辽东清河地区晚三叠世侵入岩锆石U-Pb年龄、地球化学特征及其对华北克拉通东部构造演化的指示

吴文彬, 申亮, 李海洋, 王玉平, 李超, 王晓亮, 杜继宇, 常世伟. 2023. 辽东清河地区晚三叠世侵入岩锆石U-Pb年龄、地球化学特征及其对华北克拉通东部构造演化的指示. 地质通报, 42(7): 1118-1131. doi: 10.12097/j.issn.1671-2552.2023.07.005
引用本文: 吴文彬, 申亮, 李海洋, 王玉平, 李超, 王晓亮, 杜继宇, 常世伟. 2023. 辽东清河地区晚三叠世侵入岩锆石U-Pb年龄、地球化学特征及其对华北克拉通东部构造演化的指示. 地质通报, 42(7): 1118-1131. doi: 10.12097/j.issn.1671-2552.2023.07.005
WU Wenbin, SHEN Liang, LI Haiyang, WANG Yuping, LI Chao, WANG Xiaoliang, DU Jiyu, CHANG Shiwei. 2023. Zircon U-Pb age and geochemistry of Late Triassic intrusive rocks in Qinghe area, eastern Liaoning Province and its indication to the tectonic evolution of the eastern North China Craton. Geological Bulletin of China, 42(7): 1118-1131. doi: 10.12097/j.issn.1671-2552.2023.07.005
Citation: WU Wenbin, SHEN Liang, LI Haiyang, WANG Yuping, LI Chao, WANG Xiaoliang, DU Jiyu, CHANG Shiwei. 2023. Zircon U-Pb age and geochemistry of Late Triassic intrusive rocks in Qinghe area, eastern Liaoning Province and its indication to the tectonic evolution of the eastern North China Craton. Geological Bulletin of China, 42(7): 1118-1131. doi: 10.12097/j.issn.1671-2552.2023.07.005

辽东清河地区晚三叠世侵入岩锆石U-Pb年龄、地球化学特征及其对华北克拉通东部构造演化的指示

  • 基金项目:
    中国地质调查局项目《辽东吉南成矿带永吉—凤城地区地质矿产调查》(编号: DD20160049)
详细信息
    作者简介: 吴文彬(1987-), 男, 硕士, 高级工程师, 从事构造地质和区域地质调查研究。E-mail: 476031501@qq.com
  • 中图分类号: P534.51;P597+.3;P595

Zircon U-Pb age and geochemistry of Late Triassic intrusive rocks in Qinghe area, eastern Liaoning Province and its indication to the tectonic evolution of the eastern North China Craton

  • 辽东清河地区发育二长闪长岩和二长花岗岩2类侵入岩, 通过对其开展系统的LA-ICP-MS锆石U-Pb测年及地球化学研究, 探讨晚三叠世辽东清河地区的岩浆侵位机制及大地构造背景。二长闪长岩和二长花岗岩的LA-ICP-MS锆石U-Pb年龄加权平均值分别为212±2 Ma和221±2 Ma, 时代为晚三叠世。地球化学分析结果显示: 二长闪长岩SiO2含量(50.44%~55.18%, 平均52.20%)中等, MgO(3.18%~6.2%, 平均5.20%)、TFe2O3(7.83%~8.85%, 平均8.37%)和总碱(7.04%~8.00%, 平均7.50%)含量较高, 表明清河地区二长闪长岩属于准铝质钾玄岩系列岩石; 岩石富集大离子亲石元素(LILE), 相对亏损高场强元素(HFSE), 中等的Nd/Th(3.70~9.75, 平均5.83)和Rb/Sr值(0.07~0.12, 平均值为0.09), 较高的Nb/U值(9.11~13.2, 平均10.8), 显示了主要由壳源物质组成, 同时有少量幔源物质的加入。二长花岗岩具有富SiO2(76.10%~76.80%, 平均77.12%)、贫MgO和TFe2O3的特征, 其岩浆成分以地壳中的硅铝质成分为主, 属于过铝质的Ⅰ型花岗岩, 同时亏损高场强元素Nb、Ta、P、Ti, Nd/Th值(0.62~1.73, 平均1.23)接近壳源岩石值, 暗示其原始岩浆应是起源于陆壳物质的部分熔融。通过岩石学、年代学、岩石地球化学、构造环境分析, 并结合辽东半岛区域构造演化研究, 认为二长闪长岩为扬子克拉通深俯冲与华北克拉通后伸展作用的结果, 二长花岗岩花岗岩为同碰撞挤压环境。

