Detrital zircon U-Pb age and geochemistry of sandstone from the Mohe Formation in the Mohe Basin Heilongjiang and their constraints on tectonic setting
-
摘要:
漠河盆地位于兴蒙造山带北东端、额尔古纳地块北部。通过对漠河组开展碎屑锆石测年、岩石地球化学、现代地层学、古生物和重矿物研究, 探讨其沉积时代、物质来源和大地构造背景, 为研究漠河盆地演化提供科学依据。根据岩石地球化学、重矿物组合ATi(89.51~100.00, 平均98.69)和GZi(39.76~100.00, 平均64.50)指数分析: 漠河组主要产于活动大陆边缘和大陆岛弧背景下, 物源为上地壳长英质岩石、变质岩和沉积岩, 并混有深部即下地壳或地幔的基性岩; 岩石CIA(50.35~60.37, 平均53.50)和ICV指数(0.91~1.79, 平均1.40)及Rb/Sr(0.08~0.67)和Th/U(5.05~5.81, 平均5.55)值指示漠河组源区母岩经历了较弱程度的风化过程; 重矿物ZTR指数反映物源碎屑具有近源搬运特征; 漠河组中发现早侏罗世—早白垩世古植物化石, 结合碎屑锆石LA-ICP-MSU-Pb年龄(最小年龄为156±3Ma), 厘定漠河组沉积时代为晚侏罗世; 碎屑锆石年龄集中在3个时期: 1841~2462Ma(n=4, 古元古代)指示额尔古纳地块存在古元古代结晶基底; 311~480Ma(n=56)是额尔古纳地块与西伯利亚板块拼合造山后的伸展背景下花岗质岩浆形成的记录; 156~242Ma(n=48)是蒙古-鄂霍茨克洋俯冲于额尔古纳地块背景下岩浆侵入的证据。
Abstract:Mohe Basin is located in the north of Greater Khingan Range and Erguna Massif at the eastern end of theXing'an-Mongolian orogenic belt. Through the study of detrital zircon chronology, petrogeochemistry, modern stratigraphy, paleontology and heavy minerals in the strata of the Mohe Formation, the sedimentary age, material source and geotectonic background are discussed, providing scientific basis for the study of the evolution of the Mohe Basin. Petrogeochemistry, heavy minerals assemblage and ATi (89.51~100.00, average 98.69) and GZi (39.76~100.00, average 64.50) index show that Mohe Formation is mainly under the background of active continental margin and continental island arc, and the provenance are feldspathic rocks of the upper crust, metamorphic rocks and sedimentary rocks, mixed with basic magmatic rocks in the lower crust or mantle. The CIA (50.35~60.37, average 53.22), and ICV index (0.91~1.79, average 1.40), Rb/Sr (0.08~0.67) and Th/U (5.05~5.81, average 5.55) ratios of the rocks indicate that the provenance of Mohe Formation have undergone relatively weak weathering. The ZTR index of heavy minerals reflects that the detrital has the characteristics of proximal transport. Fossils of paleoplants from the Early Jurassic -Early Cretaceousera were found in the Mohe Formation, combined with the detrital zircon LA-ICP-MS U-Pb chronology (the minimum age was 156±3 Ma), it was determined that the Mohe Formation was depositional in the Late Jurassic. The ages of detrital zircons are concentrated in three periods: 1841~2462 Ma (n=4, Paleoproterozoic), indicating the existence of Paleoproterozoic crystalline basement in the Erguna Massif. 311~480 Ma (n=56) is a record of granitic magma formation under the extensional setting after the Erguna block and Siberian block were combined.156~242 Ma (n=48) is evidence of magma intrusion under the setting of Mongolia-Okhotsk Ocean subducted into the Erguna Massif.
-
Key words:
- Mohe Basin /
- Mohe Formation /
- age /
- provenance /
- tectonic setting /
- geological survey engineering
-
图 6 漠河组砂岩岩石地球化学分类图(a)、稀土元素球粒陨石标准化图解(b)、稀土元素全球平均上地壳标准化图解(c)和微量元素原始地幔标准化蛛网图(d) (球粒陨石和原始地幔标准化值及全球平均上地壳标准化值据Sun et al., 1989)
Figure 6.
