In situ zircon Hf-O isotopic characteristics and petrogenesis of Late Cretaceous quartz diorite in the Narusongduo Pb-Zn mining area, Tibet
-
摘要:
拉萨地体的增生演化受到新特提斯洋俯冲的制约, 新特提斯洋于中生代启动北向俯冲, 在拉萨地体南部形成晚白垩世"岩浆大爆发"。纳如松多铅锌矿床位于中拉萨地体南缘, 矿区内晚白垩世石英闪长岩的岩浆源区特征及成因机制目前尚未得到很好的解释。通过矿区内该石英闪长岩的SHRIMP锆石U-Pb年龄与Hf-O同位素组成研究, 结果表明, 纳如松多石英闪长岩结晶年龄为83.0±1.0 Ma, 锆石εHf(t)和二阶段模式年龄TDM2分别为-2.6~1.0(平均值为-0.8)和1139~1363 Ma(平均值为1253 Ma); δ18O值介于6.5‰~7.9‰之间(平均值为7.2‰)。锆石原位Hf-O同位素组成指示, 石英闪长岩源区具有壳幔二端元混合的特征, 二端元混合模式计算显示幔源岩浆贡献较大, 且存在成熟地壳物质加入。纳如松多石英闪长岩与南拉萨地体晚白垩世岩浆的活动时间和动力学背景一致, 是拉萨地体南部晚白垩世岩浆大爆发事件的一部分, 指示由新特提斯洋北向俯冲引起的晚白垩世强烈岩浆活动的范围不局限于南拉萨地体, 还延伸到中拉萨地体。
Abstract:The accretion and evolution of the Lhasa Terrane is restricted by the subduction of the Neo-Tethys Ocean.The northward subduction of the Neo-Tethys Ocean started in the Mesozoic and formed the Late Cretaceous "magmatic burst" event in the south Lhasa Terrane.The Narusongduo Pb-Zn deposit is located in the southern margin of the central Lhasa Terrane.The nature of the magma source and petrogenesis of the quartz diorite in the mining district have not been well documented.The zircon SHRIMP U-Pb age and Hf-O isotopic characteristics of the quartz diorite are systematically reported in this study.The quartz diorite has SHRIMP U-Pb ages of 83.0 ±1.0 Ma, εHf(t)values of -2.6 to 1.0(mean = -0.8)and the corresponding TDM2 of 1088 Ma to 1312 Ma(mean=1253 Ma), and δ18O values between 6.5‰ and 7.9 ‰(average value = 7.2‰), indicative of an enriched source.In situ zircon Hf-O isotopic compositions display a binary mixing trend between mantle and continental crust, with the mixing calculations show in the mantle as a primary contributor.The Narusongduo quartz diorite has similar ages and geodynamic setting as the Late Cretaceous "magmatic burst" event in the southern part of Lhasa Terrane, implying that the Late Cretaceous magmatic activities triggered by the northward subduction of the Neo-Tethys Ocean were not limited in the south Lhasa Terrane and also extended to the central Lhasa Terrane.
-
Key words:
- quartz diorite /
- U-Pb ages /
- Hf-O isotopes /
- central Lhasa Terrane /
- Tibet
-
图 2 纳如松多矿区东段地质图(据参考文献[18]修改)
Figure 2.
