Zircon U-Pb age and geochemistry of the bojite in Dong Ujimqi, Inner Mongolia and its constrains on the Late Paleozoic tectonic evolution
-
摘要:
兴蒙造山带东部内蒙古东乌旗地区晚古生代构造岩浆活动复杂,是解决兴蒙造山带晚古生代构造演化的关键地区。对东乌旗地区新识别出的角闪辉长岩进行了系统的地质特征、岩相学、LA-ICP-MS锆石U-Pb年代学、Hf同位素和岩石地球化学研究。东乌旗角闪辉长岩主体呈包体状产出,主要由斜长石(55%~60%)、角闪石(15%~20%)、辉石(10%~15%)和少量磁铁矿等组成。获得角闪辉长岩样品的锆石U-Pb年龄为299±3Ma,表明岩体形成于晚石炭世。6件样品的地球化学数据显示,SiO2含量为49.88%~51.98%,TiO2含量为1.2%~1.86%,MgO含量4.42%~7.41%,Al2O3含量为15.55%~16.84%,MnO含量为0.12%~0.17%,CaO含量5.67%~6.52%,Na2O+K2O含量3.35%~4.63%,m/f值为0.41~0.49,Mg#值为52.56~60.82,TFeO值为7.12~9.18;稀土元素球粒陨石标准化配分模式表现为轻稀土元素(LREE)相对于重稀土元素(HREE)富集的平坦右倾型,轻、重稀土元素比值(LREE/HREE)为4.96~6.92,岩石富集大离子亲石元素Rb、Ba、K等,相对亏损高场强元素Nb、Ta、Ti,LREE/HREE值较稳定,δEu值为0.87~0.98,显示具有弱的正Eu异常。角闪辉长岩中锆石εHf(t)值为5.1~11.25,单阶段地壳模式年龄(TDM1)为1039~604Ma。结合区域地质演化,认为东乌旗角闪辉长岩可能是由于受到洋壳的俯冲,上覆亏损地幔发生部分熔融,产生钙碱性岩浆,且在上升侵位的过程中受到地壳物质较弱程度的混染,形成于古亚洲洋俯冲环境。东乌旗地区在晚石炭世—早二叠世存在少量的基性岩浆活动,标志着构造背景由俯冲造山向造山后伸展转变。
Abstract:The research area is located in the east of the Xing'anling-Mongolian Orogenic Belt,Dong Ujimqi of Inner Mongolia. The complex tectonomagmatic activity in this area is the key to solve the tectonic evolution of Xing'anling-Mongolian Orogenic Belt.This study carried out zircon U-Pb dating analyses and petrographical,geochemical for the bojites firstly recognized in the Dong Ujimqi,so as to understand the characteristics of the mantle nature and structure.The bojite generally extends north-east and presents like rock plant.In these rocks,main rock forming minerals are plagioclase,hornblende and pyroxene. The dating results indicate that the bojite was formed in the Late Carboniferous(299±3 Ma).The geochemical data of the samples show that: SiO2(49.88%~51.98%),TiO2(1.2%~1.86%),MgO(4.42%~7.41%),Al2O3(15.55%~16.84%),MnO(0.12%~0.17%),CaO(5.67%~6.52%),Na2O+K2O(3.35%~4.63%),m/f(0.41~0.49),Mg#(52.56~60.82),TFeO(7.12~9.18).The standardized distribution pattern of REE chondrites is right-leaning with relatively enriched LREE.The rocks are enriched in LILE(Rb,Ba,K),and depleted in HFSE(Nb,Ta,Ti),LREE/HREE is stable,with negative Eu anomalies(δEu=0.87~0.98).The εHf(t)values of zircons from the bojite vary between 5.1~11.25,and their Hf one-stage model ages vary from 1039 Ma to 604 Ma.Combined with regional tectonic evolution,it may be due to the subduction of oceanic crust,the thermal dehydration of subducted plate resulted in the partial melting of overlying depleted mantle and the generation of calc alkaline magma.In the process of ascending and emplacement,it was contaminated by crustal materials in a weak degree,which formed in the subduction environment of Paleo Asian Ocean.There was a small amount of basic magmatism in Dong Ujimqi in the Late Carboniferous—Early Permian,which indicated that the tectonic setting changed from subduction orogeny to post orogenic extension.