  • 加载中
  • 图 1  辽东岫岩黄花甸地区地质简图(a,据刘杰勋等,2016修改)和大地构造位置(b,据Li et al., 2017修改)

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  清河二长闪长岩(D328Zr2)和二长花岗岩(D328Zr1) 代表性锆石阴极发光(CL)图像

    Figure 2. 

    图 3  清河二长闪长岩(D328Zr2)和二长花岗岩(D328Zr1)锆石U-Pb年龄谐和图

    Figure 3. 

    图 4  清河地区二长闪长岩及二长花岗岩SiO2-(Na2O+K2O)(a)、含铝指数(b)和SiO2-K2O(c)图解

    Figure 4. 

    图 5  清河地区二长闪长岩与二长花岗岩球粒陨石标准化稀土元素配分模式图(a,标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Mcdonough et al., 1992)

    Figure 5. 

    图 6  辽东半岛晚三叠世侵入岩地质简图(据Quan et al., 2020修改)

    Figure 6. 

    图 7  清河地区二长花岗岩F-A-M图解

    Figure 7. 

    图 8  清河地区二长闪长岩及二长花岗岩Y-Nb图解(a)及Yb-Ta图解(b)

    Figure 8. 

    图 9  清河地区二长闪长岩及二长花岗岩CaO-(TFeO+MgO)图解

    Figure 9. 

    表 1  清河二长闪长岩(D328Zr2)及二长花岗岩(D328Zr1)LA-ICP-MS锆石U-Th-Pb测试结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb data for monzonodiorite(D328Zr2) and monzonitic granite(D328Zr1)in Qinghe area