表 1 纳如松多铅锌矿床石英闪长岩锆石SHRIMP U-Pb年龄分析结果
Table 1. Zircon SHRIMP U-Pb ages of quartz diorite in the Narusongduo Pb-Zn deposit
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ(%) 207Pb/235U 1σ(%) 206Pb/238U 1σ(%) 206Pb/238U 1σ ZK-2-1-1 414 242 1.77 0.0484 11.5 0.09 11.7 0.0131 2.0 83.8 1.7 ZK-2-1-2 317 199 1.65 0.0525 6.2 0.10 6.5 0.0132 2.0 84.3 1.7 ZK-2-1-3 589 364 1.67 0.0429 10.0 0.08 10.3 0.0134 2.4 86.1 2.1 ZK-2-1-4 261 351 0.77 0.0460 5.9 0.08 6.2 0.0128 1.9 81.7 1.5 ZK-2-1-5 436 264 1.70 0.0480 5.5 0.09 5.9 0.0132 2.0 84.6 1.6 ZK-2-1-6 359 214 1.73 0.0249 45.0 0.04 45.2 0.0121 4.0 77.8 3.1 ZK-2-1-7 385 222 1.79 0.0280 30.3 0.05 30.4 0.0124 2.4 79.1 1.9 ZK-2-1-8 401 343 1.21 0.0370 14.7 0.06 14.8 0.0126 2.1 80.5 1.7 ZK-2-1-9 235 180 1.35 0.0477 7.0 0.09 7.3 0.0139 2.3 88.9 2.0 ZK-2-1-10 453 265 1.76 0.0504 5.4 0.09 5.8 0.0135 2.1 86.5 1.8 ZK-2-1-11 815 665 1.27 0.0372 15.2 0.07 15.3 0.0127 1.9 81.3 1.5 ZK-2-1-12 351 220 1.65 0.0280 38.3 0.05 38.4 0.0130 2.4 83.2 2.0 ZK-2-1-13 167 730 0.24 0.0622 1.1 0.86 2.0 0.1005 1.6 617.2 9.5 ZK-2-1-14 505 358 1.46 0.0400 8.9 0.07 9.1 0.0126 1.9 80.5 1.5 ZK-2-1-15 277 836 0.34 0.1611 0.4 9.83 1.7 0.4426 1.6 2362 32 ZK-2-1-16 483 288 1.73 0.0407 11.4 0.07 11.5 0.0128 2.0 82.1 1.7 ZK-2-1-17 286 187 1.58 0.0770 18.8 0.14 19.0 0.0133 2.9 85.0 2.4 ZK-2-1-18 192 150 1.33 0.0403 14.5 0.07 14.7 0.0135 2.3 86.1 2.0 ZK-2-1-19 467 279 1.73 0.0632 12.6 0.12 12.8 0.0134 2.2 85.7 1.9 ZK-2-1-20 437 253 1.78 0.0470 8.5 0.08 8.8 0.0130 2.0 83.0 1.6 ZK-2-1-21 164 158 1.07 0.2026 0.6 15.3 1.8 0.5476 1.7 2815 39 表 2 纳如松多铅锌矿床石英闪长岩锆石原位Hf-O同位素组成
Table 2. Zircon Hf-O isotopic compositions of quartz diorites in the Narusongduo Pb-Zn deposit
测点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) tDM/Ma tDM2/Ma δ18O/‰ 1σ T/Ma ZK-2-8-1 0.0234 0.00069 0.282710 0.000019 -0.4 761 1227 7.4 0.2 83.7 ZK-2-8-2 0.0233 0.00068 0.282749 0.000020 1.0 707 1139 7.2 0.3 84.3 ZK-2-8-3 0.0225 0.00066 0.282723 0.000016 0.1 743 1198 7.1 0.3 86.1 ZK-2-8-4 0.0195 0.00060 0.282676 0.000021 -1.6 807 1304 6.9 0.2 81.7 ZK-2-8-5 0.0169 0.00050 0.282688 0.000020 -1.2 788 1277 7.0 0.3 84.6 ZK-2-8-6 0.0187 0.00056 0.282703 0.000025 -0.8 769 1243 7.2 0.1 77.7 ZK-2-8-7 0.0263 0.00076 0.282667 0.000021 -2.0 823 1324 7.8 0.3 79.1 ZK-2-8-8 0.0105 0.00033 0.282685 0.000019 -1.3 789 1284 7.1 0.2 80.5 ZK-2-8-9 0.0141 0.00043 0.282717 0.000017 0.0 747 1211 7.3 0.2 88.9 ZK-2-8-10 0.0221 0.00066 0.282697 0.000019 -0.8 779 1257 7.1 0.3 86.5 ZK-2-8-11 0.0172 0.00052 0.282675 0.000015 -1.7 807 1306 6.7 0.2 81.3 ZK-2-8-12 0.0118 0.00036 0.282705 0.000016 -0.6 762 1239 7.2 0.2 83.1 ZK-2-8-13 0.0263 0.00080 0.282465 0.000016 2.4 1107 1778 7.5 0.2 617.2 ZK-2-8-14 0.0145 0.00044 0.282688 0.000020 -1.2 787 1277 6.5 0.2 80.5 ZK-2-8-15 0.0209 0.00071 0.281216 0.000021 -3.2 2815 4533 — — 2362 ZK-2-8-16 0.0221 0.00065 0.282650 0.000019 -2.6 845 1363 7.1 0.2 82.1 ZK-2-8-17 0.0165 0.00049 0.282710 0.000017 -0.4 758 1227 7.9 0.2 85.1 ZK-2-8-18 0.0136 0.00041 0.282704 0.000019 -0.5 764 1241 6.8 0.2 86.1 ZK-2-8-19 0.0185 0.00054 0.282735 0.000019 0.5 724 1171 7.4 0.2 85.7 ZK-2-8-20 0.0197 0.00057 0.282689 0.000019 -1.1 789 1275 7.2 0.4 83.0 ZK-2-8-21 0.0400 0.00120 0.280953 0.000019 -3.3 3209 5100 7.6 0.3 2815 -