-
Key words:
- bojite /
- Late Carboniferous /
- zircon U-Pb age /
- Hf isotope /
- Xing'anling-Mongolian Orogenic Belt
-
图 3 东乌旗角闪辉长岩TAS分类图解(a, Middlemost et al., 1994)和SiO2-K2O分类图解(b)
Figure 3.
图 4 东乌旗角闪辉长岩稀土元素球粒陨石标准化配分图(a, Boynton, 1984)和微量元素原始地幔标准化蛛网图(b, Gill, 1981)
Figure 4.
图 11 东乌旗角闪辉长岩锆石t-εHf(t)图解(Yang et al., 2006)
Figure 11.
图 7 东乌旗角闪辉长岩Ta/Yb-Th/Yb图解(Pearce et al., 1979)
Figure 7.
图 8 东乌旗角闪辉长岩Th-Hf-Ta图解(Wood et al., 1980)
Figure 8.
图 9 东乌旗角闪辉长岩Nb-Zr-Y图解(Meschede et al., 1986)
Figure 9.
图 10 东乌旗角闪辉长岩La-Nb-Y图解(Cabanis et al., 1989)
Figure 10.
表 1 内蒙古东乌旗角闪辉长岩主量、微量和稀土元素分析结果
Table 1. Major, trace elements and REE of bojite in Dong Ujimqi, Inner Mongolia
编号 AO1.1 AO1.2 AO1.3 AO1.4 AO1.5 AO1.6 SiO2 51.22 51.32 49.88 50.95 50.88 51.98 Al2O3 15.68 15.55 16.84 15.45 16.65 16.57 Fe2O3 3.38 3.41 2.71 3.07 2.78 2.51 FeO 6.08 6.04 4.79 6.42 4.62 5.65 CaO 5.73 5.67 6.52 5.8 5.95 6.65 MgO 6.82 6.96 5.44 7.41 4.42 6.88 K2O 1.96 1.4 1.25 1.88 1.52 1.34 Na2O 2.5 1.95 2.41 2.47 1.95 3.29 TiO2 1.82 1.86 1.2 1.81 1.37 1.1 P2O5 0.5 0.51 0.24 0.51 0.32 0.23 MnO 0.17 0.16 0.12 0.16 0.14 0.15 烧失量 2.46 2.41 2.06 2.36 2.14 3.02 总量 98.32 97.24 93.46 98.29 92.74 99.37 Mg# 57.16 57.69 57.32 59.02 52.56 60.82 TFeO 9.12 9.11 7.23 9.18 7.12 7.91 m/f 0.49 0.48 0.49 0.48 0.46 0.41 La 23.9 23.9 14.8 22.7 19.4 12.4 Ce 62.4 61.2 32.6 59.7 43.2 28.6 Pr 8.33 8.27 4.93 8.05 6.35 4.61 Nd 36.1 36.1 21.8 35.1 27.7 20.9 Sm 7.7 7.68 4.85 7.57 5.9 4.84 Eu 2.14 2.14 1.52 2.11 1.74 1.42 Gd 7.11 7.12 4.48 6.98 5.2 4.4 Tb 1.18 1.18 0.72 1.15 0.8 0.74 Dy 6.62 6.57 3.92 6.44 4.1 4.06 Ho 1.26 1.27 0.73 1.23 0.74 0.76 Er 3.56 3.52 1.99 3.43 1.98 2.12 Tm 0.52 0.51 0.28 0.49 0.28 0.31 Yb 3.19 3.2 1.77 3.12 1.7 1.99 Lu 0.49 0.48 0.27 0.47 0.26 0.3 Rb 82.6 84.8 45.2 86.6 61.1 30.4 Sr 648 658 523 644 534 383 Ba 476 464 394 481 344 193 V 202 201 175 199 178 184 Sc 26.4 26.8 19.9 26.5 17.8 24.1 Nb 9.6 9.5 5.43 9.37 6.95 4.66 Ta 0.71 0.71 0.42 0.68 0.46 0.35 Zr 214 217 128 211 168 129 Hf 5.72 5.61 3.93 5.51 4.86 3.86 Ga 19.2 19.3 20.4 19.2 21.6 20 U 0.69 0.74 0.9 0.74 0.77 0.6 Th 3.32 3.22 2.67 3.09 2.46 1.72 Cr 324 326 160 350 105 283 Ni 96.6 97.2 72.6 112 55.4 117 Co 33.8 33.5 26.1 35.2 24.3 35.2 Li 56.7 55 46.9 52.8 48.1 41.9 Y 30 30.2 17.2 29.4 17.4 17.7 ΣREE 164.5 163.14 94.66 158.54 119.35 87.45 LREE 140.57 139.29 80.5 135.23 104.29 72.77 HREE 23.93 23.85 14.16 23.31 15.06 14.68 LREE/HREE 5.87 5.84 5.69 5.8 6.92 4.96 δEu 0.87 0.87 0.98 0.87 0.94 0.92 LREE/HREE 5.87 5.84 5.69 5.8 6.92 4.96 (La/Sm)N 1.95 1.96 1.92 1.89 2.07 1.61 (La/Yb)N 5.05 5.04 5.64 4.91 7.69 4.20 注: Mg#=100×Mg2+/(Mg2++Fe2+); TFeO=FeO+0.8998Fe2O3; N为球粒陨石标准化值(Gill et al., 1981);m/f=(TFeO/72)/(MgO/40);主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 2 内蒙古东乌旗角闪辉长岩LA-MC-ICP-MS锆石U-Th-Pb同位素分析结果