    测点号 元素含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 206Pb/207Pb 207Pb/235U 206Pb/238U 206Pb/207Pb 207Pb/235U 206Pb/238U
    D328Zr1-1 89.97 1184 2288 0.52 0.0515 0.0008 0.2476 0.0041 0.0348 0.0003 265 35 225 3 220 2
    D328Zr1-2 103.8 1117 2676 0.42 0.0545 0.0008 0.2602 0.0054 0.0345 0.0005 394 36 235 4 219 3
    D328Zr1-3 107.0 2021 2470 0.82 0.0534 0.0009 0.2533 0.0042 0.0344 0.0004 346 40 229 3 218 2
    D328Zr1-4 50.18 450.0 1291 0.35 0.0522 0.0012 0.2558 0.0062 0.0354 0.0004 295 52 231 5 225 2
    D328Zr1-5 50.60 405.0 1326 0.31 0.0544 0.0018 0.2625 0.0092 0.0349 0.0005 387 69 237 7 221 3
    D328Zr1-6 99.14 1262 2493 0.51 0.0523 0.0009 0.2465 0.0047 0.0342 0.0004 298 44 224 4 217 2
    D328Zr1-7 99.96 996.0 2541 0.39 0.0541 0.0011 0.2599 0.0054 0.0349 0.0004 376 44 235 4 221 2
    D328Zr1-8 220.1 2642 5684 0.46 0.0527 0.0011 0.2502 0.0067 0.0343 0.0004 317 14 227 5 217 2
    D328Zr1-9 83.22 1256 2077 0.60 0.0516 0.0008 0.2461 0.0044 0.0346 0.0003 333 35 223 4 219 2
    D328Zr1-10 91.24 1339 2288 0.59 0.0511 0.0008 0.2449 0.0040 0.0348 0.0003 243 37 222 3 221 2
    D328Zr1-11 97.39 1465 2451 0.60 0.0527 0.0010 0.2491 0.0042 0.0345 0.0003 322 17 226 3 218 2
    D328Zr1-12 104.76 1212 2733 0.44 0.0508 0.0008 0.2448 0.0039 0.0350 0.0003 232 69 222 3 222 2
    D328Zr1-13 94.34 1409 2382 0.59 0.0513 0.0009 0.2456 0.0043 0.0348 0.0003 254 44 223 3 220 2
    D328Zr1-14 233.2 2453 6000 0.41 0.0533 0.0016 0.2598 0.0078 0.0353 0.0003 343 67 235 6 224 2
    D328Zr1-15 47.21 719.0 1192 0.60 0.0523 0.0014 0.2529 0.0065 0.0352 0.0004 302 64 229 5 223 2
    D328Zr1-16 102.6 1197 2680 0.45 0.0519 0.0010 0.2470 0.0047 0.0346 0.0003 280 43 224 4 219 2
    D328Zr1-17 47.85 851.0 1147 0.74 0.0529 0.0016 0.2552 0.0079 0.0351 0.0004 324 70 231 6 222 3
    D328Zr1-18 74.06 895.0 1899 0.47 0.0507 0.0010 0.2441 0.0053 0.0349 0.0003 233 42 222 4 221 2
    D328Zr1-19 46.31 1071 1039 1.03 0.0529 0.0014 0.2542 0.0070 0.0349 0.0004 324 59 230 6 221 3
    D328Zr1-20 88.94 1004 2299 0.44 0.0505 0.0011 0.2477 0.0061 0.0355 0.0004 217 84 225 5 225 2
    D328Zr2-1 25.68 598.0 547.0 1.09 0.0520 0.0018 0.2422 0.0095 0.0336 0.0004 283 78 220 8 213 3
    D328Zr2-2 34.81 946.0 680.0 1.39 0.0530 0.0017 0.2471 0.0085 0.0336 0.0004 328 70 224 7 213 3
    D328Zr2-3 22.21 532.0 486.0 1.09 0.0513 0.0017 0.2339 0.0085 0.0330 0.0005 254 78 213 7 209 3
    D328Zr2-4 29.68 456.0 703.0 0.65 0.0510 0.0013 0.2383 0.0064 0.0339 0.0005 243 59 217 5 215 3
    D328Zr2-5 23.56 593.0 489.0 1.21 0.0563 0.0019 0.2550 0.0076 0.0330 0.0004 465 105 231 6 209 2
    D328Zr2-6 43.21 709.0 1068 0.66 0.0507 0.0012 0.2264 0.0050 0.0325 0.0004 228 52 207 4 206 3
    D328Zr2-7 27.80 561.0 641.0 0.87 0.0486 0.0014 0.2225 0.0069 0.0333 0.0005 128 70 204 6 211 3
    D328Zr2-8 58.00 1826 1171 1.56 0.0523 0.0011 0.2447 0.0064 0.0337 0.0005 302 46 222 5 214 3
    D328Zr2-9 45.96 1488 889.0 1.67 0.0562 0.0016 0.2593 0.0069 0.0334 0.0003 461 61 234 6 212 2
    D328Zr2-10 22.74 591.0 496.0 1.19 0.0539 0.0023 0.2545 0.0121 0.0340 0.0007 369 64 230 10 216 4
    D328Zr2-11 20.80 531.0 483.0 1.10 0.0495 0.0019 0.2232 0.0089 0.0330 0.0007 172 87 205 7 210 5
    D328Zr2-12 18.44 469.0 410.0 1.14 0.0502 0.0016 0.2312 0.0075 0.0334 0.0004 206 76 211 6 212 3
    D328Zr2-13 28.75 853.0 601.0 1.42 0.0539 0.0016 0.2530 0.0091 0.0338 0.0005 369 69 229 7 214 3
    D328Zr2-14 29.49 562.0 687.0 0.82 0.0557 0.0020 0.2617 0.0093 0.0341 0.0005 443 80 236 7 216 3
    下载: 导出CSV

    表 2  清河二长闪长岩及二长花岗岩捕虏体主量、稀土和微量元素分析结果

    Table 2.  Major, trace element and rare earth element compositions of diorite in Qinghe area

