Zircon U-Pb ages, petrogenesis and tectonic setting of basic rocks in Gudui area, southern Tibet
-
摘要:
藏南古堆地区处于喜马拉雅带北东段, 雅鲁藏布江缝合带南部, 措美大火成岩省东南部, 区内基性岩分布较广泛, 主要呈脉状侵位于侏罗纪—三叠纪地层中。为探讨古堆地区基性岩的成因及其构造动力学背景, 对区内基性岩进行了锆石U-Pb年龄、岩石地球化学等研究。结果表明, SHRIMP锆石206Pb/238U同位素测年得出辉绿岩年龄加权平均值为137.7±0.9 Ma;辉长岩年龄加权平均值为133.8±0.8 Ma, 其形成时代为早白垩世, 与措美大火成岩省OIB型基性岩形成时代相近(130~136 Ma)。岩石地球化学证据表明, 基性岩具有高TiO2和P2O5特点, 不具有Nb-Ta槽特征, 微量元素比值(Ce/Zr、Zr/Nb、Zr/Y、Th/Yb)及稀土元素配分模式与板内洋岛玄武岩(OIB)相似。综合研究表明, 古堆地区基性岩源于富集地幔, 并且基性岩浆在上侵过程中未受到地壳混染, 其形成于板内构造环境, 可能是Kerguelen地幔柱早期活动的产物。对古堆地区基性岩的研究, 为近一步认识藏南地区早白垩世基性岩的成因及其大地构造背景提供了地质年代学和岩石地球化学方面的证据。
Abstract:The Gudui area in southern Tibet is located in the northeast section of the Himalaya belt, the south of the Yarlung Zangbo River suture zone, and the southeast of the cuomei large igneous province.The basic rocks in the area are widely distributed, mainly located in the Jurassic-Triassic strata.In order to explore the origin and structural dynamic background of basic rocks in Gudui area, zircon U-Pb chronology and rock geochemistry of basic rocks in the area are studied in this paper.The results show that the SHRIMP zircon 206Pb/238U isotopic dating shows that the weighted average age of diabase is 137.7±0.9 Ma, and the weighted average age of gabbro is 133.8±0.8 Ma, its formation age is early Cretaceous, which is similar to that of OIB basic rocks in Cuomei igneous Province(130~136 Ma).Rock geochemical evidence shows that the basic rocks have high TiO2 and P2O5 characteristics, not Nb-Ta groove characteristics, and the trace element ratios(Ce/Zr, Zr/Nb, Zr/Y, Th/Yb)and rare earth distribution patterns are similar to those of intraplate ocean island basalt(OIB).The comprehensive study shows that the basic rocks in gudui area originated from the enriched mantle, and the basic magma was not contaminated by the crust during the upwelling process.It was formed in the intraplate tectonic environment and may be the product of the early activities of the Kerguelen mantle plume.Through this study of basic rocks in Gudui area, geological chronology and rock geochemistry evidence are provided for further understanding the genesis and tectonic background of Early Cretaceous basic rocks in the southern Tibet.