Table 2. Zircon LA-MC-ICP-MS U-Th-Pb dating results of bojite in Dong Ujimqi, Inner Mongolia
测点号 元素含量 232Th/
238U同位素比值 年龄/Ma U
/10-6Pb
/10-6206Pb/
238U±1σ 207Pb/
235U±1σ 207Pb/
206Pb±1σ 206Pb/
238U±1σ 207Pb/
235U±1σ AO-1.02 1366 81 0.3028 0.0474 0.0008 0.3373 0.0113 0.0512 0.0016 299 5 295 3 AO-1.03 65 4 1.0229 0.0465 0.0007 0.3403 0.0260 0.0530 0.0041 293 5 297 3 AO-1.06 35 2 1.1345 0.0464 0.0010 0.3295 0.0365 0.0508 0.0062 292 6 289 2 AO-1.07 351 21 0.5198 0.0473 0.0006 0.3481 0.0133 0.0531 0.0020 298 4 303 3 AO-1.08 242 17 1.0399 0.0507 0.0007 0.3711 0.0156 0.0532 0.0022 319 4 320 2 AO-1.09 408 25 0.6024 0.0453 0.0006 0.3533 0.0136 0.0562 0.0021 286 4 307 2 AO-1.10 564 37 0.9518 0.0478 0.0005 0.3195 0.0133 0.0485 0.0021 301 3 282 3 AO-1.11 356 22 0.5513 0.0467 0.0005 0.3421 0.0122 0.0531 0.0020 294 3 299 2 AO-1.12 1065 64 0.4597 0.0473 0.0006 0.3502 0.0112 0.0533 0.0017 298 3 305 2 AO-1.14 439 26 0.2281 0.0488 0.0004 0.3795 0.0114 0.0562 0.0017 307 3 327 2 AO-1.16 299 19 0.6921 0.0492 0.0006 0.3618 0.0148 0.0540 0.0026 309 4 314 3 AO-1.17 584 39 0.4705 0.0502 0.0006 0.3687 0.0118 0.0530 0.0016 316 4 319 2 AO-1.20 614 38 0.4823 0.0470 0.0005 0.3752 0.0126 0.0580 0.0020 296 3 323 3 AO-1.22 208 16 1.6944 0.0466 0.0006 0.3458 0.0152 0.0542 0.0026 293 4 302 3 AO-1.23 393 22 0.2813 0.0457 0.0005 0.3409 0.0117 0.0541 0.0020 288 3 298 2 AO-1.24 277 20 1.4042 0.0483 0.0006 0.3592 0.0141 0.0538 0.0022 304 4 312 3 AO-1.25 86 6 1.4448 0.0465 0.0007 0.3486 0.0160 0.0544 0.0025 293 4 304 3 AO-1.26 495 35 1.2613 0.0482 0.0004 0.3569 0.0091 0.0534 0.0014 304 3 310 2 AO-1.27 242 16 0.7163 0.0492 0.0005 0.3592 0.0138 0.0526 0.0020 310 3 312 3 AO-1.29 212 13 0.6793 0.0481 0.0005 0.3463 0.0132 0.0520 0.0020 303 3 302 3 AO-1.30 1128 73 1.2783 0.0482 0.0008 0.3498 0.0095 0.0524 0.0013 303 5 305 2 AO-1.31 1611 101 0.9774 0.0473 0.0007 0.3530 0.0116 0.0537 0.0016 298 4 307 3 AO-1.32 260 15 0.5638 0.0476 0.0006 0.3527 0.0147 0.0537 0.0024 300 4 307 2 AO-1.02 1366 81 0.3028 0.0474 0.0008 0.3373 0.0113 0.0512 0.0016 299 5 295 2 AO-1.03 65 4 1.0229 0.0465 0.0007 0.3403 0.0260 0.0530 0.0041 293 5 297 2 表 3 东乌旗角闪辉长岩锆石Lu-Hf同位素数据分析结果