表 1 漠河盆地漠河组砂岩碎屑锆石LA-ICP-MS U-Th-Pb分析结果
Table 1. LA-ICP-MS U-Th-Pb dating of detrital zircons from Mohe Formation sandstones in Mohe Basin
测点 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ PM3-5TC36 1 124 310 1925 0.16 0.0673 0.0009 0.0535 0.0009 0.4964 0.0105 420 5 349 36 409 9 2 23 189 384 0.49 0.0581 0.0007 0.0545 0.0016 0.4360 0.0130 364 5 390 66 367 11 3 11 171 329 0.52 0.0308 0.0004 0.0491 0.0022 0.2088 0.0093 196 2 153 105 193 9 4 27 277 407 0.68 0.0605 0.0008 0.0520 0.0017 0.4334 0.0142 378 5 285 74 366 12 5 31 464 430 1.08 0.0601 0.0007 0.0518 0.0014 0.4297 0.0124 376 5 278 60 363 10 6 7 53 115 0.46 0.0587 0.0013 0.0560 0.0039 0.4534 0.0336 368 8 452 156 380 28 7 19 153 286 0.53 0.0614 0.0007 0.0543 0.0017 0.4594 0.0148 384 5 383 69 384 12 8 13 135 207 0.65 0.0589 0.0007 0.0589 0.0026 0.4782 0.0208 369 5 564 95 397 17 9 26 292 387 0.76 0.0593 0.0007 0.0526 0.0014 0.4303 0.0118 371 4 314 60 363 10 10 22 217 332 0.65 0.0616 0.0009 0.0558 0.0017 0.4737 0.0155 385 6 443 67 394 13 11 28 62 1065 0.06 0.0286 0.0004 0.0487 0.0019 0.1920 0.0071 182 3 134 90 178 7 12 30 272 463 0.59 0.0593 0.0008 0.0549 0.0015 0.4492 0.0127 371 5 410 61 377 11 13 8 160 224 0.72 0.0313 0.0005 0.0482 0.0025 0.2076 0.0105 198 3 108 123 192 10 14 41 682 1278 0.53 0.0300 0.0004 0.0514 0.0013 0.2124 0.0059 190 3 258 56 196 5 15 26 188 395 0.48 0.0637 0.0011 0.0524 0.0016 0.4604 0.0151 398 7 303 71 385 13 16 18 152 272 0.56 0.0601 0.0009 0.0540 0.0019 0.4479 0.0161 376 5 373 77 376 14 17 12 80 193 0.41 0.0609 0.0009 0.0557 0.0025 0.4681 0.0206 381 6 440 100 390 17 18 51 108 121 0.89 0.3445 0.0050 0.1179 0.0033 5.6012 0.1458 1908 28 1925 50 1916 50 19 44 317 683 0.46 0.0583 0.0012 0.0764 0.0035 0.6140 0.0265 365 8 1106 91 486 21 20 15 233 523 0.45 0.0272 0.0004 0.0516 0.0021 0.1937 0.0081 173 3 267 94 180 8 21 13 222 410 0.54 0.0293 0.0004 0.0559 0.0025 0.2259 0.0097 186 2 448 98 207 9 22 16 70 263 0.27 0.0600 0.0012 0.0563 0.0025 0.4659 0.0205 376 7 464 99 388 17 23 55 684 794 0.86 0.0607 0.0008 0.0541 0.0012 0.4524 0.0110 380 5 373 48 379 9 24 9 138 277 0.50 0.0322 0.0005 0.0524 0.0026 0.2321 0.0122 204 3 301 114 212 11 25 13 88 205 0.43 0.0597 0.0009 0.0536 0.0021 0.4416 0.0178 374 6 355 87 371 15 26 11 98 173 0.57 0.0590 0.0008 0.0560 0.0022 0.4556 0.0180 370 5 451 87 381 15 27 8 89 116 0.77 0.0596 0.0009 0.0566 0.0029 0.4651 0.0241 373 6 476 113 388 20 28 12 248 281 0.88 0.0383 0.0006 0.0549 0.0029 0.2896 0.0151 242 4 408 117 258 13 29 3 63 93 0.68 0.0266 0.0006 0.0818 0.0058 0.2995 0.0199 169 4 1240 138 266 18 30 3 65 116 0.56 0.0272 0.0008 0.0580 0.0057 0.2172 0.0195 173 5 529 215 200 18 31 96 166 1980 0.08 0.0494 0.0005 0.0716 0.0014 0.4876 0.0101 311 3 976 41 403 8 32 16 143 259 0.55 0.0578 0.0007 0.0551 0.0019 0.4396 0.0150 362 5 418 78 370 13 33 11 117 162 0.73 0.0590 0.0010 0.0591 0.0026 0.4802 0.0217 369 6 570 96 398 18 34 19 199 293 0.68 