-
表 1 古堆地区辉绿岩和辉长岩SHRIMP锆石U-Th-Pb分析结果
Table 1. SHRIMP zircon U-Th-Pb analysis results of diabase and gabbro in Gudui area
测试点号 206Pbc/% 含量/10-6 232Th/238U 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U
年龄/MaU Th 206Pb* 辉绿岩 1 1.21 549 1156 10.5 2.17 0.0473 13.6 0.14 13.6 0.0220 1.3 140.3 1.8 2 0.68 933 1914 17.3 2.12 0.0533 9.7 0.16 9.7 0.0214 1.0 136.5 1.4 3 1.71 585 1118 11.1 1.97 0.0447 16.9 0.13 17.0 0.0216 1.3 137.9 1.8 4 0.49 589 1061 11.1 1.86 0.0501 4.7 0.15 4.8 0.0219 0.9 139.7 1.2 5 0.83 835 2244 15.4 2.78 0.0457 6.8 0.13 6.8 0.0213 0.8 136.1 1.1 6 1.01 483 903 9.1 1.93 0.0479 6.3 0.14 6.4 0.0218 1.0 138.8 1.3 7 0.54 397 684 7.3 1.78 0.0488 8.6 0.14 8.8 0.0214 1.4 136.4 1.9 8 0.35 774 1972 14.2 2.63 0.0482 3.7 0.14 3.8 0.0213 0.8 136.0 1.0 9 0.64 427 799 8.1 1.93 0.0518 9.0 0.16 9.1 0.0220 1.1 140.3 1.6 10 0.30 1282 3840 23.9 3.09 0.0487 2.8 0.15 3.2 0.0216 1.5 137.9 2.1 辉长岩 1 2.28 210 92 3.8 0.44 0.0449 18.1 0.13 18.2 0.0205 1.7 130.8 2.2 2 0.00 1302 1962 23.4 1.51 0.0497 1.8 0.14 1.9 0.0209 0.5 133.6 0.7 3 1.74 1043 2010 19.1 1.93 0.0534 8.2 0.15 8.2 0.0209 0.8 133.6 1.1 4 2.04 991 2028 18.3 2.11 0.0485 9.5 0.14 9.6 0.0211 0.9 134.5 1.2 5 1.52 408 810 7.5 2.05 0.0439 17.0 0.13 17.1 0.0210 1.4 134.3 1.8 6 1.13 1020 2629 18.7 2.66 0.0427 10.2 0.12 10.2 0.0211 1.2 134.4 1.7 7 0.68 628 1343 11.5 2.21 0.0471 7.5 0.14 7.6 0.0212 1.2 135.5 1.6 8 1.31 818 2446 15.1 3.09 0.0490 8.2 0.14 8.3 0.0212 0.9 135.2 1.2 9 0.52 718 1567 12.8 2.26 0.0519 3.9 0.15 4.1 0.0207 1.0 131.8 1.3 表 2 古堆地区基性岩主量、微量和稀土元素分析结果
Table 2. Analysis results of major, trace and rare earth elements of basic rocks in Gudui area
元素 辉长岩 辉绿岩 元素 辉长岩 辉绿岩 PM4QY002 11PM101 11PM102 11PM301 11PM302 11Q6 11Q8 PM4QY002 11PM101 11PM102 11PM301 11PM302 11Q6 11Q8 SiO2 52.14 49.85 48.76 49.18 48.14 51.70 50.61 Lu 0.69 0.48 0.31 0.49 0.54 0.74 0.72 TiO2 3.64 2.93 2.84 4.13 2.51 2.42 2.22 Y 48.98 34.71 35.19 36.53 42.41 55.17 49.69 Al2O3 13.96 14.68 13.86 14.36 13.88 14.36 13.34 ΣREE 325.49 128.53 265.92 184.2 235.31 220.31 191.63 Fe2O3 3.02 3.24 2.70 2.32 2.92 2.12 1.86 LREE 287.48 103.89 235.78 156.72 203.2 184.7 160.01 MnO 0.15 0.17 0.16 0.15 0.17 0.16 0.15 HREE 38.01 24.64 30.14 27.48 32.11 35.61 31.62 MgO 3.54 3.53 6.36 4.48 3.63 5.33 5.42 LREE/HREE 7.56 4.22 7.82 5.7 6.33 5.19 5.06 CaO 6.52 7.51 8.90 6.79 6.66 7.65 8.50 Na2O 3.84 3.82 3.07 4.39 2.83 2.74 2.46 (La/Yb)N 8.73 2.37 12.19 5.1 7.12 5.3 5.09 K2O 1.63 1.37 0.12 1.15 0.91 1.44 1.31 FeO 7.48 8.59 8.56 8.91 8.14 7.95 7.34 δEu 1.01 1.02 1.4 1.12 0.92 1.34 1.36 P2O5 0.66 0.53 0.34 0.47 0.51 0.29 0.26 Ba 433 501.5 155.7 205.8 201.8 355.4 279.4 Mg# 46.00 42.52 57.22 47.51 44.53 54.69 57.07 Co 40.8 