[1] Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision[J]. Earth Science Reviews, 2012, 114: 236-249. doi: 10.1016/j.earscirev.2012.06.001
[2] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa terrane, Tibet[J]. Chemical Geology, 2009, 268: 298-312. doi: 10.1016/j.chemgeo.2009.09.008
[3] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
[4] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Science, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
[5] 莫宣学, 董国臣, 赵志丹, 等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
[6] 莫宣学, 赵志丹, 朱弟成, 等. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束[J]. 地球科学—中国地质大学学报, 2009, 34(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901004.htm
[7] 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080913&flag=1
[8] Ma L, Wang Q, Li Z X, et al. Early late Cretaceous(ca. 93 Ma)norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere-asthenosphere interaction during slab rollback and an insight into early Late Cretaceous(ca. 100~80 Ma)magmatic "flare-up" in southern Lhasa(Tibet)[J]. Lithos, 2013, 172-173: 17-30. doi: 10.1016/j.lithos.2013.03.007
[9] 王莉, 曾令森, 高利娥, 等. 藏南冈底斯岩基东南缘早白垩世高镁-高Sr/Y含单斜辉石闪长岩[J]. 岩石学报, 2013, 29(6): 1977-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306010.htm
[10] 高家昊, 曾令森, 郭春丽, 等. 藏南冈底斯岩基晚白垩世构造岩浆作用: 以拉萨白堆复合岩体中-基性岩脉群为例[J]. 岩石学报, 2017, 33(8): 2412-2436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708006.htm
[11] Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implication[J]. Lithos, 2008, 105(1/2): 1-11.
[12] Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3/4): 191-201.
[13] 管琪, 朱弟成, 赵志丹, 等. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]岩石学报, 2010, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm
[14] 欧新锋, 杨锋, 康志强, 等. 西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示[J]. 地质通报, 2022, 41(5): 774-787. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20220505&flag=1
[15] 纪现华, 杨竹森, 于玉帅, 等. 西藏纳如松多铅锌矿床成矿岩体形成机制: 岩浆锆石证据[J]. 矿床地质, 2012, 31(4): 758-774. doi: 10.3969/j.issn.0258-7106.2012.04.008
[16] 纪现华, 孟祥金, 杨竹森, 等. 西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义[J]. 地质与勘探, 2014, 50(2): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201402008.htm
[17] 刘英超, 纪现华, 侯增谦, 等. 一个与岩浆作用有关的独立铅锌成矿系统的建立——以西藏纳如松多铅锌矿床为例[J]. 岩石矿物学杂志, 2015, 34(4): 539-556. doi: 10.3969/j.issn.1000-6524.2015.04.008
[18] 龚雪婧, 杨竹森, 赵晓燕, 等. 西藏纳如松多铅锌矿区晚白垩世侵入岩形成机制及其地质意义: 岩浆锆石证据[J]. 矿床地质, 2018, 37(1): 91-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201801007.htm
[19] 龚雪婧, 杨竹森, 庄亮亮, 等. 西藏纳如松多铅锌矿床晚白垩世石英闪长岩成因: 地球化学及Sr-Nd-Pb同位素证据[J]. 矿床地质, 2019, 38(1): 48-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901004.htm
[20] Mojzsis S J, Harrison T M, Pidgeon R T. Oxygen-isotope evidence from ancient zircons for liquid water at the earth's surface 4300Myr ago[J]. Nature, 2001, 409(6817): 178-181. doi: 10.1038/35051557
[21] Peck W H, Valley J W, Wilde S A, et al. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the early Archean[J]. Geochemica et Cosmochimica Acta, 2001, 65(22): 4215-4229. doi: 10.1016/S0016-7037(01)00711-6
[22] Valley J W, Lackey J S, Cavosie A J, et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 61-580.
