Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources
-
摘要:
坦桑尼亚地形景观丰富,大部分地区基岩出露条件较好,水系发育。在坦桑尼亚开展国家尺度(1:100万)水系沉积物地球化学调查,首次查明了坦桑尼亚全国地球化学背景,明确了各元素分布区特定的地质地球化学意义。共采集4258件水系沉积物样品,采用ICP-MS、XRF等13种配套分析方法分析71种元素(化合物)的含量。分析结果表明,Au异常主要位于维多利亚湖区绿岩带内,在周边的活动带中存在富金地体的延伸。中温和中—高温成矿元素Ag、Cu、Pb、Zn和W、Sn、Mo、Nb、Ta异常主要分布在基巴拉锡成矿带、玛拉嘎拉西台地和新生代裂谷火山岩中;Ni、Co、Cr、V等元素异常主要分布于西部的玛拉嘎拉西台地、乌本迪带和新生代裂谷火山岩中,主要与基性—超基性岩体有关。共圈定金地球化学块体31处,金成矿远景区8处,采用地球化学块体法初步评价了金的资源潜力,为进一步在坦桑尼亚开展金矿及其他矿产勘查和基础研究提供了有利信息。
Abstract:Various landscapes are found in Tanzania.Bedrocks are well-exposed and streams are well-grained in most areas.This paper has ascertained the geochemical background of Tanzania, clarified the specific geological and geochemical significance of elements-rich area, by conducting national scale(1:1 000 000) stream sediment geochemical mapping.This work has collected 4258 samples in total.71 elements for each sample are analyzed by matched 13 analytic methods, including ICP-MS and XRF.The results show that the Au anomaly is distributed mainly in the greenstone belt of Lake Victoria, and there is a continuation of gold-rich terrain in the surrounding mobile belt.Medium and medium-high temperature metallogenic elements such as Ag, Cu, Pb, Zn, W, Sn, Mo, Nb and Ta anomalies are mainly distributed in the Kibara tin metallogenic belt, Malagarasi platform and volcanic rocks of East African Rift System(EARS).The anomalies of Ni, Co, Cr and V are mainly related to mafic-ultramafic rocks which are located in the Malagarasi platform, Ubendian Mobile Belt and volcanic rocks of EARS.This study delineates 31 gold geochemical blocks and 8 gold metallogenic prospective areas, and gold resource potential is preliminaries evaluated by geochemical block method.It provides favorable information for development of gold and other mineral exploration and fundamental research in Tanzania.
-
Key words:
- stream sediment /
- resource potential /
- Tanzania /
- geological survey engineering
-
图 1 坦桑尼亚构造地质简图(据Leger et al., 2015)
Figure 1.
表 1 坦桑尼亚元素地球化学背景参数
Table 1. Summary characteristics of element concentration assay data in Tanzania