    元素 二长闪长岩 二长花岗岩
    D328-2-4 D328-2-5 D328-2-1 D328-2-2 D328-1-1 D328-1-2 D328-1-3 D328-1-4 D328-1-5
    SiO2 52.86 52.22 55.18 50.44 77.10 77.10 76.80 77.10 77.50
    Al2O3 16.4 14.5 17.8 16.1 13.2 13.3 13.1 13.2 13.0
    Fe2O3 1.22 1.98 1.76 1.66 0.35 0.26 0.31 0.15 0.20
    FeO 5.95 6.18 5.95 6.08 1.38 1.00 1.16 0.51 0.41
    CaO 6.51 6.03 4.9 6.11 1.77 1.7 1.69 1.45 1.38
    MgO 5.46 6.20 3.18 5.98 0.50 0.37 0.41 0.18 0.20
    K2O 3.75 4.42 3.59 4.58 1.11 0.96 1.06 1.56 1.53
    Na2O 3.59 2.60 3.79 3.39 4.28 4.69 4.76 5.25 4.99
    MnO 0.13 0.14 0.11 0.14 0.03 0.02 0.03 0.03 0.02
    P2O5 0.62 0.21 0.66 0.59 0.03 0.03 0.03 0.03 0.03
    TiO2 1.38 1.04 1.65 1.91 0.11 0.09 0.11 0.04 0.06
    烧失量 1.00 4.18 0.79 1.75 0.48 0.55 0.47 0.24 0.34
    总计 99.47 102.66 100.15 100.19 100.34 100.07 99.92 99.74 99.66
    K2O/Na2O 1.04 1.70 0.95 1.35 0.26 0.20 0.22 0.30 0.31
    K2O+Na2O 7.46 7.04 7.42 8.06 5.39 5.65 5.82 6.81 6.52
    A/CNK 0.75 0.72 0.94 0.74 1.15 1.12 1.09 1.02 1.05
    A/NK 1.65 1.60 1.76 1.52 1.60 1.52 1.46 1.28 1.32
    AR 1.94 2.04 1.96 2.12 2.13 2.21 2.30 2.74 2.66
    Mg# 58.0 58.1 42.9 58.5 34.5 34.8 33.7 33.2 37.7
    Ni 37.8 217 13.5 27.0 16.5 13.3 13.5 7.52 7.38
    Ba 3493 497.0 1460 1325 326.0 258.0 223.0 724.0 691.0
    Co 24.2 40.7 19.5 33.4 7.50 6.07 6.88 2.87 2.87
    Cr 179 509 23.0 109 29.4 22.5 28.1 6.43 8.91
    Nb 18.5 7.20 23.5 17.7 4.80 4.14 3.85 3.82 4.32
    Rb 96.6 48.1 126 73.0 33.2 27.8 30.0 47.1 52.8
    Sr 1274 497.0 1072 1062 251.0 272.0 250.0 508.0 454.0
    V 134 172 63.8 178 22.8 18.1 21.6 6.10 5.30
    Zr 302 323 348 382 117 108 103 134 106
    Hf 7.35 3.61 8.23 8.39 6.12 4.89 5.36 5.59 4.84
    Ta 0.82 0.39 1.07 1.09 0.10 0.10 0.58 0.11 0.11
    Li 18.7 19.7 18.6 27.8 9.46 6.68 8.00 4.22 1.58
    Th 17.0 5.60 22.5 7.49 8.21 7.37 6.83 12.5 13.4
    U 1.4 0.79 2.36 1.62 1.28 1.41 1.37 2.05 2.25
    La 126 28.0 131 84.8 22.0 18.9 19.5 14.4 15.3
    Ce 235 151.4 248 165 33.2 32.2 31.2 22.6 24.2
    Pr 26.3 6.48 25.1 19.1 3.45 3.26 3.17 2.18 2.26
    Nd 92.6 24.8 83.3 73.0 12.9 11.9 11.7 7.78 8.72
    Sm 11.9 4.21 10.6 10.9 2.05 1.9 1.91 1.43 1.43
    Eu 2.58 1.39 2.64 2.73 0.88 0.84 0.94 0.93 0.99
    Gd 11.8 3.30 11.7 9.49 2.61 2.09 2.18 1.52 1.56
    Tb 1.43 0.55 1.17 1.47 0.36 0.32 0.34 0.23 0.25
    Dy 5.79 3.40 4.76 6.02 1.60 1.14 1.26 0.75 0.79
    Ho 1.08 0.67 0.85 1.21 0.33 0.23 0.26 0.17 0.18
    Er 3.11 1.68 2.23 3.18 0.87 0.68 0.67 0.50 0.58
    Tm 0.43 0.27 0.36 0.47 0.13 0.086 0.13 0.072 0.092
    Yb 2.40 1.70 2.00 2.73 0.99 0.85 0.92 0.65 0.72
    Lu 0.37 0.24 0.34 0.42 0.19 0.16 0.15 0.16 0.16
    Y 28.5 16.7 26.8 31.6 7.42 6.13 6.50 4.03 4.66
    ∑REE 520.8 228.1 524.1 380.5 81.56 74.56 74.33 53.37 57.23
    LREE/HREE 18.72 18.31 21.39 14.23 10.52 12.42 11.58 12.17 12.21
    (La/Yb)N 35.40 11.10 44.16 20.94 14.98 14.99 14.29 14.94 14.33
    δEu 0.66 1.10 0.72 0.80 1.16 1.28 1.40 1.92 2.02
    注:主量元素含量单位为%,稀土和微量元素含量单位为10-6
    下载: 导出CSV
  • [1]

