Discovery of the Late Carboniferous alkali-feldspar granite from the Bulinmiao area in Inner Mongolia and its constraints on the evolution of the Paleo-Asian-Ocean
-
摘要:
对贺根山蛇绿岩带北缘的布林庙碱长花岗岩体进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学特征研究, 以期解释其岩石成因及地质意义。研究表明: 碱长花岗岩体的锆石U-Pb年龄为304±1 Ma, 为晚石炭世岩浆活动的产物; 所有样品的地球化学特征相似, 表现为高硅、富碱且相对富钾、弱过铝质的特点, 富集Rb、K等大离子亲石元素, 贫P、Sr、Ti等元素。结合样品的10000Ga/Al值、TFeO含量、Zr含量、锆石饱和温度等相关指标, 认为岩体为高钾钙碱性(钾玄岩)系列的A型花岗岩。岩体形成于贺根山洋盆闭合后, 是古亚洲洋造山后伸展阶段早期阶段的产物。
Abstract:In this paper, LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Bulinmiao alkali-feldspar granite pluton located in the northern margin of the Hegenshan ophiolite belt are studied in order to explain its petrogenesis and tectonic significance.The study shows that the zircon U-Pb dating give weighted average age of 304±1 Ma, indicating that it is the product of magmatic activity in the Late Carboniferous.The general characteristics of the granite samples are similar, showing the characteristics of high silicon, rich alkali, rich K, and weak peraluminous.Trace elemental data of these rocks show LILE(Rb, K)enrichment, HFSE(P, Sr, Ti)depletion.Combining with the 10000Ga/Al value, TFeO, Zr contents and zircon saturation temperatures of the sample, the pluton is an aluminous A-type granite and belongs to the high-K calc-alkaline series.The granite was the product of the early stage post-orogenic extension after closure of Hegenshan Ocean.
-
图 6 碱长花岗岩稀土元素球粒陨石标准化配分模式图(a)及微量元素原始地幔标准化蛛网图(b)(标准化值据参考文献[32])
Figure 6.
表 1 布林庙碱长花岗岩LA-ICP-MS锆石U-Th-Pb定年结果
Table 1. LA-ICP-MS zircon U-Th-Pb dating results of the alkali feldspar granite in the Bulinmiao area
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 25 252 499 0.51 0.0524 0.0009 0.350 0.006 0.0484 0.0005 301 39 304 6 305 3 2 30 209 617 0.34 0.0523 0.0007 0.350 0.005 0.0486 0.0005 298 32 305 5 306 3 3 31 316 616 0.51 0.0521 0.0007 0.350 0.005 0.0487 0.0005 290 32 305 5 307 3 4 14 148 285 0.52 0.0521 0.0011 0.347 0.007 0.0483 0.0005 290 47 303 6 304 3 5 13 137 265 0.52 0.0527 0.0012 0.346 0.008 0.0477 0.0005 316 53 302 7 300 3 6 28 220 573 0.38 0.0524 0.0007 0.350 0.005 0.0484 0.0005 304 30 304 4 304 3 7 24 154 509 0.30 0.0524 0.0008 0.349 0.006 0.0483 0.0005 303 34 304 5 304 3 8 22 139 460 0.30 0.0523 0.0007 0.350 0.005 0.0484 0.0005 300 32 304 5 305 3 9 27 215 560 0.38 0.0523 0.0007 