africa[J]. Precambrian Research, 1990, 47(1/2): 99-139. doi: 10.1016/0301-9268(90)90033-M

    [25]

    Dymek R F, Klein C. Chemistry, petrology and origin of bandediron-formation lithologies from the 3800Ma Isua supracrustal belt, West Greenland[J]. Precambrian Research, 1998, 39(4): 247-302. https://www.sciencedirect.com/science/article/pii/0301926888900228

    [26]

    Shimizu H, Umemoto N, Masuda A, et al. Sources of iron-formations in the Archean Isua and Malene supracrustals, West Greenland: Evidence from La-Ce and Sm-Nd isotopic data and REE abundances[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1147-1154. doi: 10.1016/0016-7037(90)90445-Q

    [27]

    Adekoya J A. The geology and geochemistry of the Maru banded iron-formation, northwestern Nigeria[J]. Journal of African Earth Sciences, 1998, 27(2): 241-257. doi: 10.1016/S0899-5362(98)00059-1

    [28]

    Kholodov V N, Butuzova G Y. Problems of iron and phosphorus geochemistry in the Precambrian[J]. Lithology Mineral Resources, 2001, 36(4): 291-302. doi: 10.1023/A:1010442919377

    [29]

    Hamade T, Konhauser K O, Raiswell R, et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J]. Geology, 2003, 31(1): 35-38. doi: 10.1130/0091-7613(2003)031<0035:UGSRTD>2.0.CO;2

    [30]

    Wonder J, Spry P, Windom K. Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia[J]. Economic Geology, 1988, 83: 1070-1081. doi: 10.2113/gsecongeo.83.5.1070

    [31]

    Bekker A, Slack J F, Planavsky N, et al. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508. doi: 10.2113/gsecongeo.105.3.467

    [32]

    Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90. https://www.sciencedirect.com/science/article/pii/S0009254198001429

    [33]

    Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of Early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 2004, 222(1): 43-60. doi: 10.1016/j.epsl.2004.02.016

    [34]

    Byrne R H, Lee J H. Comparative yttrium and rare earth element chemistries in seawater[J]. Marine Chemistry, 1993, 44(2/4): 121-130. https://www.sciencedirect.com/science/article/pii/030442039390197V

    [35]

    Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148: 329-340. doi: 10.1016/S0012-821X(97)00034-4

    [36]

    Danielson A, Moller P, Dulski P. The europium anomalies in banded iron formations and the thermal history of the Oceanic-crust[J]. Chemical Geology, 1992, 97(1/2): 89-100. https://www.sciencedirect.com/science/article/pii/000925419290137T

    [37]

    李志红, 朱祥坤, 唐索寒. 鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示[J]. 岩石矿物学杂志, 2008, 27(4): 285-290. doi: 10.3969/j.issn.1000-6524.2008.04.004

    [38]

    Huston D L, Logan G A. Barite, BIFs and bugs: Evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220: 41-55. doi: 10.1016/S0012-821X(04)00034-2

    [39]

    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa[J]. Geochimica et Cosmochimica Acta, 2008, 72: 378-394. doi: 10.1016/j.gca.2007.10.028

    [40]

    Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochim Cosmochim Acta, 1999, 63: 363-372. doi: 10.1016/S0016-7037(98)00279-8

    [41]

    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79: 37-55. doi: 10.1016/0301-9268(95)00087-9

    卢欣祥, 韩宁, 杨延伟, 等. 河南东秦岭-大别山及邻区花岗岩和主要金属矿产分布规律图. 2018.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1467
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2020-03-24
修回日期:  2020-05-14
刊出日期:  2022-07-15

目录