Petrogenesis and provenance of the quartz sandstone from the bottom of Lower Jurassic Fuxian Formation, northeastern Ordos Basin
-
摘要:
鄂尔多斯盆地东北部富县组底部发育一套石英砂岩, 对其形成原因存在不同的认识。为了查明石英砂岩的成因及其物质来源, 利用沉积学、岩石学、岩石地球化学等方法进行了研究。结果表明, 富县组石英砂岩具有吉尔伯特型三角洲典型的"三层结构", 属湖泊扇三角洲相。石英砂岩的矿物组成以石英和高岭石占绝对优势, 石英多为单晶石英, 高岭石呈碎片状和折扇状, 可能为原始沉积时带入。碎屑组分与岩石地球化学结果显示, 其物源为盆地内部隆起提供的富石英质沉积岩。结合区域地质背景, 推断印支期延长组顶部长石砂岩风化蚀变形成的富含石英与高岭石的源区物质是富县组底部石英砂岩形成的关键, 此类型石英砂岩的形成与不整合面上强烈的风化剥蚀作用有关, 且与高岭石土矿床紧密伴生, 有可能作为识别不整合面存在的新证据。
Abstract:Abstract: A suite of quartz sandstones was deposited in the bottom of the Fuxian Formation in the northeast of Ordos Basin. There are different interpretations about its petrogenesis. The research of sedimentology, petrology and rock geochemistry was carried out on the quartz sandstones to reveal their petrogenesis and provenance. The study show that the quartz sandstones has the characteristic of "three-layer structure" as the Gilbert-type delta which belongs to the lake-fan delta facies. The quartz sandstones are mainly consisted of quartz and kaolinite. The Quartz is mostly single-crystal quartz, the kaolinite appeared to be fragmentary and pliciform, they may show characteristic of the provenance. The results of petrology and geochemistry indicate that the uplifted terrain in the interior of the basin provided large amount of sandstones which rich in quartz as the provenance. Combined with the regional geologic data, the survey results conclude that the arkose on the top of Yanchang Formation had formed the quartz-rich and kaolinite-rich provenance by alteration in Indochina period, and it's the key to form the quartz sandstones in Fuxian formation. This type of quartz sandstone relate with strong weathering on the unconformity, and it closely associated with kaolin deposit. So it may be a new evidence to prove the exist of unconformity.
-
图 1 鄂尔多斯盆地东北部地质简图[24]
Figure 1.
图 4 富县组石英砂岩微量元素标准化蛛网图(a)与球粒陨石标准化稀土元素配分模式图(b)[27]
Figure 4.
图 5 富县组石英砂岩Q-F-L(a)、Qm-P-K(b)和Qm-F-Lt(c)物源区大地构造背景判别图[29]
Figure 5.
图 6 富县组石英砂岩F1-F2物源判别图解[32]
Figure 6.
图 7 富县组石英砂岩源区判别图解[34]
Figure 7.
表 1 富县组石英砂岩主量元素分析结果
Table 1. The concentration of major element for quartz sandstone in Fuxian Formation
% 样品号 Jf-1 Jf-2 Jf-3 Jf-4 Jf-5 KQ-1 KQ-2 KQ-3 KQ-4 富县组(平均值) 岩性 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 中砂岩 样品 石英砂岩 富高岭石石英砂岩 SiO2 91.73 94.48 98.79 95.22 98.05 80.92 77.46 70.29 84.27 87.91 95.65 78.24 Al2O3 4.72 2.98 0.24 2.73 0.72 11.01 14.33 19.29 9.45 7.27 2.28 13.52 Fe2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.09 0.22 0.36 <0.01 FeO 0.62 0.38 0.27 0.21 0.18 1.67 0.6 1 0.9 0.65 0.33 1.04 CaO 