0.0590 0.0008 0.0553 0.0019 0.4496 0.0156 369 5 424 76 377 13 35 10 77 143 0.54 0.0625 0.0011 0.0499 0.0032 0.4304 0.0288 391 7 191 150 363 24 36 77 619 1240 0.50 0.0594 0.0006 0.0520 0.0010 0.4262 0.0094 372 4 285 45 361 8 37 8 49 135 0.36 0.0609 0.0011 0.0563 0.0032 0.4733 0.0270 381 7 465 124 393 22 38 16 127 544 0.23 0.0298 0.0004 0.0456 0.0018 0.1874 0.0070 189 3 -23 94 174 7 39 17 160 263 0.61 0.0606 0.0007 0.0524 0.0019 0.4377 0.0159 379 5 302 83 369 13 40 83 70 1499 0.05 0.0599 0.0007 0.0526 0.0008 0.4348 0.0086 375 4 312 36 367 7 41 20 210 309 0.68 0.0578 0.0009 0.0654 0.0027 0.5213 0.0220 362 5 787 86 426 18 42 11 58 182 0.32 0.0584 0.0012 0.0521 0.0028 0.4194 0.0219 366 8 288 124 356 19 43 89 292 211 1.39 0.3200 0.0052 0.1125 0.0031 4.9641 0.1547 1790 29 1841 50 1813 57 44 2 38 68 0.56 0.0312 0.0012 0.0960 0.0109 0.4131 0.0471 198 7 1549 214 351 40 45 18 137 287 0.48 0.0607 0.0008 0.0575 0.0021 0.4812 0.0173 380 5 511 80 399 14 46 10 213 271 0.79 0.0315 0.0005 0.0480 0.0025 0.2086 0.0109 200 3 99 123 192 10 47 37 542 508 1.07 0.0614 0.0007 0.0556 0.0015 0.4704 0.0129 384 5 436 60 391 11 48 69 282 1072 0.26 0.0659 0.0009 0.0531 0.0011 0.4819 0.0133 411 6 332 47 399 11 49 16 108 241 0.45 0.0630 0.0009 0.0508 0.0020 0.4412 0.0182 394 6 232 91 371 15 50 63 538 941 0.57 0.0634 0.0009 0.0523 0.0011 0.4575 0.0106 396 5 299 47 383 9 51 22 341 309 1.11 0.0606 0.0008 0.0546 0.0019 0.4566 0.0163 379 5 397 77 382 14 52 15 136 226 0.60 0.0608 0.0008 0.0525 0.0020 0.4402 0.0171 380 5 308 85 370 14 53 98 76 193 0.40 0.4615 0.0058 0.1606 0.0028 10.2190 0.2098 2446 31 2462 29 2455 50 54 5 103 60 1.71 0.0616 0.0012 0.0664 0.0049 0.5643 0.0334 385 7 820 154 454 27 PM21(6) 1 4 96 130 0.74 0.0276 0.0005 0.0803 0.0048 0.3058 0.0181 176 3 1205 119 271 16 2 15 361 502 0.72 0.0276 0.0005 0.0486 0.0028 0.1852 0.0106 176 3 129 134 173 10 3 24 183 409 0.45 0.0560 0.0007 0.0550 0.0017 0.4247 0.0139 351 4 412 71 359 12 4 16 284 577 0.49 0.0265 0.0003 0.0534 0.0020 0.1956 0.0075 169 2 348 85 181 7 5 7 134 261 0.51 0.0249 0.0006 0.0804 0.0083 0.2766 0.0299 159 4 1207 202 248 27 6 180 557 385 1.45 0.3494 0.0041 0.1155 0.0018 5.5644 0.1090 1932 23 1888 27 1911 37 7 10 193 361 0.54 0.0265 0.0004 0.0502 0.0031 0.1832 0.0107 168 3 205 144 171 10 8 72 998 965 1.03 0.0624 0.0008 0.0566 0.0013 0.4866 0.0124 390 5 475 52 403 10 9 15 169 240 0.71 0.0577 0.0007 0.0530 0.0021 0.4216 0.0178 361 4 330 92 357 15 10 52 388 861 0.45 0.0580 0.0007 0.0546 0.0013 0.4361 0.0105 363 4 394 53 368 9 11 17 365 583 0.63 0.0272 0.0004 0.0559 0.0043 0.2094 0.0173 173 2 447 172 193 16 12 21 125 365 0.34 0.0572 0.0008 0.0547 0.0017 0.4319 0.0133 359 5 401 69 365 11 13 37 256 616 0.42 0.0592 0.0008 0.0528 0.0017 0.4309 0.0144 371 5 320 73 364 12 14 75 548 1214 0.45 0.0598 0.0008 0.0528 0.0012 0.4357 0.0109 374 5 322 51 367 9 15 9 168 321 0.52 0.0267 0.0004 0.0529 0.0027 0.1947 0.0093 