辽宁白云金矿流体包裹体研究: 对流体演化及成矿机制的指示

贾宏翔, 陈仁义, 薛建玲, 庞振山, 陈辉, 林鲁军, 姚晓峰, 林成贵. 辽宁白云金矿流体包裹体研究: 对流体演化及成矿机制的指示[J]. 地质通报, 2022, 41(11): 2065-2080. doi: 10.12097/j.issn.1671-2552.2022.11.014
引用本文: 贾宏翔, 陈仁义, 薛建玲, 庞振山, 陈辉, 林鲁军, 姚晓峰, 林成贵. 辽宁白云金矿流体包裹体研究: 对流体演化及成矿机制的指示[J]. 地质通报, 2022, 41(11): 2065-2080. doi: 10.12097/j.issn.1671-2552.2022.11.014
JIA Hongxiang, CHEN Renyi, XUE Jianling, PANG Zhenshan, CHEN Hui, LIN Lujun, YAO Xiaofeng, LIN Chenggui. Research on fluid inclusions of the Baiyun gold deposit, Liaoning Province: implications for fluid evolution and metallogenic mechanism[J]. Geological Bulletin of China, 2022, 41(11): 2065-2080. doi: 10.12097/j.issn.1671-2552.2022.11.014
Citation: JIA Hongxiang, CHEN Renyi, XUE Jianling, PANG Zhenshan, CHEN Hui, LIN Lujun, YAO Xiaofeng, LIN Chenggui. Research on fluid inclusions of the Baiyun gold deposit, Liaoning Province: implications for fluid evolution and metallogenic mechanism[J]. Geological Bulletin of China, 2022, 41(11): 2065-2080. doi: 10.12097/j.issn.1671-2552.2022.11.014

辽宁白云金矿流体包裹体研究: 对流体演化及成矿机制的指示

  • 基金项目:
    中国地质调查局项目《地质矿产调查与评价专项矿集区矿产调查及深部找矿预测》(编号: DD20190570)和《全球矿产资源战略研究》(编号: DD20221795)、国家自然科学基金项目《大兴安岭南段白音查干锡多金属矿床锡成矿作用与银铅锌成矿作用关系研究》(批准号: 41802115)和《四川拉拉铜矿田红泥坡铜矿成矿流体与成矿机制的精细解剖》(批准号: 42002102)、四川省政府性投资地质勘查项目《四川省会理县海林铜矿普查》(批准号: DZ202107)
详细信息
    作者简介: 贾宏翔(1989-), 男, 博士, 助理研究员, 从事矿床学及找矿预测研究。E-mail: cugbjiahongxiang@126.com
    通讯作者: 薛建玲(1980-), 女, 博士, 正高级工程师, 从事找矿预测、矿物学、矿床学研究。E-mail: xuejianling369@126.com
  • 中图分类号: P618.51

Research on fluid inclusions of the Baiyun gold deposit, Liaoning Province: implications for fluid evolution and metallogenic mechanism

More Information
  • 辽宁白云金矿位于华北克拉通东北缘, 是胶东-辽东-吉南成矿带内重要的大型金矿床之一。在矿床地质特征研究的基础上, 通过矿床的流体包裹体特征的系统研究, 探讨成矿流体的性质、演化及金的迁移沉淀机制。依据脉体间的穿插、矿物共生组合及矿物交代关系, 将白云金矿的成矿作用过程划分为石英-黄铁矿(早阶段)、石英-多金属硫化物(主阶段)和石英-碳酸盐(晚阶段)3个阶段。岩相学观察显示, 白云金矿主要发育的流体包裹体类型为H2O两相包裹体(W型)、CO2-H2O三相包裹体(C型)和纯CO2包裹体(PC型)。显微测温结果显示, 主成矿阶段流体包裹体的均一温度范围集中在240~280℃, 流体包裹体盐度范围集中在6%~8%NaCleq., 计算出相应的流体密度为0.74~0.91g/cm3, 具有中温、中低盐度、中等密度成矿流体的特征。氢-氧同位素结果显示, 成矿流体早期为岩浆热液, 成矿过程中逐渐有大气降水的混入。W型、C型和PC型包裹体存在同视域共存的现象, 并且这些包裹体的均一温度相近, 而均一方式不同, 表明流体发生不混溶作用。白云金矿围岩蚀变中发育与矿化密切相关的硅化、绢云母化等蚀变, 以及黄铁矿-绢云母-石英的矿物组合特征, 暗示水岩反应的发生。因此, 流体不混溶和水岩反应是造成白云金矿床中金矿物沉淀富集的主要机制。在此基础上, 估算成矿压力为43.4~87.5MPa, 对应的成矿深度为1.6~3.3m, 并结合前人对区域剥蚀深度的估算, 推测白云金矿深部仍具有较大的资源潜力。

  • 加载中
  • 图 1  辽东青城子矿集区地质简图及白云金矿位置(据参考文献[10]修改)

    Figure 1. 