    Bea F, ArzamastsevA, Montero P, et al. Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy & Petrology, 2001, 140(5): 554-566.

    [2]

    Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[C]//Developments in Geochemistry, 1984: 63-114.

    [3]

    Cho D L, Lee S R, Armstrong R. Termination of thePermo-Triassic Songrim(Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications[J]. Lithos, 2008, 105(3/4): 191-200.

    [4]

    Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16: 171-180.

    [5]

    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    [6]

    Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth Planetary Science Letters, 2008, 270: 41-53. doi: 10.1016/j.epsl.2008.03.008

    [7]

    Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54: 3367.

    [8]

    Huang F, Xu J F, Liu Y S, et al. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton[J]. Contributions to Mineralogy and Petrology, 2017, 172(5): 28. doi: 10.1007/s00410-017-1342-4

    [9]

    Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 2011, 171(3): 223-232.

    [10]

    Li Y, Brouwer F M, Xiao W, et al. A Paleozoic fore-arc complex in the eastern Central Asian Orogenic Belt: Petrology, geochemistry and zircon U-Pb-Hf isotopic composition ofparagneisses from the Xilingol Complex in Inner Mongolia, China[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    [11]

    Liu J, Zhang J, Liu Z H, et al. A new discovery of Cretaceous(~125 Ma) migmatite in Liaodong Peninsula, North China Craton[J]. Acta Geologica Sinica, 2019, 93(6): 1969-1970. doi: 10.1111/1755-6724.13836

    [12]

    Liu J, Zhang J, Yin C Q, et al. Newly identified Jurassic-Cretaceous migmatites in the Liaodong Peninsula: Unravelling a Mesozoic anatectic event related to the lithospheric thinning of the North China Craton[J]. Geological Magazine, 2020, 158(3): 1-17.

    [13]

    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.

    [14]

    Ma Q, Xu Y G, Huang L X, et al. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: Evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths[J]. Geochimica et Cosmochimica Acta, 2020, 278: 94-109. doi: 10.1016/j.gca.2019.09.009

    [15]

    Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1012. doi: 10.1016/0016-7037(92)90043-I

    [16]

    Pupin J P. Zircon and granite petrology[J]. Contributions to Mineralogy & Petrology, 1980, 73(3): 207-220.

    [17]

    Quan Y K, Yang D B, Mu M S, et al. Tectonic evolution of the northeastern North China Craton: Constraints from geochronology and Sr-Nd-Hf-O isotopic data from Late Triassic intrusive rocks on Liaodong Peninsula, NE China[J]. Lithos, 2020: 362-363.

    [18]

    Ree J H, Kwon S H, Park Y, et al. Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting[J]. Tectonics, 2001, 20(6): 850-867. doi: 10.1029/2000TC001267

    [19]

    Sagong H, Kwon S T, R Ee J H. Mesozoic episodic magmatism in South Korea and its tectonic implication[J]. Tectonics, 2005, 24(5): 1-18.

    [20]

    Taylor S R, McLennan S M. The Geochemical Evolution of the Continental Crust[J]. Reviews of Geophysics, 1995, 33(2): 241. doi: 10.1029/95RG00262

    [21]

    Williams I S, Cho D L, Kim S W. Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism[J]. Lithos, 2009, 107(3/4): 239-256.