[23] Booth A L, Kolodny Y, Chamberlain C P, et al. Oxygen isotopic composition and U-Pb discordance in zircon[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4895-4905. doi: 10.1016/j.gca.2005.05.013
[24] Li X H, Li W X, Wang X C, et al. Role of Mantle-Derived Magma in Genesis of EarlyYanshanian Granites in the Nanling Range, South China: In Situ Zircon Hf-O Isotopic Constraints[J]. Science in China(Series D), 2009, 52(9): 1262-1278. doi: 10.1007/s11430-009-0117-9
[25] Li X H, Li W X, Li Q L, et al. Petrogenesis and tectonic significance of the ~850Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry[J]. Lithos, 2010, 114(1/2): 1-15.
[26] Cavosie A J, Valley J W, Kita N T, et al. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism[J]. Contributions to Mineralogy and Petrology, 2011, 162(5): 961-974. doi: 10.1007/s00410-011-0634-3
[27] Grimes C B, Ushikubo T, Kozdon, R, et al. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon[J]. Lithos, 2013, 179: 48-66. doi: 10.1016/j.lithos.2013.07.026
[28] Chen Y P, Wei C J, Zhang J R, et al. Metamorphism and zircon U-Pb dating of garnet amphibolite in theBaoyintu group, Inner Mongolia[J]. Science Bulletin, 2015, 60(19): 1698-1707. doi: 10.1007/s11434-015-0890-0
[29] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018
[30] 唐演, 赵志丹, 齐宁远, 等. 西藏冈底斯岩基南木林晚白垩世岩体和脉岩地球化学与岩石成因[J]. 岩石学报, 2019, 35(2): 387-404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902008.htm
[31] Dewey J F, ShackletonR M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, A327: 379-413.
[32] Pearce J A, Deng W M. The ophiolites of the Tibetan Geotraverses, Lhasa to Golmud(1985)and Lhasa to Kathmandu(1986)[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1988, 327(1594): 215-238. doi: 10.1098/rsta.1988.0127
[33] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
[34] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002
[35] Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3/4): 229-245.
[36] Hou Z Q, Duan L F, Lu Y J, et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 2015, 110(6): 1541-1575. doi: 10.2113/econgeo.110.6.1541
[37] Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/4): 49-67.
[38] Kang Z Q, Xu J F, Wilde S A, et al. Geochronology and geochemistry of the Sangri group volcanic rocks, southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc[J]. Lithos, 2014, 200/201: 157-168. doi: 10.1016/j.lithos.2014.04.019
[39] Williams I S. U-Th-Pb geochronology by ion microprobe[C]//McKibben M A, Shanks W C, Ridley W I. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 1998, 7: 1-35.
[40] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48(增): 26-30. doi: 10.16509/j.georeview.2002.s1.007
[41] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1/2): 155-170.
[42] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytial Research, 2008, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x
[43] Ludwig K R. Squid 1.02: A User's Manual[M]. Berkeley: Berkeley Geochronology Centre Special Publication, 2001: 1-19.
[44] Ickert R B, Hiess J, Williams I S, et al. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites[J]. Chemical Geology, 2008, 257(1/2): 114-128.