    图 2  白云金矿矿区地质图(据参考文献[16]修改)

    Figure 2. 

    图 3  白云金矿荒甸子矿段066号勘探线60号脉剖面示意图

    Figure 3. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 4  白云金矿荒甸子矿段100 m中段采样位置示意图

    Figure 4. 

    图 图版Ⅱ   

    Figure 图版Ⅱ. 

    图 5  白云金矿各成矿阶段的流体包裹体均一温度、盐度频率直方图

    Figure 5. 

    图 6  白云金矿代表性的流体包裹体激光拉曼图谱

    Figure 6. 

    图 7  白云金矿各成矿阶段石英δ18OD H2O图解(底图据参考文献[27])

    Figure 7. 

    图 8  白云金矿流体包裹体均一温度与盐度关系图

    Figure 8. 

    图 9  白云金矿压力(P)-温度(T)等容线图(底图据参考文献[54])

    Figure 9. 

    表 1  白云金矿流体包裹体显微测温结果

    Table 1.  Microthermometry results of fluid inclusions in the Baiyun gold deposit

    阶段 寄主矿物 包裹体类型 Tm-CO2/℃ Tm-cla/℃ Tm-ice/℃ Th-CO2/℃ Th/℃ 盐度/% NaCl eq.
    早阶段 石英 WL -3.3~-9.0 256~388 5.4~12.9
    C -57.7~-56.6 3.3~8.9 23.2~30.5 281~323 2.2~11.5
    主阶段 石英 WL -1.1~-8.1 179~332.6 1.9~11.8
    WV 275.5~348
    C -57.9~-56.6 4.0~9.2 21.3~30.6 230~325 1.6~10.5
    PC -57.8~-56.6 21.3~26.8
    晚阶段 方解石 WL -0.1~-4.0 125.6~249 0.2~6.5
    石英 WL -0.1~-3.8 150.8~228.2 0.2~6.2
    注: Tm-CO2—CO2三相点温度;Tm-cla—CO2相笼合物融化温度;Th-CO2—CO2相部分均一温度;Tm-ice—冰点温度;Th—完全均一温度
    下载: 导出CSV

    表 2  白云金矿石英氢氧同位素组成

    Table 2.  Hydrogen and oxygen isotopic compositions of quartz in the Baiyun gold deposit

    样品号 矿化阶段 温度/℃ δ18O/‰ δ18OH2O/‰ δ18DH2O/‰
    BY022 早阶段 326 12.0 5.9 -86.8
    BY024 326 12.6 6.5 -80.3
    BY035 主阶段 260 12.2 3.6 -97.1
    BY042 260 14.5 5.9 -97.7
    BY043 260 14.2 5.6 -93.5
    BY216 260 12.3 3.7 -93.4
    BY090 晚阶段 179 11.9 -1.3 -90.2
    下载: 导出CSV
  • [1]

    叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 2014.

    [2]

    卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.

    [3]

    倪培, 迟哲, 潘君屹, 等. 热液矿床的成矿流体与成矿机制——以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 2018, 37(3): 369-394. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803001.htm

    [4]

    Roedder E. Fluid inclusions[J]. Reviews in Mineralogy, 1984, 12: 1-646. doi: 10.2465/minerj.12.1

    [5]

    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373

    [6]

    李三忠, 李玺瑶, 戴黎明, 等. 前寒武纪地球动力学(Ⅵ): 华北克拉通形成[J]. 地学前缘, 2015, 22(6): 77-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201506008.htm

    [7]

    李三忠, 刘建忠, 赵国春, 等. 华北克拉通东部地块中生代变形的关键时限及其对构造的制约——以胶辽地区为例[J]. 岩石学报, 2004, 20(3): 633-646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403027.htm

    [8]

    曾庆栋, 陈仁义, 杨进辉, 等. 辽东地区金矿床类型、成矿特征及找矿潜力[J]. 岩石学报, 2019, 35(7): 1939-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907001.htm

    [9]

    王玉往, 解洪晶, 李德东, 等. 矿集区找矿预测研究——以辽东青城子铅锌-金-银矿集区为例[J]. 矿床地质, 2017, 36(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201701001.htm

    [10]

    王伟, 李德东, 邱金柱, 等. 辽宁白云金矿床成矿地质模型及潜力分析[J]. 矿产勘查, 2020, 11(8): 1592-1602. doi: 10.3969/j.issn.1674-7801.2020.08.005