0.351 0.005 0.0487 0.0005 297 31 305 5 306 3 10 12 86 243 0.35 0.0523 0.0011 0.352 0.008 0.0489 0.0005 299 46 306 7 307 3 11 21 241 423 0.57 0.0523 0.0008 0.350 0.006 0.0486 0.0005 299 33 305 5 306 3 12 13 108 258 0.42 0.0523 0.0015 0.345 0.010 0.0479 0.0005 297 66 301 9 301 3 13 21 159 432 0.37 0.0527 0.0012 0.348 0.008 0.0479 0.0005 317 52 303 7 301 3 14 10 75 214 0.35 0.0523 0.0015 0.348 0.010 0.0482 0.0005 299 66 303 9 304 3 15 8 55 155 0.36 0.0526 0.0021 0.351 0.015 0.0484 0.0005 312 92 305 13 304 3 16 20 212 404 0.53 0.0524 0.0008 0.351 0.006 0.0487 0.0005 301 35 306 5 306 3 17 12 118 245 0.48 0.0524 0.0014 0.349 0.010 0.0483 0.0005 303 62 304 9 304 3 18 20 200 410 0.49 0.0525 0.0014 0.346 0.010 0.0478 0.0005 307 62 302 9 301 3 19 10 75 202 0.37 0.0527 0.0024 0.346 0.016 0.0476 0.0005 315 103 302 14 300 3 20 10 104 214 0.48 0.0531 0.0026 0.346 0.017 0.0473 0.0005 332 110 302 15 298 3 21 23 357 412 0.87 0.0529 0.0009 0.349 0.006 0.0479 0.0005 323 39 304 6 302 3 22 9 85 181 0.47 0.0524 0.0015 0.347 0.010 0.0481 0.0005 301 66 303 9 303 3 23 18 157 362 0.43 0.0528 0.0015 0.349 0.010 0.0479 0.0005 319 65 304 9 302 3 24 6 42 132 0.31 0.0524 0.0017 0.348 0.012 0.0481 0.0005 301 39 303 10 303 3 表 2 布林庙碱长花岗岩主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth elements compositions of the alkali-feldspar granite in the Bulinmiao area
岩性 细中粒碱长花岗岩 细粒斑状碱长花岗岩 斑状角闪二长岩 样品号 P403
Gs-22620
Gs-12620
Gs-2D2839
Gs -1P402
Gs-7P403
Gs-5P402
Gs-4P402
Gs-24167
Gs-1SiO+2 75.44 77.07 77.21 77.13 77.22 72.48 73.61 73.23 64.65 Al2O3 11.95 12.29 12.22 12.52 12.10 14.22 13.45 13.74 15.25 TiO2 0.28 0.12 0.08 0.14 0.06 0.30 0.42 0.43 0.98 CaO 0.10 0.06 0.44 0.29 0.30 0.11 0.14 0.21 2.60 MgO 0.09 0.17 0.15 0.19 0.12 0.08 0.09 0.21 1.56 K2O 4.66 3.98 4.54 5.01 5.11 5.90 5.53 6.54 3.45 Na2O 3.78 4.20 3.90 3.01 3.38 4.36 4.21 2.87 4.78 MnO 0.14 0.01 0.03 0.02 0.03 0.03 0.04 0.04 0.10 P2O5 0.02 0.03 0.03 0.03 0.02 0.03 0.04 0.05 0.30 CO2 0.35 0.08 0.10 0.06 0.22 0.04 0.13 0.22 0.09 H2O+ 0.51 0.42 0.38 0.88 0.40 0.38 0.48 0.70 1.35 DI 93.87 96.33 96.55 95.82 97.01 96.80 96.12 94.44 78.78 TFeO 2.48 1.27 0.75 0.56 0.86 1.53 1.85 1.52 4.35 TFeO/MgO 27.56 7.47 4.99 2.94 7.19 19.13 20.56 7.24 2.79 10000Ga/Al 3.92 2.78 2.21 2.19 2.43 3.12 3.43 3.11 2.50 K2O+Na2O 8.44 8.18 8.44 8.02 8.49 10.26 9.74 9.41 8.23 K2O/Na2O 1.23 0.95 1.16 1.66 1.51 