170 3 324 114 181 9 16 76 740 1172 0.63 0.0605 0.0008 0.0520 0.0012 0.4332 0.0097 379 5 284 51 365 8 17 7 140 263 0.53 0.0256 0.0004 0.0520 0.0026 0.1838 0.0093 163 3 286 113 171 9 18 10 219 331 0.66 0.0265 0.0004 0.0585 0.0031 0.2142 0.0109 169 3 550 117 197 10 19 47 310 825 0.38 0.0567 0.0006 0.0515 0.0012 0.4025 0.0105 355 4 264 54 343 9 20 15 40 242 0.17 0.0630 0.0008 0.0541 0.0022 0.4699 0.0192 394 5 373 92 391 16 21 5 93 191 0.49 0.0266 0.0004 0.0542 0.0034 0.1990 0.0119 169 3 381 141 184 11 22 25 613 856 0.72 0.0261 0.0003 0.0505 0.0019 0.1815 0.0066 166 2 219 86 169 6 23 39 351 676 0.52 0.0553 0.0006 0.0525 0.0014 0.4001 0.0111 347 4 307 59 342 9 24 42 356 1596 0.22 0.0273 0.0004 0.0502 0.0012 0.1892 0.0050 174 2 203 55 176 5 25 11 49 135 0.37 0.0773 0.0011 0.0566 0.0022 0.6039 0.0235 480 7 478 85 480 19 26 11 376 340 1.11 0.0268 0.0005 0.0565 0.0026 0.2083 0.0096 170 3 470 104 192 9 27 9 76 353 0.21 0.0255 0.0004 0.0546 0.0032 0.1918 0.0102 162 3 398 131 178 9 28 12 298 394 0.76 0.0277 0.0005 0.0506 0.0021 0.1930 0.0081 176 3 221 94 179 8 29 5 181 186 0.97 0.0245 0.0004 0.0593 0.0034 0.1999 0.0119 156 3 576 127 185 11 30 16 144 629 0.23 0.0255 0.0004 0.0480 0.0018 0.1689 0.0062 162 2 101 87 158 6 31 22 554 801 0.69 0.0249 0.0004 0.0486 0.0017 0.1668 0.0062 158 3 131 84 157 6 32 7 92 288 0.32 0.0244 0.0004 0.0505 0.0027 0.1702 0.0094 156 3 219 125 160 9 33 18 138 731 0.19 0.0250 0.0006 0.0486 0.0028 0.1672 0.0108 159 4 128 136 157 10 34 22 108 273 0.40 0.0768 0.0011 0.0573 0.0018 0.6072 0.0200 477 7 504 69 482 16 35 5 162 167 0.97 0.0251 0.0005 0.0613 0.0044 0.2121 0.0150 160 3 651 153 195 14 36 10 151 336 0.45 0.0276 0.0004 0.0522 0.0026 0.1985 0.0099 175 3 295 114 184 9 37 18 290 272 1.07 0.0543 0.0009 0.0555 0.0032 0.4153 0.0239 341 6 433 129 353 20 38 18 279 690 0.40 0.0248 0.0004 0.0473 0.0022 0.1618 0.0074 158 2 62 113 152 7 39 3 76 109 0.70 0.0247 0.0006 0.0782 0.0061 0.2666 0.0201 158 4 1151 155 240 18 40 7 180 247 0.73 0.0244 0.0005 0.0552 0.0038 0.1859 0.0104 156 3 419 154 173 10 41 36 225 626 0.36 0.0575 0.0012 0.0513 0.0012 0.4064 0.0109 360 7 254 53 346 9 42 8 247 280 0.88 0.0247 0.0005 0.0512 0.0029 0.1742 0.0091 157 3 251 128 163 9 43 6 137 194 0.71 0.0273 0.0005 0.0546 0.0036 0.2051 0.0132 173 3 395 149 189 12 44 11 223 378 0.59 0.0267 0.0004 0.0522 0.0021 0.1924 0.0080 170 2 295 93 179 7 45 12 219 408 0.54 0.0285 0.0004 0.0531 0.0021 0.2088 0.0082 181 2 333 89 193 8 46 11 114 179 0.64 0.0567 0.0007 0.0530 0.0027 0.4150 0.0205 356 5 331 114 352 17 47 8 156 283 0.55 0.0260 0.0004 0.0541 0.0026 0.1939 0.0090 165 2 376 108 180 8 48 4 100 138 0.73 0.0270 0.0010 0.0526 0.0072 0.1959 0.0265 172 6 314 313 182 25 49 12 68 211 0.32 0.0542 0.0008 0.0653 0.0034 0.4979 0.0247 340 5 784 108 403 20 50 5 70 181 0.39 0.0271 0.0005 0.0556 0.0036 0.2076 0.0117 172 3 436 144 192 11 51 4 62 138 0.45 0.0262 0.0005 0.0875 0.0076 0.3158 0.0243 166 3 1373 168 279 21 52 8 116 289 0.40 0.0263 0.0004 0.0785 0.0046 0.2841 0.0150 167 3 1160 115 254 13 53 8 114 272 0.42 0.0263 0.0004 0.0594 0.0029 0.2153 0.0097 167 3 580 105 198 9 54 8 69 139 0.50 0.0564 0.0008 0.0583 0.0034 0.4532 0.0251 354 5 540 127 380 21 表 2 漠河组砂岩主量元素含量