    [11]

    李德东, 王玉往, 张志超, 等. 辽宁白云金矿床成矿构造与成矿结构面特征浅析[J]. 地质力学学报, 2019, 25(S1): 10-20. doi: 10.12090/j.issn.1006-6616.2019.25.S1.003

    [12]

    刘国平, 艾永富. 辽宁白云金矿床成矿时代探讨[J]. 岩石学报, 2000, 16(4): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004026.htm

    [13]

    张朋, 李斌, 李杰, 等. 辽东裂谷白云金矿载金黄铁矿Re-Os定年及其地质意义[J]. 大地构造与成矿学, 2016, 40(4): 731-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604008.htm

    [14]

    Liu J, Liu F X, Li S H, et al. Formation of theBaiyun gold deposit, Liaodong gold province, NE China: Constraints from zircon U-Pb age, fluid inclusion, and C-H-O-Pb-He isotopes[J]. Ore Geology Reviews, 2019, 104: 686-706. doi: 10.1016/j.oregeorev.2018.12.006

    [15]

    贾宏翔, 陈仁义, 庞振山, 等. 辽东青城子矿集区白云金矿床煌斑岩的岩石成因: 年代学、地球化学与Pb、Hf同位素约束[J]. 中国地质, 2022, 49(5): 1605-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205016.htm

    [16]

    Sun G T, Zeng Q D, Li T Y, et al. Ore genesis of theBaiyun gold deposit in Liaoning province, NE China: constraints from fluid inclusions and zircon U-Pb ages[J]. Arabian Journal of Geosciences, 2019, 12, 299: 1-17.

    [17]

    Zhang P, Kou LL, Zhao Y, et al. Fluid inclusions, H-O, S, Pb, and noble gas isotope studies of the Baiyun gold deposit in the Qingchengzi orefield, NE China[J]. Journal of Geochemical Exploration, 2019, 200: 37-53. doi: 10.1016/j.gexplo.2019.01.016

    [18]

    杨凤超, 宋运红, 柴鹏, 等. 辽宁白云金矿床成矿流体特征、成矿物质来源及成因研究[J]. 矿物岩石, 2017, 37(1): 30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201701004.htm

    [19]

    郝立波, 赵昕, 赵玉岩. 辽宁白云金矿床稳定同位素地球化学特征及矿床成因[J]. 吉林大学学报(地球科学版), 2017, 47(2): 442-451. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702011.htm

    [20]

    Li S Z, Zhao G C, Sun M, et al. Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints[J]. Gondwana Research, 2006, 9: 198-208. doi: 10.1016/j.gr.2005.06.011

    [21]

    Li S Z, Zhao G C, Santosh M, et al. Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji Belt, North China Craton: a review[J]. Geological Journal, 2011, 46: 525-543. doi: 10.1002/gj.1282

    [22]

    Yang J H, Sun J F, Chen F K, et al. Sources and petrogenesis of Late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton[J]. Journal of Petrology, 2007, 48(10): 1973-1997. doi: 10.1093/petrology/egm046

    [23]

    吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503003.htm

    [24]

    Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1): 197-202.

    [25]

    Clayton R N, Rex R W, Syers J K, et al. Oxygen isotope abundance in quartz from Pacific pelagic sediments[J]. Journal of Geophysical Research, 1972, 77(21): 3907-3915.

    [26]

    郑永飞. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.

    [27]

    Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69(6): 843-883.

    [28]

    Lawrence D M, Treloar P J, Rankin A H, et al. A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: implications for multifluid sources in the generation of orogenic gold deposits[J]. Economic Geology, 2013, 108(2): 229-257.

    [29]

    Ramboz C, Pichavant M, Weisbrod A. Fluid immiscibility in natural processes: use and misuse of fluid inclusion data. Ⅱ. Interpretation of fluid inclusion data in terms of immiscibility[J]. Chemical Geology, 1982, 37(1/2): 29-48.

    [30]

    Bodnar R J. Reequilibration of fluid inclusions[C]//Samson I, Anderson A, Marshall D. Fluid inclusions: Analysis and interpretation. Mineralogical Association of Canada Short Course Series, 2003, 32: 213-230.

    [31]

    Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37(3): 379-399. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-001670377390207X&originContentFamily=serial&_origin=article&_ts=1425499122&md5=c866b0a064786c21ad8a41ab0635f450

    [32]

    Hayashi K I, Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250-350℃[J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2111-2126.

    [33]

    Stefánsson A, Seward T M. Stability of chloridogold(I)complexes in aqueous solutions from 300 to 600℃ and from 500 to 1800 bar[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4559-4576.