0.09 0.11 0.17 0.14 0.2 0.09 0.68 0.65 0.24 0.26 0.14 0.42 MgO 0.09 0.1 0.18 0.12 0.13 0.1 0.1 0.11 0.26 0.13 0.12 0.14 K2O 0.06 0.05 0.02 0.03 0.03 0.12 0.16 0.59 0.28 0.15 0.04 0.29 Na2O 0.05 0.04 0.04 0.04 0.03 0.05 0.07 0.08 0.05 0.05 0.04 0.06 TiO2 0.64 0.54 0.22 0.3 0.18 1.4 0.68 0.38 0.27 0.51 0.38 0.68 P2O5 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.03 0.06 <0.01 0.03 MnO <0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.02 0.02 0.01 <0.01 0.02 烧失量 4.07 5.95 0.38 2.12 0.87 5.38 11 14 7.24 5.67 2.68 9.41 总和 98 98.68 99.93 98.79 99.52 95.4 94.21 92.66 96.15 97.04 98.98 94.61 Al2O3/SiO2 0.05 0.03 0.002 0.03 0.01 0.14 0.18 0.27 0.11 0.09 0.02 0.18 K2O/Na2O 1.2 1.25 0.5 0.75 1 2.4 2.29 7.38 5.6 2.49 0.94 4.42 F1 -6.96 -8.04 -9.27 -7.9 -8.91 -3.69 -0.91 2.51 -3.36 F2 -6.32 -6.45 -6.87 -6.57 -6.75 -5.76 -5.23 -4.56 -6.14 表 2 富县组石英砂岩微量及稀土元素分析结果
Table 2. The concentration of trace element and REE for quartz sandstone in Fuxian Formation
10-6 样品号 Jf-1 Jf-2 Jf-3 Jf-4 Jf-5 KQ-1 KQ-2 KQ-3 KQ-4 富县组(平均值) 岩性 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 细砂岩 中砂岩 样品 石英砂岩 富高岭石石英砂岩 Pb 9.84 8.05 16.80 9.92 15.00 11.40 28.30 34.40 7.00 15.63 11.92 20.28 Zn 9.17 10.60 29.90 13.00 24.30 20.80 72.10 70.40 27.40 30.85 17.39 47.68 Cr 24.10 16.60 9.45 11.90 7.40 47.00 45.80 22.70 18.60 22.62 13.89 33.53 Ni 2.83 3.01 3.56 2.91 5.88 13.00 11.00 7.19 16.40 7.31 3.64 11.90 Co 0.97 0.87 0.72 0.63 0.72 2.75 5.34 3.36 7.09 2.49 0.78 4.64 Rb 2.62 2.15 1.02 2.06 1.48 5.38 8.42 21.30 13.00 6.38 1.87 12.03 Cs 0.26 0.15 0.05 0.14 0.11 0.49 0.92 0.56 0.37 0.34 0.14 0.59 Sr 14.40 10.20 10.70 7.38 6.99 26.40 35.60 45.90 19.40 19.66 9.93 31.83 Ba 38.40 28.80 158.00 48.20 28.80 58.40 69.00 148.00 75.60 72.58 60.44 87.75 V 21.40 16.20 4.80 10.20 3.27 50.50 67.50 50.70 24.90 27.72 11.17 48.40 Sc 2.68 2.19 0.69 1.23 0.68 6.78 7.41 12.20 4.03 4.21 1.49 7.61 Zr 97.60 64.70 175.00 130.00 100.00 106.00 98.30 94.60 89.50 106.19 113.46 97.10 Hf 2.66 1.85 4.42 3.40 2.52 3.10 2.69 2.48 2.45 2.84 2.97 2.68 Th 1.87 1.76 1.12 3.53 1.71 9.15 8.33 3.96 3.06 3.83 2.00 6.13 La 6.45 4.55 3.16 5.42 2.40 11.60 9.83 11.00 11.80 7.36 4.40 11.06 Ce 14.50 10.90 6.54 9.80 4.52 25.60 29.30 32.90 23.20 17.47 9.25 27.75 Pr 1.40 1.11 0.75 1.12 0.47 2.35 2.22 2.53 2.46 1.60 0.97 2.39 Nd 4.75 3.77 2.74 4.29 1.65 8.00 6.14 7.72 9.08 5.35 3.44 7.74 Sm 0.79 0.61 0.43 0.60 0.27 1.17 1.03 1.33 1.61 0.87 0.54 1.29 Eu 0.16 0.11 0.08 0.07 0.05 0.17 0.20 0.32 0.32 0.16 0.09 0.25 Gd 0.75 0.59 0.36 0.48 0.27 0.93 0.81 1.10 1.07 0.71 0.49 0.98 Tb 0.11 0.09 0.06 0.08 0.05 0.13 0.13 0.16 0.15 0.11 0.08 0.14 Dy 0.73 0.59 