Table 2. Content of major elements in Mohe Formation sandstones
% 样品号 Ayq15033 Ayq15034 Ayq15035 Ayq15038 Ayq15067 Ayq15068 Ayq16017 Ayq16019 Ayq16047 Ayq16051 Ayq16061 SiO2 65.88 75.44 68.77 73.30 63.00 61.76 66.82 62.79 64.42 64.33 69.30 Al2O3 14.23 13.06 15.47 14.34 15.71 14.74 14.37 14.81 15.00 14.95 14.31 TiO2 0.68 0.36 0.43 0.34 0.77 0.82 0.45 0.57 0.75 0.76 0.45 Fe2O3 1.57 1.41 1.27 1.87 3.42 2.46 1.93 1.69 3.71 3.19 1.62 FeO 2.73 0.57 1.90 0.55 2.12 2.95 1.82 3.08 1.67 2.11 1.78 CaO 3.08 0.30 2.60 0.34 2.63 3.72 2.44 3.64 2.70 3.06 1.01 MgO 2.24 0.62 1.36 0.79 2.86 2.93 2.85 4.03 2.15 2.17 1.75 K2O 2.06 2.91 2.20 2.98 3.17 2.35 2.36 2.45 2.15 1.90 3.01 Na2O 3.47 3.69 4.11 3.38 3.04 3.17 4.22 3.04 3.79 3.84 3.64 MnO 0.09 0.03 0.06 0.03 0.09 0.11 0.07 0.08 0.08 0.09 0.05 P2O5 0.20 0.07 0.10 0.08 0.20 0.26 0.12 0.15 0.17 0.19 0.12 F1 -0.54 -1.23 -3.16 -2.47 -2.68 -3.21 -3.32 -3.09 -0.76 -0.68 -3.80 F2 -1.61 -0.10 -1.13 -1.37 -3.18 -3.35 -3.11 -3.67 -3.48 -3.55 -2.00 烧失量 3.59 1.42 1.55 1.89 2.75 4.55 2.40 3.37 3.23 3.22 2.79 总计 99.83 99.89 99.83 99.89 99.74 99.80 99.84 99.71 99.82 99.80 99.83 表 3 漠河组砂岩微量和稀土元素含量
Table 3. Content of trace and rare elements in Mohe Formation sandstones
10-6 样品号 Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Ayq15034 15.3 21.5 50.4 5.29 18.3 3.15 0.79 2.76 0.45 2.66 0.52 1.56 0.25 1.59 Ayq15035 14.3 28.1 56.4 7.15 26 4.26 1.14 3.56 0.52 2.77 0.5 1.46 0.22 1.43 Ayq15038 14.9 23.6 43.9 6.16 22.6 3.88 0.84 3.17 0.49 2.7 0.51 1.48 0.23 1.41 样品号 Lu ∑REE LREE/
HREEδEu δCe (La/Yb)N (Eu/Eu*)
ucc(La/Yb)
uccSc Co Rb Sr Zr Nb Ayq15034 0.26 124.87 9.89 0.80 1.13 9.70 1.16 0.87 4.28 3.33 62.8 161 167 8.64 Ayq15035 0.24 148.03 11.50 0.87 0.95 14.10 1.27 1.27 7.92 7.80 41.7 541 124 7.29 Ayq15038 0.23 126.01 9.88 0.71 0.87 12.01 1.04 1.08 3.32 2.61 85.8 128 117 7.23 样品号 Ba Hf Ta Th U Rb/Sr Th/U Ayq15034 646 5.05 0.62 10.6 1.82 0.39 5.81 Ayq15035 718 3.90 0.47 7.55 1.50 0.08 5.05 Ayq15038 595 3.59 0.53 7.96 1.38 0.67 5.79 表 4 漠河组砂岩重矿物组成及含量
Table 4. Heavy minerals compositions and proportions in Mohe Formation sandstones
% 样品号 锆石 电气石 金红石 锐钛矿 白钛石 榍石 石榴
子石磷灰石 绿帘石 角闪石 辉石 黄铁矿 赤褐
铁矿方铅矿 钛铁矿 磁铁矿 ARZ15001 7.49 0.00 0.02 0.00 0.02 6.47 11.35 0.56 53.50 0.00 0.48 0.00 9.05 0.00 0.95 0.26 ARZ15002 6.42 0.00 0.02 0.00 0.01 0.76 3.87 0.47 18.22 6.94 0.22 0.00 0.51 0.00 0.01 55.56 ARZ16035 5.22 0.00 0.00 0.00 0.00 1.39 2.28 0.00 58.95 0.03 0.00 0.00 0.00 0.00 11.14 13.32 ARZ16036 6.10 0.00 6.10 0.00 5.34 12.12 3.66 5.34 50.30 0.06 0.00 0.00 0.24 0.00 3.41 3.41 ARZ15009 21.97 0.00 0.00 0.00 0.00 0.06 1.49 0.19 0.00 0.00 0.00 0.00 64.30 0.00 0.26 0.32 ARZ15010 41.35 0.15 0.47 0.29 0.07 0.15 41.11 1.28 5.25 0.63 0.15 0.25 1.90 0.00 1.27 0.86 ARZ15011 17.57 0.00 0.14 0.00 0.00 0.01 16.74 1.47 48.10 0.00 0.00 0.91 0.23 0.18 0.00 1.99 ARZ16037 10.37 0.00 0.00 0.00 0.00 13.32 0.00 2.10 60.52 0.00 0.00 0.00 0.96 0.00 6.52 0.04 ARZ16001 17.57 0.00 0.14 0.00 0.00 0.00 16.74 1.47 48.10 0.00 0.00 0.00 0.23 0.00 0.00 1.99 表 5 漠河组砂岩重矿物特征指数