    [34]

    Stefánsson A, Seward T M. Gold(I)complexing in aqueous sulphide solutions to 500℃ at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4121-4143.

    [35]

    Gammons C H, Williams-Jones A E, Yu Y. New data on the stability of gold(I)chloride complexes at 300℃[J]. Mineralogical Magazine, 1994, 58A(1): 309-310.

    [36]

    Shenberger D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350℃[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 269-278.

    [37]

    Benning L G, Seward T M. Hydrosulphide complexing of Au(I)in hydrothermal solutions from 150-400℃ and 500-1500 bar[J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1849-1871.

    [38]

    Wang Z L, Yang L Q, Guo L N, et al. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: a fluid inclusion study[J]. Ore Geology Reviews, 2015, 65(3): 701-717.

    [39]

    Ma Y, Xiong S F, Li H L, et al. Origin and evolution of the ore-forming fluids in the Liyuan gold deposit, Central North China Craton: Constraints from fluid inclusions and H-O-C isotopic compositions[J]. Geofluids, 2017: 1-21.

    [40]

    Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72(1): 585-602.

    [41]

    Mikucki E J. Hydrothermal transport and depositional processes in Archean lode-gold systems: a review[J]. Ore Geology Reviews, 1998, 13(1/5): 307-321.

    [42]

    Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements, 2009, 5: 281-287.

    [43]

    Candela P A, Piccoli P M. Model of ore-metal partitioning from melts into vapor and vapor/brine mixtures[J]. Mineralogical Association of Canada Short Course Series, 1995, 23: 101-128.

    [44]

    Phillips G N, Evans K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004, 429: 860-863.

    [45]

    Mernagh T P, Wygralak A S. Gold ore-forming fluids of the Tanami region, northern Australia[J]. Mineralium Deposita, 2007, 42(1/2): 145-173.

    [46]

    王珊珊, 鲍中义, 戴长国, 等. 胶东主要金矿类型流体包裹体特征对比及其对成矿环境差异的指示——以纱岭、旧店和辽上金矿床为例[J]. 地质通报, 2022, 41(6): 1081-1094. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20220614&flag=1

    [47]

    O'Hara K. Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting, North Carolina, U.S.A. [J]. Tectonophysics, 1988, 156: 21-36.

    [48]

    O'Hara K, Blackburn W H. Volume-loss model for trace-element enrichments in mylonites[J]. Geology, 1989, 17: 524-527.

    [49]

    王建, 朱立新, 马生明, 等. 胶东三山岛北海域金矿床热液蚀变作用研究[J]. 地质通报, 2020, 39(11): 1807-1826. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201112&flag=1

    [50]

    杨新岳, 谢国源, 李志纯. 变形过程中的流体-岩石作用和变形岩石质量平衡[J]. 中国科学(B辑), 1995, (3): 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199503016.htm

    [51]

    张志超, 王玉往, 李德东, 等. 辽宁白云金矿床围岩蚀变作用及其与金的成矿关系[J]. 地球科学, 2020, 45(11): 3900-3912.

    [52]

    Groves D I, Phillips G N. The genesis and tectonic control on Archaean gold deposits of the western Australian Shield-A metamorphic replacement model[J]. Ore Geology Reviews, 1987, 2(4): 287-322.

    [53]

    张德会, 徐九华, 余心起, 等. 成岩成矿深度: 主要影响因素与压力估算方法[J]. 地质通报, 2011, 30(1): 112-125. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110112&flag=1

    [54]

    Roedder E, Bodnar R J. Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 1980, 8(1): 263-301.

    [55]

    Shepherd T J, Rankin A H, Alderton D H M. A practical guide to fluid inclusion studies[M]. Glasgow and London: Blackie, 1985.

    [56]

    Yardley B W D, Bodnar R J. Fluids in the continental crust[J]. Geochemical Perspectives, 2014, 3(1): 20-38.

    [57]

    Bowers T S, Helgeson H C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1983, 47(7): 1247-1275.

    [58]

    吕古贤, 孔庆存, 邓军, 等. 山东玲珑和焦家金矿成矿深度研究与测算[J]. 地质论评, 1996, 42(6): 550-559. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199606008.htm

    [59]

    张拴宏, 张琪琪, 胡国辉, 等. 辽东五龙与青城子矿集区成矿和保存条件对比及其深部找矿意义[J]. 地质学报, 2022, 96(1): 232-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201016.htm

    郝立波, 陆继龙, 赵玉岩, 等. 辽宁白云金矿床总结研究报告. 吉林大学, 2012.

  • 加载中

(11)

(2)

计量
  • 文章访问数:  878
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2022-07-05
修回日期:  2022-09-20
刊出日期:  2022-11-15

目录