Table 3. Zircons Lu-Hf isotopic results of bojite in Dong Ujimqi, Inner Mongolia
年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) TDM/Ma TDM1/Ma ƒLu/Hf 299 0.04876 0.00139 0.28272 0.00001 0.28271 -2.01000 4.32000 767 1039 -0.96 293 0.02453 0.00071 0.28277 0.00002 0.28277 0.07000 6.38000 672 903 -0.98 292 0.06036 0.00170 0.28281 0.00002 0.28280 1.36000 7.46000 637 833 -0.95 298 0.03190 0.00091 0.28283 0.00002 0.28282 1.95000 8.33000 600 782 -0.97 319 0.03430 0.00095 0.28284 0.00002 0.28283 2.40000 9.22000 583 741 -0.97 286 0.04508 0.00129 0.28278 0.00002 0.28278 0.39000 6.44000 669 893 -0.96 301 0.05045 0.00143 0.28282 0.00002 0.28281 1.61000 7.94000 622 808 -0.96 294 0.05133 0.00143 0.28285 0.00002 0.28284 2.78000 8.99000 575 738 -0.96 298 0.03922 0.00115 0.28278 0.00002 0.28277 0.18000 6.53000 675 898 -0.97 307 0.04559 0.00138 0.28277 0.00002 0.28276 -0.06000 6.44000 689 911 -0.96 309 0.04025 0.00119 0.28279 0.00002 0.28279 0.78000 7.34000 652 854 -0.96 316 0.05643 0.00166 0.28278 0.00003 0.28277 0.23000 6.85000 682 891 -0.95 296 0.02016 0.00063 0.28277 0.00002 0.28276 -0.20000 6.20000 681 917 -0.98 293 0.05722 0.00167 0.28280 0.00003 0.28279 1.06000 7.19000 649 852 -0.95 288 0.02312 0.00074 0.28278 0.00002 0.28277 0.12000 6.31000 670 903 -0.98 304 0.04972 0.00143 0.28278 0.00002 0.28277 0.17000 6.59000 681 900 -0.96 293 0.05418 0.00158 0.28278 0.00002 0.28277 0.30000 6.45000 678 899 -0.95 304 0.03553 0.00112 0.28273 0.00002 0.28273 -1.37000 5.10000 737 994 -0.97 310 0.04182 0.00143 0.28291 0.00002 0.28290 4.72000 11.25000 496 604 -0.96 303 0.08356 0.00249 0.28288 0.00003 0.28287 3.96000 10.14000 543 671 -0.93 303 0.02116 0.00065 0.28285 0.00001 0.28284 2.64000 9.18000 569 732 -0.98 注:εHf(0)=[(176Hf/177Hf)s/(176Hf/177Hf)CHUR, 0-1]×104; εHf(t)={[(176Hf/177Hf)s-(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR, 0- (176Lu/177Hf)CHUR×(eλt-1)]-1}×104; tDM1=1/λ×{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM]}; ƒLu/Hf=(176Lu/177Hf)s /(176Lu/177Hf)CHUR-1; 其中, (176Lu/177Hf)s和(176Hf/177Hf)s为样品测定值(176Lu/177Hf)CHUR=0.032200, (176Hf/177Hf)CHUR, 0= 0.282772, (176Lu/177Hf)DM=0.038400, (176Hf/177Hf)DM=0.283250;ƒCC、ƒS、ƒDM分别为大陆地壳、样品和亏损地幔的ƒLu/Hf, t为样品形成时间, λ=1.867×10-11a-1 -
[1] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[C]//Henderson P. Rare Earth Elements Geochemistry. Elsevier, Amsterdam, 1984: 63-144.