Table 5. Heavy minerals characteristic index in Mohe Formation sandstones
样品号 ATi GZi ZTR 稳定矿物 不稳定矿物 指相矿物 热液金属矿物 ARZ15001 100.00 39.76 9.01 25.95 53.98 9.05 1.21 ARZ15002 100.00 62.39 17.12 11.58 25.38 0.51 55.57 ARZ16035 - 69.60 7.69 8.89 58.98 0.00 24.46 ARZ16036 100.00 62.50 13.70 50.10 50.36 0.24 6.82 ARZ15009 100.00 93.65 81.76 23.71 0.00 64.30 0.58 ARZ15010 89.51 50.15 45.85 85.70 6.03 2.15 2.13 ARZ15011 100.00 51.21 20.09 36.07 48.10 1.14 2.17 ARZ16037 100.00 100.00 12.01 25.79 60.52 0.96 6.56 ARZ16001 100.00 51.21 20.09 36.06 48.10 0.23 1.99 最大值 100.00 100.00 81.76 85.70 60.52 64.30 55.57 最小值 89.51 39.76 7.69 8.89 0.00 0.00 0.58 平均值 98.69 64.50 25.26 33.76 39.05 8.73 11.28 注:“-”指ATi指数=(100*磷灰石/(磷灰石+电气石)),分母中电气石和磷灰石均为“0”无法计算 表 6 不同构造背景下砂岩稀土元素特征
Table 6. Characteristics of rare earth elements in sandstone from different tectonic setting
构造背景 La
/10-6Ce
/10-6∑REE
/10-6La/Yb (La/Yb)N ∑LREE/
∑HREEEu/Eu* 数据来源 海洋岛弧 8±1.7 19±3.7 58±10 4.2±1.3 2.8±0.9 3.8±0.9 1.04±0.11 Bhatia, 1985 大陆岛弧 27±4.5 59±8.2 146±20 11±3.6 7.5±2.5 7.7±1.7 0.79±0.13 活动大陆边缘 37 78 186 12.5 8.5 9.1 0.6 被动大陆边缘 39 85 210 15.9 10.8 8.5 0.56 研究区 24.40 50.23 132.97 16.64 11.93 10.42 0.79 本次
研究 -
[1] Belousova E A, Griffin W L, Pearson N J. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons[J]. Mineralogical Magazine, 1998, 62(3): 355-366. doi: 10.1180/002646198547747
[2] Bhatia M R, Taylor S R. Trace-element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia[J]. Chemical Geology, 1981, 33(1/4): 115-125.
[3] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[4] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
[5] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, (91): 611-627.
[6] Cawood P A, Nemchin A A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia[J]. Sedimentary Geology, 2000, 134(3/4): 209-234.
[7] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Sociaty, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171
[8] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1): 469-500.
[9] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9
[10] Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/4): 1-37.
[11] Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. [J]. Chemical Geology, 1988, 70(4): 335-348. doi: 10.1016/0009-2541(88)90123-4
[12] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531
[13] Garzanti E, Resentini A, Vezzoli G, et al. Forward compositional modelling of Alpine orogenic sediments[J]. Sedimentary Geology, 2012, 280(4): 149-164.