[45] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 29(11): 3968-3980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
[46] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[47] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x
[48] Belousova E A, Griffin W L, O' Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[49] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[50] Kawamoto T, Holloway J R. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 Gigapasxals[J]. Science, 1997, 276: 240-243. doi: 10.1126/science.276.5310.240
[51] Carmichael I S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central(105°-99°W)Mexico[J]. Contributions to Mineralogy and Petrology, 2002, 143: 641-663. doi: 10.1007/s00410-002-0370-9
[52] Grove T L, Till C B, Krawczynski M J. The role of H2O in subduction zone magmatism[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 413-439. doi: 10.1146/annurev-earth-042711-105310
[53] Yogodzinski G M, Kelemen P B. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt[J]. Earth and Planetary Science Letters, 1998, 158(1/2): 53-65.
[54] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0
[55] Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature, 2003, 425: 605-609. doi: 10.1038/nature02031
[56] Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001, 409: 500-504. doi: 10.1038/35054039
[57] Dufek J, Bergantz G W. Lower crustal magma genesis and preservation: A stochastic framework for the evaluation of basalt-crust interaction[J]. Journal of Petrology, 2005, 46(11): 2167-2195. doi: 10.1093/petrology/egi049
[58] Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contributions to Mineralogy and Petrology, 1988, 98: 455-489. doi: 10.1007/BF00372365
[59] Dungan M A, Davidson J. Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes[J]. Geology, 2004, 32(9): 773-776. doi: 10.1130/G20735.1
[60] Eichelberger J C. Origin of andesite and dacite: Evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes[J]. GSA Bulletin, 1975, 86(10): 1381-1391. doi: 10.1130/0016-7606(1975)86<1381:OOAADE>2.0.CO;2
[61] Furman T, Spera F J. Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: Field and petrochemical relations of an unusual dike complex at eagle lake, Sequoia National Park, California, U.S. A[J]. Journal of Volcanology and Geothermal Research, 1985, 24(1/2): 151-178.
[62] Wiebe R, Smith D, Sturm M, et al. Enclaves in the Cadillac Mountaingranite(coastal Maine): samples of hybrid magma from the base of the chamber[J]. Journal of Petrology, 1997, 38: 393-423. doi: 10.1093/petroj/38.3.393
[63] Clynne M A. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California[J]. Journal of Petrology, 1999, 40: 105-132. doi: 10.1093/petroj/40.1.105
[64] Reubi O, Blundy J. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites[J]. Nature, 2009, 461: 1269-1273. doi: 10.1038/nature08510
[65] Kent A, Darr C, Koleszar A, et al. Preferential eruption of andesitic magmas through recharge filtering[J]. Nature Geoscience, 2010, 3: 631-636. doi: 10.1038/ngeo924
[66] Özdemir Y, Blundy J, Güleç N. The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, eastern Anatolia, Turkey[J]. Contributions to Mineralogy and Petrology, 2011, 162: 573-597. doi: 10.1007/s00410-011-0613-8
[67] Nandedkar R H, Ulmer P, Müntener O. Fractional crystallization of primitive, hydrous arc magmas: An experimental study at 0.7GPa[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1015. doi: 10.1007/s00410-014-1015-5
[68] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.
[69] McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4
[70] Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc[J]. Journal of Geophysical Research, 1997, 102(B7): 14991-15019. doi: 10.1029/97JB00788
[71] WuR X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146(3/4): 179-212.
[72] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1/2): 127-150.
[73] Carpentier M, Chauvel C, Maury R C, et al. The "zircon effect" as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments[J]. Earth and Planetary Science Letters, 2009, 287: 86-99. doi: 10.1016/j.epsl.2009.07.043
[74] Valley J W, Kinny P D, Schulze D J, et al. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts[J]. Contributions to Mineralogy and Petrology, 1998, 133: 1-11. doi: 10.1007/s004100050432
[75] O'Neil J R O, Chappell B W J. Oxygen and hydrogen isotope relations in the Berridale batholith[J]. Journal of the Geological Society, 1977, 133(6): 559-571. doi: 10.1144/gsjgs.133.6.0559
[76] Eiler J M. Oxygen isotope variations of basaltic lavas and upper mantle rocks[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 319-364. doi: 10.2138/gsrmg.43.1.319
[77] Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 2007, 16: 980-983.
[78] Collins W J, Richards S W. Geodynamic significance of S-Type granites in circum-pacific orogens[J]. Geology, 2008, 36: 559-562.