[2] Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des series volcaniques et lamise en evidence des processus demelange et/ou de contamination crustale[J]. Compte Rendus de I'Académie des Sciences Series II, 1989, 309: 2023-2029.
[3] Gill J B. Orogenic andesites and plate tectonics[M]. Berlin: Spring-Verlag, 1981: 1-358.
[4] Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan, J P, Black D K, Sinton J M. Mantle flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph, American Geophysical Union, 1992, 71: 67-102.
[5] Langmuir C H, Bender J F, Bence A E. Petrogenesis of basalts from the famous area: Mid-Atlantic ridge[J]. Earth Planet Sci. Lett., 1977, 36: 133-156. doi: 10.1016/0012-821X(77)90194-7
[6] Li Y J, Wang G H, Santosh, M, et al. Super-subduction zone ophiolotes from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2018, 59: 126-143. doi: 10.1016/j.gr.2018.02.018
[7] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zirons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[8] Meschede M. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5
[9] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth Science Reviews, 1994, 37(3/4): 215-224.
[10] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineral Petrology, 1979, 69: 33-47. doi: 10.1007/BF00375192
[11] Tang K D. Tectonic development of the Paleozoic foldbelts on the northern margin of the Sino-Korean craton[J]. Tectonics, 1990, 9(2): 249-260. doi: 10.1029/TC009i002p00249
[12] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50: 11-30. doi: 10.1016/0012-821X(80)90116-8
[13] Xiao W J, Windley B, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6): 1069.
[14] Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z
[15] Xu B, Zhao P, Wang Y Y, et al. The pre-Devonian tectonic framework of Xing'an-Mongolia Orogenic Belt(XMOB)in north China[J]. Journal of Asian Earth Sciences, 2015, 97: 183-196. doi: 10.1016/j.jseaes.2014.07.020
[16] Yang J, Wu F, Shao J, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352.
[17] 陈立辉, 韩宝福. 新疆北部乌恰沟地区镁铁质侵入岩的年代学、地球化学和Sr-Nd-Pb同位素组成: 对地幔源区特征和深部过程的约束[J]. 岩石学报, 2006, (5): 1201-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605012.htm
[18] 程银行, 李艳锋, 李敏, 等. 内蒙古东乌旗碱性侵入岩的时代、成因及地质意义[J]. 地质学报, 2014, 88(11): 2086-2096. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201411006.htm
[19] 程银行, 李敏, 张天福, 等. 西伯利亚板块东南缘晚古生代伸展体制新证据: 东乌旗角闪辉长岩年代学及地球化学研究[J]. 地质学报, 2015, 89(2): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502005.htm
[20] 程银行, 张天福, 李艳锋, 等. 内蒙古东乌旗早二叠世超镁铁岩的发现及其构造意义[J]. 地质学报, 2016, 90(1): 115-125. doi: 10.3969/j.issn.0001-5717.2016.01.007
[21] 程银行, 张夏炜, 王少轶, 等. 东乌旗晚石炭世辉石橄榄岩锆石U-Pb年龄及地球化学[J]. 地球科学, 2020, 45(3): 844-855.