1.35 1.31 2.28 0.72 A/CNK 1.04 1.09 1.01 1.15 1.04 1.03 1.02 1.13 0.93 NK/A 0.94 0.91 0.93 0.83 0.92 0.95 0.96 0.86 0.76 Rb 118.2 68.83 98.07 123.90 110.90 136.9 108.8 155.3 55.68 Ga 24.79 18.13 14.31 14.49 15.58 23.57 24.39 22.62 20.15 Ba 102.72 579.9 184.70 333.90 223.57 172.46 123.31 301.29 858.00 Th 7.43 3.9 9.50 9.35 6.74 7.17 4.81 6.86 5.15 U 2.22 1.17 1.33 2.16 0.70 1.38 1.05 1.52 1.55 Zr 648.5 185.1 85.10 148.80 67.00 446.3 508.1 510.3 377.00 Nb 23.81 9.36 7.26 10.78 4.52 21.79 17.39 14.85 12.47 Ta 1.62 1.26 1.18 1.26 0.62 1.83 1.21 1 1.05 Sr 19.02 18.01 25.57 75.97 52.68 34.58 13.45 38.41 342.00 Hf 17.28 5.48 4.01 6.20 1.89 11.25 12.6 12.33 10.02 La 38.78 24.39 23.71 17.04 16.09 52.05 95.91 91.22 32.97 Ce 78.38 57.59 44.46 32.85 38.02 116.22 186.26 178.38 74.89 Pr 10.74 6.63 6.31 3.66 4.02 14.85 24.04 22.56 9.65 Nd 35.24 25.92 21.88 12.68 13.65 51.32 83.72 80.64 37.17 Sm 8.15 5.4 4.56 2.48 3.07 11.19 14.75 14.19 7.41 Eu 0.86 0.4 0.25 0.20 0.24 0.73 2.09 2.06 1.86 Gd 6.42 4.58 4.59 2.15 2.82 9.22 11.54 11.61 6.65 Tb 0.99 0.75 0.72 0.40 0.53 1.53 1.67 1.68 1.08 Dy 5.39 4.58 4.82 2.69 3.73 9.09 9.33 9.46 5.86 Ho 1.07 1 1.07 0.63 0.86 1.82 1.86 1.87 1.19 Er 3.02 2.93 3.32 1.99 2.84 5.22 5.17 5.1 3.22 Tm 0.47 0.46 0.55 0.34 0.50 0.82 0.76 0.75 0.52 Yb 2.97 3.31 3.73 2.45 3.29 4.85 4.56 4.36 3.26 Lu 0.47 0.56 0.58 0.41 0.61 0.84 0.79 0.75 0.46 Y 28.55 24.13 29.85 18.48 23.40 45.62 47.67 47.07 29.67 ΣREE 192.9 138.5 120.55 79.97 90.27 279.70 442.45 424.60 186.20 LREE 172.15 120.33 101.17 68.91 75.09 246.36 406.77 389.05 163.95 HREE 20.80 18.17 19.38 11.06 15.18 33.39 35.68 35.58 22.25 LREE/HREE 8.28 6.62 5.22 6.23 4.95 7.38 11.4 10.93 7.37 (La/Yb)N 9.37 5.29 4.56 4.99 3.51 7.70 15.09 15.01 7.25 (La/Sm)N 3.07 2.92 3.36 4.44 3.38 3.00 4.20 4.15 2.87 (Gd/Yb)N 1.79 1.14 1.02 0.73 0.71 1.57 2.09 2.20 1.69 δEu 0.35 0.24 0.17 0.26 0.24 0.21 0.47 0.47 0.79 TZr/℃ 930 809 736 796 720 881 896 909 839 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810002.htm
[2] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
[3] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm
[4] 李梦瞳, 唐军, 王志伟, 等. 内蒙古中部苏左旗早石炭世火山岩年代学与地球化学研究: 对中亚造山带东部石炭纪构造演化和地壳属性的制约[J]. 岩石学报, 2020, 36(3): 799-819. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202003010.htm
[5] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 2(6): 1069-1090.