0.35 0.54 0.30 0.80 0.77 1.03 0.82 0.66 0.50 0.86 Ho 0.17 0.14 0.08 0.12 0.07 0.18 0.16 0.23 0.16 0.15 0.12 0.18 Er 0.50 0.43 0.22 0.36 0.23 0.56 0.48 0.66 0.46 0.43 0.35 0.54 Tm 0.08 0.07 0.04 0.06 0.04 0.09 0.08 0.10 0.07 0.07 0.06 0.09 Yb 0.54 0.49 0.28 0.43 0.29 0.64 0.57 0.76 0.48 0.50 0.41 0.61 Lu 0.09 0.08 0.05 0.07 0.05 0.10 0.09 0.13 0.08 0.08 0.07 0.10 La/Th 3.45 2.59 2.82 1.54 1.40 1.27 1.18 2.78 3.86 2.32 2.36 2.27 ∑REE 31.02 23.53 15.14 23.44 10.65 52.32 51.81 59.97 51.76 35.51 20.76 53.97 ∑LREE/∑HREE 9.45 8.51 9.56 9.95 7.22 14.25 15.76 13.38 14.75 11.43 8.94 14.54 δEu 0.63 0.55 0.63 0.39 0.53 0.48 0.65 0.79 0.70 0.59 0.55 0.66 (La/Yb)N 8.57 6.66 8.10 9.04 5.94 13.00 12.37 10.38 17.63 10.19 7.662 13.345 表 3 富县组石英砂岩样品碎屑颗粒组分
Table 3. Detrital mode of quartzs sandstone in Fuxian Formation
样品号 Qm Qp Q P K F Ls Lt Q/(Q+F+L) Qm/Q Jf-1 301 18 319 0 0 0 2 20 0.99 0.94 Jf-2 289 19 308 0 0 0 3 22 0.99 0.94 Jf-3 302 14 316 0 0 0 2 16 0.99 0.96 Jf -4 276 23 299 0 0 0 3 26 0.99 0.92 Jf -5 284 16 300 0 0 0 3 19 0.99 0.95 KQ-1 256 21 277 4 6 10 6 27 0.95 0.92 KQ-2 238 41 279 3 5 8 5 46 0.96 0.85 KQ-3 243 27 270 4 8 12 10 37 0.92 0.90 KQ-4 240 34 274 5 12 17 12 46 0.90 0.88 注:Qm—单晶石英;Qp—多晶石英碎屑(包括燧石);Q—石英颗粒总数;Pl—斜长石;Kf—钾长石;F—长石颗粒总数;Ls—沉积岩和变质岩岩屑;L—不稳定岩屑(L=Lv+Ls);Lt—多晶质岩屑(L+Qp) -
[1] 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M]. 北京:石油工业出版社, 2002.
[2] 赵俊兴, 陈洪德, 张锦泉, 等. 鄂尔多斯盆地下侏罗统富县组沉积体系及古地理[J]. 沉积与特提斯地质, 1999, 19(5): 40-46. doi: 10.3969/j.issn.1009-3850.1999.05.005
[3] 李凤杰, 王多云, 刘自亮, 等. 鄂尔多斯盆地华池地区中侏罗统延安组延9油层组河流沉积及演化[J]. 古地理学报, 2009, 11(3): 275-283. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200903003.htm
[4] 唐波, 陈义才, 林杭杰, 等. 定边地区富县组储层砂岩成岩作用及孔隙演化特征[J]. 湖北文理学院学报, 2011, 32(5): 37-41. doi: 10.3969/j.issn.1009-2854.2011.05.009
[5] 陈俊丽, 唐波, 古伟, 等. 定边地区富县组油气成藏条件研究[J]. 湖北文理学院学报, 2011, 32(11): 60-63. doi: 10.3969/j.issn.1009-2854.2011.11.015
[6] 张云霞, 陈纯芳, 宋艳波, 等. 鄂尔多斯盆地南部中生界烃源岩特征及油源对比[J]. 石油实验地质, 2012, 34(2): 173-177. doi: 10.3969/j.issn.1001-6112.2012.02.012
[7] 李龙龙, 李超, 王平平, 等. 鄂尔多斯盆地胡154富县组油藏建产有利区分析[J]. 石油化工应用, 2015, 34(2): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201502022.htm
[8] 吕振华, 齐亚林, 孟令涛. 鄂尔多斯盆地西北部地区侏罗系成藏主控因素研究[J]. 新疆石油天然气, 2016, 12(1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY201601004.htm
[9] 蒋代琴, 文志刚, 汤仁文, 等. 鄂尔多斯盆地吴起地区古地貌对侏罗系下部油藏形成和富集控制机制分析[J]. 地质力学学报, 2018, 24(5): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805065.htm
[10] 葛道凯, 杨起, 付泽明. 陕西榆林侏罗纪煤系基底古侵蚀面的地貌特征及其对富县组沉积作用的控制[J]. 沉积学报, 1991, 9(3): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199103007.htm
[11] 李思田, 程守田, 杨士恭. 鄂尔多斯盆地东北部层序地层及沉积体系[M]. 北京: 地质出版社, 1992.