[22] 邓晋福, 罗照华, 苏尚国, 等. 岩石成因、构造环境与成矿作用[J]. 北京: 地质出版社, 2004.
[23] 邓宇峰, 宋谢炎, 颉炜, 等. 新疆北天山黄山东含铜镍矿镁铁-超镁铁岩体的岩石成因: 主量元素、微量元素和Sr-Nd同位素证据[J]. 地质学报, 2011, 85(9): 1435-1451. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201109005.htm
[24] 耿建珍, 李怀坤, 张剑, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20111004&flag=1
[25] 贺宏云, 宝音乌力吉, 杨建军. 内蒙古贺根山蛇绿岩地球化学特征及其成因[J]. 西部资源, 2011, 3: 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201103065.htm
[26] 洪大卫, 王式洸, 谢锡林, 等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, 7(2): 441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012
[27] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 32(3): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200903004.htm
[28] 李化启, 马瑞, 梁一鸿, 等. 动态熔融过程中辉长岩主要矿物的熔融序列及其熔融动力学研究[J]. 岩石学报, 2005, 21(6): 1749-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506025.htm
[29] 李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
[30] 李英杰, 王金芳, 王根厚, 等. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意[J]. 岩石学报, 2018, 34(2): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802019.htm
[31] 李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗迪彦庙蛇绿岩的识别[J]. 岩石学报, 2012, 28(4): 1282-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204025.htm
[32] 李英杰, 王金芳, 李红阳, 等. 内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J]. 岩石学报, 2015, 31(5): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505020.htm
[33] 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, (5): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
[34] 童英, 洪大卫, 王涛, 等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3): 395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm
[35] 王帅, 李英杰, 王金芳, 等. 内蒙古西乌旗晚石炭世马尼塔埃达克岩的发现及其对古亚洲洋东段洋内俯冲的约束[J]. 地质通报, 2021, 40(1): 82-94. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210108&flag=1
[36] 王树庆, 胡晓佳, 赵华雷. 内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J]. 地质调查与研究, 2019, 42(2): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201902001.htm
[37] 王新宇, 侯青叶, 王瑾, 等. 内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究[J]. 现代地质, 2013, 27(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201301007.htm
[38] 王玉往, 王京彬, 王莉娟. 内蒙古大乃林沟角闪石岩岩石学特征[J]. 地质论评, 2000, 46(3): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200003013.htm
[39] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
[40] 武跃勇, 姜海蛟, 寇帅. 内蒙古苏尼特左旗查干敖包地区早白垩世火山岩地质及地球化学特征[J]. 地质调查与研究, 2016, 39(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201601001.htm
[41] 辛后田, 滕学建, 程银行, 等. 内蒙古东乌旗宝力高庙组地层划分及其同位素年代学研究[J]. 地质调查与研究, 2011, 34(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201101000.htm
[42] 张健, 陈井胜, 李泊洋, 等. 内蒙古塔尔气地区晚古生代花岗岩的锆石U-Pb年龄及Hf同位素特征[J]. 世界地质, 2011, 30(4): 521-531. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201104004.htm
[43] 张磊, 吕新彪, 刘阁, 等. 兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J]. 中国地质, 2013, 40(3): 869-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303019.htm
[44] 张玉清, 张建, 屈强, 等. 内蒙古阿德拉嘎乌拉正长花岗岩锆石U-Pb年龄[J]. 地质与资源, 2013, 22(4): 308-312. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201304010.htm
[45] 周长勇, 吴福元, 葛文春, 等. 大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J]. 岩石学报, 2005, (3): 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503017.htm
[46] 周志广, 谷永昌, 柳长峰, 等. 内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义[J]. 地质通报, 2010, 29(1): 21-25. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20100103&flag=1
[47] 朱永峰, 郭璇, 周晶. 新疆中天山巴仑台地区晚石炭世+εNd辉长岩体的岩石学和同位素地球化学研究[J]. 岩石学报, 2006, 22(5): 1178-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605010.htm