[79] 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约[J]. 中国科学(D辑), 2009, 39(7): 872-887. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907003.htm
[80] Hu Y B, Liu J Q, Ling M X, et al. The formation of Qulong adakites and their relationship with porphyry copper deposit: Geochemical constraints[J]. Lithos, 2015, 220/223: 60-80. doi: 10.1016/j.lithos.2014.12.025
[81] Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1: 64-67.
[82] Hoefs J. Stable isotope geochemistry(6th ed)[M]. Berlin: Springer-Verlag, 2009: 1-286.
[83] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9): 745-748.
[84] 李晓雄, 江万, 梁锦海, 等. 西藏林周盆地设兴组玄武岩地球化学特征及意义[J]. 岩石学报, 2015, 31(5): 1285-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505007.htm
[85] 孟繁一, 赵志丹, 朱弟成, 等. 西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J]. 岩石学报, 2010, 26(7): 2180-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007020.htm
[86] Zheng Y C, Hou Z Q, Gong Y L, et al. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese plutonic belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth[J]. Lithos, 2014, 190/191: 240-263.
[87] Jiang Z Q, Wang Q, Wyman D A, et al. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene(ca. 91~30Ma)intrusive rocks in the Chanang-Zedong area, southern Gangdese[J]. Lithos, 2014, 196/197: 213-231.
[88] Jiang Z Q, Wang Q, Wyman D A, et al. Zircon U-Pb geochronology and geochemistry of Late Cretaceous-Early Eocene granodiorites in the southern Gangdese batholith of Tibet: Petrogenesis and implications for geodynamics and Cu ± Au ± Mo mineralization[J]. International Geology Review, 2015, 57(3): 373-392.
[89] Xu W C, Zhang H F, Luo B J, et al. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, South Tibet[J]. Lithos, 2015, 232: 197-210.
[90] 叶丽娟, 赵志丹, 刘栋, 等. 西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景[J]. 岩石学报, 2015, 31(5): 1298-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505008.htm
[91] 王海涛, 曾令森, 许翠萍, 等. 藏南冈底斯岩基东段米林地区晚侏罗世—白垩纪侵入岩的岩石成因和地球动力学意义[J]. 岩石学报, 2020, 36(10): 3041-3062. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202010007.htm
[92] Zhang Z J, Klemperer S L. West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data[J]. Journal of Geophysical Research, 2005, 110: 1-14.
[93] 莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm
[94] Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242. http://www.xueshufan.com/publication/2141659671
[95] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17.
[96] 莫宣学, 赵志丹, DePaolo D J, 等. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据[J]. 岩石学报, 2006, 22(4): 795-803. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604004.htm
[97] Ji W Q, Wu F Y, Chung S L, et al. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet[J]. Lithos, 2014, 210/211: 168-180.
[98] Fitch T J. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the Western Pacific[J]. Journal of Geophysical Research, 1972, 77(23): 4432-4460.
[99] Dalmayrac B, Molnar P. Parallel thrust and normal faulting in Peru and constraints on the state of stress[J]. Earth &Planetary Science Letters, 1981, 55(3): 473-481.
[100] Beck M E. On the mechanism of tectonic transport in zones of oblique subduction[J]. Tectonophysics, 1983, 93(1/2): 1-11.
[101] Beck M E. Model for Late Mesozoic-Early Tertiary tectonics of coastal California and western Mexico and speculations on the origin of the San Andreas Fault[J]. Tectonics, 1986, 5(1): 49-64.
[102] Dahlen F A. Noncohesive critical Coulomb wedges: An exact solution[J]. Journal of Geophysical Research Solid Earth, 1984, 89(B12): 10125-10134.
[103] England P, Houseman G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 1989, 94(B12): 17561-17579.
[104] Michael A J. Energy constraints on kinematic models of oblique faulting: LomaPrieta versus Parkfield-Coalinga[J]. Geophysical Research Letters, 1990, 17(9): 1453-1456.
[105] McCaffrey R. Oblique plate convergence, slip vectors, and forearc deformation[J]. Journal of Geophysical Research Atmospheres, 1992, 97(B6): 8905-8915.