[12] 焦养泉. 曲流河与湖泊三角洲沉积体系及典型骨架砂体内部构成分析[M]. 武汉: 中国地质大学出版社, 1995.
[13] 刘犟, 李凤杰, 侯景涛, 等. 鄂尔多斯盆地吴起地区下侏罗统富县组沉积相特征[J]. 岩性油气藏, 2002, 24(3): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201203016.htm
[14] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology, 1986, 94: 635-650.
[15] Roser B P, Korsch R J. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: The Torlesse terrane, New Zealand[J]. Geological Magazine, 1999, 136: 493-51.
[16] Mclennan S M, Hemming S R, McDaniel D K, et al. Geochemical approaches to sedimention, provenance and tectonics[C]//Johansson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Special Paper of Geological Society America, 1993, 284: 21-40.
[17] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ902.009.htm
[18] Hill I G, Worden R H, Meighan I G. Geochemical evolution of a palaeolaterite: The interbasaltic formation, Northern Ireland[J]. Chemical Geology, 2000, 166: 65-84.
[19] 闫义, 林舸, 王岳军, 等. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展, 2002, 17(1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201012.htm
[20] 闫臻, 肖文交, 刘传周, 等. 祁连山老君山砾岩的碎屑组成及源区大地构造背景探讨[J]. 地质通报, 2006, 25(1/2): 83-98. https://www.cgsjournals.com/article/id/dztb_20060114
[21] 闫臻, 王宗起, 王涛, 等. 秦岭泥盆系形成构造环境: 来自碎屑岩组成和地球化学方面的约束[J]. 岩石学报, 2007, 23(5): 1023-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705017.htm
[22] 刘池阳, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80(5): 617-638. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605003.htm
[23] 柳益群, 李继红, 冯乔, 等. 鄂尔多斯盆地三叠-侏罗系的成岩作用及其成藏成矿响应[J]. 岩石学报, 2009, 25(10): 2331-2339. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910003.htm
[24] 张龙, 刘池洋, 雷开宇, 等. 鄂尔多斯盆地东北部侏罗系延安组漂白砂岩成因和古风化壳形成环境探讨[J]. 地质学报, 2017, 91(6): 1345-1359. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706014.htm
[25] Gilbert G K. The topographic features of lake shores[J]. United States Geological Survey Annual Report, 1885, 5: 104-108.
[26] 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003.
[27] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 1989, 42(1): 313-345.
[28] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[J]. Provenance of Arenites. Nato Advanced Study Institute Series, 1985, 148: 333-361.
[29] Dickinson W R, Suczek C A. Plate tectonic and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.
[30] Grazanti E. Sedimentary evolution and drowning of a passive margin shelf(Giumal Group; Zanskar Tethys Himalaya, India): Palaeoenvironmental changes during final break-up of Gondwana land[J]. Geological Society of London, Special Publications, 1993, 74: 277-298.
[31] 王成善, 李祥辉. 沉积盆地分析原理与方法[M]. 北京: 高等教育出版社, 2003.
[32] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suite determined using discriminant function analtsis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[33] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contribution to Mineralogy and Petrology, 1986, 92(2): 97-113.
[34] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[35] 桑隆康, 马昌前. 岩石学[M]. 北京: 地质出版社, 2012.
[36] 王剑, 谭富文, 付修根, 等. 沉积岩工作方法. 北京: 地质出版社, 2015.
[37] Suttner L J, Basu A, Mack G H. Climate and the origin of quartz arenites[J]. Journal Sedimentary Petrology, 1981.51: 1235-1246.
[38] Avigad D, Sandler A, Kolodner K, et al, Mass production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications[J]. Earth and Planetary Science Letters, 2005, 240(3/4): 818-826.
[39] 胡艳飞, 孔庆莹. 鄂尔多斯盆地西南部长8油层储层主控因素及分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1078-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202204005.htm
[40] 黄焱球, 程守田. 东胜煤系砂岩型高岭土的富集机理[J]. 煤田地质与勘探, 1999, 27: 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT903.003.htm