    [22]

    Yang J H, Wu F Y, Wilde S A, et al. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton[J]. Chemical Geology, 2007a, 242(1/2): 155-175.

    [23]

    Yang J H, Sun J F, Chen F, et al. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of the Eastern North China Craton[J]. Journal of Petrology, 2007b, (10): 48.

    [24]

    Yang J H, Wu F Y. Triassic magmatism and its relation todecratonization in the eastern North China Craton[J]. Science in China Series D(Earth Sciences), 2009, 52(9): 1319-1330. doi: 10.1007/s11430-009-0137-5

    [25]

    Yang J J. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications[J]. Lithos, 2003, 70(3/4): 359-379.

    [26]

    Zheng Y F, Xu Z, Zhao Z F, et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction ofcratonic lithosphere[J]. Science China Earth Sciences, 2018, 61: 353-85. doi: 10.1007/s11430-017-9160-3

    [27]

    戴立群, 方伟, 赵子福. 辽东-胶东半岛三叠纪镁铁质岩浆岩: 记录从洋壳俯冲到大陆碰撞的构造转换[J]. 矿物岩石地球化学通报, 2021, 40(5): 1012-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105003.htm

    [28]

    段雪鹏, 田永飞, 王宁, 等. 辽东地区大石湖沟铜矿化构造背景——来自闪长玢岩锆石成因的指示[J]. 吉林大学学报(地球科学版), 2023, 53(1): 140-160. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202301010.htm

    [29]

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-481. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm

    [30]

    刘杰勋, 郭巍, 朱凯. 辽东岫岩地区早白垩世侵入岩的年代学、地球化学及地质意义[J]. 岩石学报, 2016, 32(9): 2889-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609021.htm

    [31]

    刘锦, 刘正宏, 李世超, 等. 华北北缘东段开原地区三叠纪侵入岩年代学及岩石地球化学研究[J]. 岩石学报, 2016, 32(9): 2739-2756. . https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609010.htm

    [32]

    刘俊来, 纪沫, 申亮, 等. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学: 地球科学, 2011, 41(5): 618-637. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105003.htm

    [33]

    裴福萍, 许文良, 于洋, 等. 吉林南部晚三叠世蚂蚁河岩体的成因: 锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2008, 38(3): 351-362. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200803000.htm

    [34]

    彭游博, 刘文彬, 赵军, 等. 辽南岩体LA-ICP-MS锆石U-Pb年龄, 岩石地球化学特征及其地质意义——以盖州万福-岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6): 125-139. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006010.htm

    [35]

    申亮. 华北克拉通东部晚中生代构造体制转换[D]. 中国地质大学(北京) 博士学位论文, 2013.

    [36]

    田涛, 万丽娟, 刘瑶. 埃达克岩成因研究进展概述[J]. 云南地质, 2014, 33(3): 309-313. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD201403005.htm

    [37]

    王焰. 不同构造环境中双峰式火山岩的主要特征[J]. 岩石学报, 2000, 16(2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm

    [38]

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm

    [39]

    吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htm

    [40]

    吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503003.htm

    [41]

    吴开彬, 邓新, 杨坤光. 北大别白垩纪花岗岩多期侵位与造山带演化的关系[J]. 地球科学, 2013, 38(S1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1006.htm

    [42]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

    [43]

    肖庆辉, 邢作云, 张昱, 等. 当代花岗岩研究的几个重要前沿[J]. 地学前缘, 2003, 10(3): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303032.htm

    [44]

    杨进辉, 吴福元. 华北东部三叠纪岩浆作用与克拉通破坏[J]. 中国科学: 地球科学, 2009, 39(7): 910-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907005.htm

    [45]

    张旗, 潘国强, 李承东, 等. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 2007, 23(11): 2683-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810003.htm

    [46]

    郑永飞, 徐峥, 赵子福, 等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 2018, 48(4): 379-414. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804002.htm

  • 加载中

(10)

(2)

计量
  • 文章访问数:  820
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2021-02-10
修回日期:  2022-01-11
刊出日期:  2023-07-15

目录