24.2 45.5 52.2 36.5 43.83 41.65 烧失量 2.89 2.69 3.19 2.52 9.66 2.02 2.49 Cu 27 11.4 20.1 18.8 6 — — 总计 99.47 98.91 98.86 98.85 98.96 98.18 97.96 Ni 17.6 18.1 49.6 18.7 2 20.33 24.01 σ 3.27 3.93 1.77 4.97 2.72 2.01 1.87 Sc 19.6 17.6 26.8 23.6 16.7 26.3 25.4 Na2O+K2O 5.47 5.19 3.19 5.54 3.74 4.18 3.77 Sr 441.6 128.9 121.7 183.8 127.3 394.3 412.3 Zn 119.8 99.7 100.9 103 110.5 100.5 95.43 K2O/Na2O 0.42 0.36 0.04 0.26 0.32 0.53 0.53 Cr 12.2 37.5 132.6 18.8 11.8 131.7 115.8 Rb 22.2 125.3 5.0 20.4 26.1 50.3 49.92 A/CNK 0.70 0.68 0.65 0.69 0.72 0.72 0.73 Nb 61.7 27.15 18.19 41.99 29.24 26.44 28.56 La 57.72 10.69 38.74 24.02 37.03 37.34 32.84 Ta 3.54 1.69 0.97 2.54 1.45 0.72 0.63 Ce 119.2 44.51 94.78 65.64 85.91 78.77 68.17 W 0.68 2.64 0.91 0.62 0.41 2.11 1.59 Pr 15.94 6.37 13.7 9.15 11.56 10.23 8.78 Pb 13.8 26 5.7 13.7 20.9 21.65 24.77 Nd 75.72 32.31 69.13 45.03 54.38 43.64 37.5 Th 3.64 23.55 1.4 3 4.87 5.8 5.61 Sm 14.45 7.58 13.58 9.56 11.13 10.34 8.86 U 1.06 2.43 0.28 0.69 0.43 0.61 0.81 Eu 4.45 2.43 5.85 3.32 3.19 4.38 3.86 Sn 8.3 3.74 3.92 2.35 5 2.82 2.07 Gd 11.96 6.68 11.28 8.25 9.64 9.35 8.17 Zr 914.8 387.8 332.1 598.3 175.3 273.6 216.3 Tb 2.08 1.37 1.9 1.53 1.83 1.72 1.49 Li 17.2 39.8 35.7 31.5 74.1 36.92 25.66 Dy 10.39 7.13 8.67 7.69 9.14 10.39 9.08 Hf 12.8 10.2 5.4 6.8 7.3 7.21 10.82 Ho 2.04 1.47 1.59 1.57 1.83 2.05 1.83 V 237.8 139.7 271.4 312 256.4 273.2 257.3 Er 5.38 3.76 3.7 4.02 4.76 5.45 4.91 Au 0.1 0 0 0 0.07 0.82 0.88 Tm 0.73 0.52 0.41 0.55 0.64 0.86 0.79 Sb 1.12 0.72 0 0.57 0.54 0 0 Yb 4.74 3.23 2.28 3.38 3.73 5.05 4.63 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6,其中Au为10-9 -
[1] 西藏自治区地质矿产局.西藏自治区地质志[M]. 北京:地质出版社, 1993:449-450.
[2] 江思宏, 聂凤军, 胡朋, 等. 藏南基性岩墙群的地球化学特征[J]. 地质学报, 2007, 81(1): 60-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701007.htm
[3] 童劲松, 刘俊, 钟华明, 等. 藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义[J]. 地质通报, 2007, 26(12): 1654-1664. doi: 10.3969/j.issn.1671-2552.2007.12.019
[4] 周邦国, 张志, 李光明, 等. 藏南柯月铅锌矿床辉绿岩年代学及地球化学特征研究[J]. 矿物岩石, 2018, 38(1): 27-34. doi: 10.19719/j.cnki.1001-6872.2018.01.005
[5] 李永灿, 周清, 李应栩, 等. 藏南色岗辉绿岩墙群年代学及成因研究[J]. 高校地质学报, 2017, 23(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201701003.htm
[6] 潘桂棠, 王立全, 朱弟成. 青藏高原区域地质调查中几个重大科学问题的思考[J]. 地质通报, 2004, 23(1): 12-19. doi: 10.3969/j.issn.1671-2552.2004.01.007 https://www.cgsjournals.com/article/id/dztb_20040108
[7] 钟华明, 童劲松, 夏军, 等. 藏南羊卓雍错南部桑秀组火山岩的特征及构造环境[J]. 地质通报, 2005, 24(1): 72-79. doi: 10.3969/j.issn.1671-2552.2005.01.011 https://www.cgsjournals.com/article/id/dztb_20050112
[8] Zhu D C, Chuang S L, Mo X X. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Australia[J]. Geology, 2009, 37: 583-586.