[14] Garzanti E, Vermeesch P, Andò S, et al. Provenance and recycling of Arabian desert sand[J]. Earth-Science Reviews, 2013, 120(1): 1-19.
[15] Goldich S S. A study in Rock-Weathering[J]. The Journal of Geology, 1938, 46: 17-58. doi: 10.1086/624619
[16] Hermann J, Rubatto D, Korsakov A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan)[J]. Contributions to Mineralogy & Petrology, 2001, 141(1): 66-82.
[17] Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5): 820-829.
[18] Liang Q, Jing H, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5
[19] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[20] Ludwig K R. Isoplot/Ex Version 3.0: a Geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronology Center (Special Publication), 2003: 1-70.
[21] McLennan, S M, Taylor S R. Th and U in Sedimentary Rocks: Crustal Evolution and Sedimentary Recycling[J]. Nature, 1980, 285(5767): 621-624. doi: 10.1038/285621a0
[22] Mclennan S M, Hemming S R, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]Geological Society of America Special Papers, 1993, 284: 21-40.
[23] Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3): 252-266.
[24] Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.
[25] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
[26] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb zircon dating by Ion microprobe: some examples from the Western Alps[M]. Berlin Heidelberg, Springer, 2000: 373-400.
[27] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[28] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O Ratio[J]. The Journal of Geology, 1986, 94(5): 635-650. doi: 10.1086/629071
[29] Rudnick R, Gao S. Composition of the Continental Crust[J]Treatise on Geochemistry, 2014, 4: 1-51.
[30] Sircombe K N. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia[J]. Sedimentary Geology, 1999, 124(1/4): 47-67.
[31] Sun M D. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[32] Tomaschek F, Kennedy A K, Villa I M, et al. Zircons from Syros, Cyclades, Greece-Recrystallization and Mobilization of Zircon During High-Pressure Metamorphism[J]. Journal of Petrology, 2003, 44(11): 1977-2002. doi: 10.1093/petrology/egg067
[33] Wronkiewicz D J, Condie K C. Geochemistry and provenance of sediments from the Pongola supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton[J]. Geochimica et Cosmochimica Acta, 1989, 53(7): 1537-1549. doi: 10.1016/0016-7037(89)90236-6
[34] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014
[35] 表尚虎, 郑卫政, 周兴福. 大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约[J]. 地质学报, 2012, 86(8): 1262-1272. doi: 10.3969/j.issn.0001-5717.2012.08.009
[36] 蔡芃睿, 王涛, 王宗起, 等. 大兴安岭中段乐平统-中三叠统沉积物源分析: 来自重矿物组合及碎屑锆石年代学证据[J]. 岩石学报, 2019, 35(11): 285-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911018.htm
[37] 杜兵盈, 张昱, 刘宇崴, 等. 大兴安岭北部壮志林场花岗岩年代学特征及其大地构造意义[J]. 地质学报, 2019, 93(12): 71-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201912003.htm
[38] 葛文春, 吴福元, 周长勇, 等. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 2005, 12(50): 1239-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200512014.htm
[39] 葛文春, 隋振民, 吴福元, 等. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 岩石学报, 2007, 23(2): 423-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702022.htm
[40] 和政军, 李锦轶, 莫申国, 等. 漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析[J]. 中国科学(D辑), 2003, (12): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312010.htm
[41] 和钟铧, 刘招君, 郭宏伟, 等. 漠河盆地中侏罗世沉积源区分析及地质意义[J]. 吉林大学学报(地球科学版), 2008a, (3): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200803006.htm
[42] 和钟铧, 王玉芬, 侯伟. 漠河盆地中侏罗统砂岩地球化学特征及物源属性分析[J]. 沉积与特提斯地质, 2008b, (4): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200804017.htm
[43] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993: 6-50.