[6] 陈斌, 马星华, 刘安坤, 等. 锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索伦缝合带演化的意义[J]. 岩石学报, 2009, 25(12): 3123-3129. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912004.htm
[7] 李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
[8] 韩江涛, 袁天梦, 刘文玉, 等. 西伯利亚板块与华北克拉通碰撞带地电结构及对深部缝合边界的讨论[J]. 地球物理学报, 2019, 62(3): 1159-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903027.htm
[9] 包志伟, 陈森煌, 张桢堂, 等. 内蒙古贺根山地区蛇绿岩稀土元素Sm-Nd同位素研究[J]. 地球化学, 1994, 23(4): 339-349. doi: 10.3321/j.issn:0379-1726.1994.04.004
[10] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Jouranl of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014
[11] 徐备, 赵盼, 鲍庆中, 等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 2014, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm
[12] 张晋瑞, 魏春景, 初航, 等. 兴蒙造山带构造演化的新模式: 来自内蒙古中部四期不同类型变质作用的证据[J]. 岩石学报, 2018, 34(10): 2857-2872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810004.htm
[13] 王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的制约[J]. 地质学报, 2017, 91(7): 1467-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201707006.htm
[14] 程银行, 李艳锋, 李敏, 等. 内蒙古东乌旗碱性侵入岩的时代、成因及地质意义[J]. 地质学报, 2014, 88(11): 2086-2096. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411006.htm
[15] 洪大卫, 黄怀曾, 肖宜君, 等. 内蒙古东部二叠纪碱性花岗岩及其地球动力学意义[J]. 地质学报, 1994, 68(3): 219-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403002.htm
[16] 童英, 洪大卫, 王涛, 等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3): 395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm
[17] 周传芳, 杨华本, 李向文, 等. 大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 97-111. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202001008.htm
[18] 张健, 张德军, 郑月娟, 等. 内蒙古林西上二叠统林西组碎屑锆石LA-ICP-MS年代学及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1090-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004014.htm
[19] 王帅, 李英杰, 王金芳, 等. 内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束[J]. 地质通报, 2021, 40(1): 82-94. https://www.cgsjournals.com/article/id/6153fe3aed73f876a05b5cfb
[20] 李敏, 李敏, 程银行, 等. 内蒙古东乌旗晚古生代闪长岩、二长花岗岩年代学特征及岩石成因[J]. 中国地质, 2016, 43(2): 380-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201602002.htm
[21] 刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm
[22] 王金芳, 李英杰, 李红阳, 等. 贺根山缝合带白音呼舒奥长花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质论评, 2019, 65(4): 857-872. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904007.htm
[23] 张磊, 吕新彪, 刘阁, 等. 兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J]. 中国地质, 2013, 40(3): 869-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303019.htm
[24] 李英杰, 王金芳, 王根厚, 等. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J]. 岩石学报, 2018, 34(2): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802019.htm
[25] 黄波, 付冬, 李树才, 等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 2016, 32(1): 158-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201601021.htm
[26] 熊光强, 刘敏, 张达, 等. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005022.htm
[27] 李怀坤, 朱士兴, 相振群, 等. 北京高于庄组凝灰岩的锆石U-Pb定年研究及对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm
[28] Ludwig K R. Isoplot3.0: A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochron Centre Special Publication, 2003, (4): 1-70.
[29] Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms[M]. Cambridge University Press, 2002: 33-39.
[30] Morrison W G. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1): 97-108.
[31] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. The Geological Society of America Bulletin, 1989, 101(5): 635-643.
[32] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Specical Publications, 1989, 42(1): 313-345.
[33] Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551.
[34] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
[35] 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm
[36] Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic process[J]. Earth and Plantary Science Letters, 38(1): 1-25.
[37] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Miner. Petrol., 1987, 95: 407-419.
[38] King P L, White A J R, Chappell B W. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391.
[39] 李红英, 周志广, 李鹏举, 等. 内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义[J]. 地质论评, 2016, 62(2): 300-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602005.htm
[40] 杨泽黎, 王树庆, 胡晓佳, 等. 内蒙古东乌珠穆沁旗早古生代辉长闪长岩年代学和地球化学特征及地质意义[J]. 岩石矿物学杂志, 2018, 37(3): 349-365. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201803001.htm
[41] Batchelor R A, Bowden P. Petrogentic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55.
[42] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644.