[9] 裘碧波, 朱弟成, 赵志丹, 等. 藏南措美残余大火成岩省的西延及其意义[J]. 岩石学报, 2011, 26(7): 2207-2216.
[10] Hu X M, Jansa L, Chen L, et al. Provenance of Lower Cretaceous WÖlong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana[J]. Sedimentary Geology, 2010, 223(3/4): 193-205.
[11] 张运昌, 陈彦, 杨青, 等. 西藏冈底斯带中部南木林地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2019, 38(5): 719-732. https://www.cgsjournals.com/article/id/6153fe80ed73f876a05b5e01
[12] 聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 79(3): 373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009
[13] 张刚阳. 藏南金锑多金属成矿带成矿模式与找矿前景研究[D]. 中国地质大学博士学位论文, 2012.
[14] Murphy M A, Harrison T M. The relationship between leucogranites and the South Tibet an detachment system, Rongbuk Valley, southern Tibet[J]. Geology, 1999, 27: 831-834.
[15] 周剑雄, 陈振宇. 锆石等测年矿物的电子探针及阴极射线致发光综合研究新方法[J]. 地质论评, 2002, 48(增刊): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1007.htm
[16] Claoue-Long J C, Compston R W, Fanning C M. Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis[C]//Berggren W A, Kent D V, Aubry M P, et al. Geochronology time scales and global stratigraphic coaelation: SEPM Special publication, 1995, 5(4): 3-31: Implications for the final breakup of Eastern Gondwana: Sedimentary Geology, 1995, 223(3/4): 193-205.
[17] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48(增刊): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
[18] 吕晓春, 任冲, 成明, 等. 藏南隆子地区早白垩世双峰式火山岩的发现——来自SHRIMP锆石U-Pb年代学和岩石地球化学的证据[J]. 地质论评, 2016, 62(4): 945-954. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201604013.htm
[19] 陈雪峰, 刘希军, 许继峰, 等. 桂西那坡基性岩地球化学: 峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 2016, 40(3): 531-548. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201603010.htm
[20] 徐向珍, 杨经绥, 郭国林, 等. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究[J]. 岩石学报, 2011, 27(11): 3179-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111003.htm
[21] 曹光跃, 薛怀民, 刘哲, 等. 鲁西临朐地区早白垩世青山群火山岩的年代学、地球化学及岩石成因[J]. 地质学报, 2018, 92(3): 503-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201803006.htm
[22] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites: Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982: 528-548.
[23] 丁枫, 高建国, 徐琨智. 西藏南部绒布地区基性岩脉岩石地球化学、年代学特征及地质意义[J]. 岩石学报, 2020, 36(2): 391-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202002004.htm
[24] Taylor S R, Mc Clennan S. The continental crust: Composition and evolution[M]. Blackwell Scientific Publications, 1985: 209-230.
[25] 张航, 柏勇, 徐争启, 等. 攀枝花大田地区辉绿岩脉岩石地球化学特征及其地质意义[J]. 矿物岩石, 2018, 38(4): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201804005.htm
[26] 郑吉林, 刘涛, 徐立明, 等. 大兴安岭嘎仙蛇绿混杂岩中超镁铁质岩地球化学、年代学特征及其地质意义[J]. 地质通报, 2020, 39(4): 480-490. https://www.cgsjournals.com/article/id/6153fe63ed73f876a05b5d91
[27] Halama R, Marks M, Brgmann G, et al. Crustal contamination of mafic magmas: evidence from a petrological, geochemical and Sr-Nd-Os-O isotope study of the proterozoic Isortoq dike swarm, South Greenland[J]. Lithos, 2004, 74: 199-232.