[44] 侯伟, 刘招君, 何玉平, 等. 漠河盆地上侏罗统物源分析及其地质意义[J]. 地质论评, 2010a, 56(1): 71-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201001012.htm
[45] 侯伟, 刘招君, 何玉平, 等. 漠河盆地上侏罗统沉积特征与构造背景[J]. 吉林大学学报(地球科学版), 2010b, (2): 63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002007.htm
[46] 胡军海, 杨华本, 周传芳, 等. 大兴安岭北段漠河富源沟林场早侏罗世花岗岩年代学、地球化学特征及构造意义[J]. 地质与资源, 2018, 27(3): 224-234, 278. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201803003.htm
[47] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm
[48] 李锦轶, 和政军, 莫申国. 大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义[J]. 地质通报, 2004, 23(2): 120-129. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20040221&flag=1
[49] 李亚萍, 李锦轶, 孙桂华, 等. 准噶尔盆地基底的探讨: 来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据[J]. 岩石学报, 2007, 23(7): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707002.htm
[50] 李良, 孙丰月, 李碧乐, 等. 漠河盆地二十二站组砂岩形成时代及物源区构造环境判别[J]. 地球科学, 2017, 42(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701003.htm
[51] 李研, 王建, 韩志滨, 等. 大兴安岭北段八大关地区早侏罗世流纹岩锆石U-Pb定年与岩石成因[J]. 中国地质, 2017, 44(2): 346-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702011.htm
[52] 刘俊海, 杨香华, 于水, 等. 东海盆地丽水凹陷古新统沉积岩的稀土元素地球化学特征[J]. 现代地质, 2003, 17(4): 421-427. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200304010.htm
[53] 刘易斯. 实用岩石学[M]. 北京: 地质出版社, 1989.
[54] 苗来成, 刘敦一, 张福勤, 等. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J]. 科学通报, 2007, 52(5): 591-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200705018.htm
[55] 沈阳地质矿产研究所. 东北地区古生物图册[M]. 北京: 地质出版社, 1980.
[56] 斯行健, 周志炎. 中国中生代陆相地层[M]. 北京: 科学出版社, 1962.
[57] 孙广瑞, 李仰春, 张昱. 额尔古纳地块基底地质构造[J]. 地质与资源, 2002, (11): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200203000.htm
[58] 王国茹, 陈洪德, 朱志军, 等. 川东南-湘西地区志留系小河坝组砂岩中重矿物特征及地质意义[J]. 成都理工大学学报(自然科学版), 2011, 38(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201101003.htm
[59] 王少轶, 许虹, 杨晓平, 等. 大兴安岭北部中侏罗统漠河组砂岩LA-ICP-MS碎屑锆石U-Pb年龄: 对漠河盆地源区的制约[J]. 中国地质, 2015, (5): 1293-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201505009.htm
[60] 王远超, 赵元艺, 刘春花, 等. 漠河盆地二十二站组砂岩年代学、地球化学及其地质意义[J]. 地质学报, 2020, 94(3): 209-233. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003014.htm
[61] 武广. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]. 吉林大学博士学位论文, 2006.
[62] 武广, 孙丰月, 赵财胜, 等. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 2005, (50): 2278-2288. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200520016.htm
[63] 吴河勇, 杨建国, 黄清华, 等. 漠河盆地中生代地层层序及时代[J]. 地层学杂志, 2003, (3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200303004.htm
[64] 吴琼, 丰成友, 瞿泓滢, 等. 大兴安岭北部漠河地区早奥陶世A型花岗岩锆石U-Pb年代学、地球化学及Hf同位素研究[J]. 地质学报, 2019, 93(2): 368-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201902006.htm
[65] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[66] 肖传桃, 叶明, 文志刚, 等. 漠河盆地额木尔河群古植物群研究[J]. 地学前缘, 2015, 22(3): 299-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503029.htm
[67] 肖云鹏, 文志刚, 赵省民, 等. 漠河盆地额木尔河群岩石地层划分与对比[J]. 能源与环保, 2018, 40(10): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT201810024.htm
[68] 杨雪, 张玉芝, 崔翔, 等. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学[J]. 地球科学, 2020, 45(9): 3461-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202009023.htm
[69] 于跃江, 赵忠海, 杨欣欣, 等. 大兴安岭北段漠河前陆盆地早侏罗世火山岩时代的厘定[J]. 中国地质, 2019, 48(2): 580-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102017.htm
[70] 曾方侣, 姜楷, 黄超, 等. 砂岩中重矿物的成因意义[J]. 四川地质学报, 2020, 40(1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB202001006.htm
[71] 张顺, 林春明, 吴朝东, 等. 黑龙江漠河盆地构造特征与成盆演化[J]. 高校地质学报, 2003, (3): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200303011.htm
[72] 赵立国, 杨晓平, 赵省民, 等. 漠河盆地额木尔河群锆石U-Pb年龄及地质意义[J]. 地质力学学报, 2014, 20(3): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201403007.htm
[73] 赵书跃, 韩彦东, 张文龙, 等. 漠河盆地北部漠河组地层形成时代探讨——糜棱岩化微晶闪长岩LA-ICP-MS锆石U-Pb年龄的制约[J]. 地质调查与研究, 2016, 39(3): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201603003.htm
[74] 周传芳, 杨华本, 蔡艳龙. 漠河盆地西缘漠河组形成时代及物源区构造环境判别[J]. 中国地质, 2021, 45(3): 832-853. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103014.htm