[28] Sun S S, McDough W F. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in ocean basins. Geol. Soc. London. Spec. Publ., 1989, 42: 313-345.
[29] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constrains[J]. Earth and Planetary Science Letters, 1991, 104: 381-297.
[30] Lassiter J C, Depaolo D J. Plume lithosphere interaction in the generation of continental and oceanic flood basalts; chemical and isotopic constrains[C]//Mahoney J J, Coffin M F. Large igneous provinces; Continental, oceanic and planetary flood volcanism, Washington DC. American Geophysical Union Monograph, 2000, 100: 335-355.
[31] Perfit M R, Gust D A, Bench A E. Chemical Characteristics of Island-Arc Basalts: Implications for Mantle Sources[J]. Chemical Geology, 1980, 30: 227-256.
[32] 贺新星, 肖龙, 王国灿, 等. 西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义[J]. 地球科学—中国地质大学学报, 2015, 40(5): 777-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201505002.htm
[33] 董国臣, 莫宣学, 赵志丹, 等. 西藏冈底斯南带辉长岩及其所反映的壳幔作用信息[J]. 岩石学报, 2008, 24(2): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802004.htm
[34] 王喜臣, 夏斌, 刘维亮, 等. 西藏蓬错蛇绿岩年代学、地球化学及岩石成因[J]. 大地构造与成矿学, 2018, 42(3): 550-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803011.htm
[35] 张招崇, 王福生, 郝艳丽, 等. 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J]. 地质学报, 2004, 78(2): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200402004.htm
[36] 朱弟成, 潘桂棠, 莫宣学, 等. 特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义[J]. 科学通报, 2005, 50(4): 375-379. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20050400C.htm
[37] 张雨轩, 解超明, 于云鹏, 等. 早侏罗世新特提斯洋俯冲作用——来自松多高镁闪长岩锆石U-Pb定年及Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1387-1399. https://www.cgsjournals.com/article/id/6153fea9ed73f876a05b5efc
[38] 夏瑛, 朱弟成, 赵志丹, 等. 藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素[J]. 岩石学报, 2012, 28(5): 1588-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205023.htm
[39] 刘飞, 杨经绥, 连东洋, 等. 雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义[J]. 地球学报, 2015, 36(4): 441-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201504009.htm
[40] Kelemen P B, Hanghoj K, Greene A R, et al. One View of the geochemistry of Subduction—Related Magnmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust[J]. Treatise on Geochemistry, 2003, 3;593-659.
[41] 朱弟成, 莫宣学, 赵志丹, 等. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点[J]. 地学前缘, 2009, 16(2): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902002.htm
[42] 朱弟成, 夏瑛, 裘碧波, 等. 为什么要提出西藏东南部早白垩世措美大火成岩省[J]. 岩石学报, 2013, 29(11): 3659-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311001.htm
[43] Frey F A, McNaughton N J, Nelson D R, et al. Petrogenesis of the Bunbury basalt, weatern Australia: Interaction between the Kerguelen plume and Gondwana lithosphere?[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 163-183.
[44] Ingle S, Scoates J S, Weis D, et al. Origin of Cretaceous continental basalts in southwestern Australia and eastern Indian: Insights from Os and Hf isotopes[J]. Chemical Geology, 2004, 209(1/2): 83-106.
[45] 杨高学, 李永军, 佟丽莉, 等. 西准噶尔蛇绿混杂岩中洋岛玄武岩研究新进展[J]. 地质学报, 2015, 89(2): 392-405. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502014.htm
[46] 陈万峰, 王金荣, 张旗, 等. 洋岛和洋底高原玄武岩数据挖掘: 地球化学特征及其与MORB的对比[J]. 地质学报, 2017, 91(11): 2443-2455. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201711005.htm