元素 最大值 最小值 算数平均值 标准差 变异系数 中位数 众数 几何平均值 几何离差 B 548.3 1.6 9.4 20.0 2.1 4.3 2.7 5.6 6.5 Sn 100.0 0.1 1.6 2.7 1.7 1.2 1.1 1.4 0.6 Ag 3.52 0.02 0.05 0.07 1.43 0.04 0.04 0.04 0.01 As 337.95 0.02 1.74 7.60 4.36 0.57 0.45 0.75 1.37 Sb 10.50 0.01 0.18 0.39 2.19 0.13 0.12 0.11 0.12 Bi 18.89 0.00 0.09 0.32 3.68 0.04 0.03 0.04 0.07 Hg 183.9 0.1 11.0 10.9 1.0 8.0 6.0 8.6 5.4 Se 3.54 0.01 0.12 0.20 1.70 0.06 0.05 0.07 0.08 Ge 2.9 0.2 0.8 0.2 0.3 0.8 0.7 0.8 0.2 Al2O3 29.5 0.2 7.8 4.7 0.6 7.1 6.6 6.2 3.7 SiO2 97.8 10.6 77.7 12.9 0.2 80.7 82.3 76.4 10.3 Fe2O3 50.8 0.0 3.5 5.1 1.5 1.6 1.3 1.8 2.7 P 8974 4 324 566 2 161 131 177 233 Ti 71185 120 3375 5189 2 1669 1837 1799 2525 Ba 3416 14 556 378 1 510 1061 416 295 Rb 452 1 47 41 1 36 10 32 29 Mn 10610 5 504 744 1 252 102 255 383 Cr 2112 2 51 89 2 26 7 27 38 V 1118 3 63 95 2 32 19 36 45 Ga 42 0 10 6 1 8 8 8 5 Br 150.8 0.1 1.9 4.5 2.3 1.0 0.3 1.1 1.3 Sr 2993 2 154 192 1 101 121 83 113 Zr 9097 27 286 438 2 181 82 188 183 Nb 615.1 0.8 18.3 31.6 1.7 10.3 3.6 10.5 12.8 Cl 24420 19 154 789 5 73 52 84 103 K2O 8.55 0.03 1.56 1.16 0.74 1.36 0.03 1.03 0.95 CaO 43.35 0.01 1.32 2.66 2.01 0.60 0.08 0.53 1.09 Na2O 14.18 0.03 1.03 1.03 1.01 0.69 0.08 0.58 0.76 MgO 13.96 0.00 0.47 0.79 1.67 0.21 0.04 0.22 0.38 La 811.30 1.13 30.67 53.53 1.75 14.19 16.70 16.05 22.82 Ce 7840.63 2.04 62.48 157.56 2.52 29.05 15.80 33.33 46.45 Pr 191.30 0.25 6.12 9.65 1.58 3.29 1.22 3.57 4.30 Nd 695.00 0.89 21.65 32.33 1.49 11.89 1.90 12.77 15.11 Sm 94.79 0.16 3.68 4.94 1.34 2.12 0.89 2.26 2.51 Eu 13.61 0.03 0.87 0.88 1.01 0.64 0.35 0.63 0.49 Gd 78.82 0.17 3.44 4.36 1.27 2.04 0.50 2.15 2.31 Tb 8.80 0.03 0.49 0.56 1.15 0.29 0.13 0.31 0.32 Dy 37.59 0.10 2.47 2.63 1.07 1.52 0.49 1.62 1.62 Ho 6.54 0.02 0.48 0.49 1.03 0.29 0.11 0.32 0.31 Er 18.47 0.07 1.42 1.44 1.01 0.89 0.38 0.95 0.92 Tm 2.61 0.01 0.22 0.22 0.98 0.14 0.10 0.15 0.14 Yb 17.05 0.08 1.43 1.40 0.98 0.92 0.49 0.98 0.91 Lu 8.45 0.01 0.23 0.25 1.11 0.15 0.10 0.16 0.14 Sc 53.64 0.01 5.78 5.99 1.04 4.23 1.85 3.41 3.89 Li 460.9 0.4 8.1 11.4 1.4 5.1 6.6 5.7 4.7 Be 13.99 0.03 1.06 1.02 0.96 0.81 1.07 0.76 0.60 Co 255.9 0.1 8.8 13.9 1.6 4.3 13.2 4.4 6.8 Ni 783.8 0.0 13.9 24.5 1.8 7.1 2.7 6.9 10.8 Cu 263.8 0.0 11.5 18.6 1.6 5.3 16.9 5.7 8.9 Zn 5023 1 33 118 4 17 15 19 24 Mo 35.61 0.01 0.53 1.05 1.96 0.26 0.13 0.29 0.39 Cs 169.6 0.0 1.0 2.8 2.8 0.6 0.3 0.6 0.7 W 25.68 0.02 0.51 0.86 1.68 0.28 0.06 0.28 0.37 Pb 696 1 14 14 1 12 11 12 6 Th 526 0 9 21 2 5 11 5 7 U 52.7 0.0 1.4 1.7 1.2 1.0 0.4 0.9 0.9 Y 239.0 0.1 12.8 13.3 1.0 8.1 3.0 8.6 8.2 Hf 237.4 0.5 5.7 7.5 1.3 3.9 2.5 4.1 3.3 Ta 145.7 0.1 1.3 4.7 3.5 0.5 0.3 0.6 1.0 Tl 3.411 0.006 0.307 0.243 0.792 0.243 0.068 0.226 0.172 In 0.83 0.00 0.03 0.03 1.16 0.02 0.01 0.02 0.02 Cd 99.28 0.00 0.12 2.23 19.18 0.02 0.01 0.02 0.11 Te 0.770 0.001 0.043 0.055 1.276 0.029 0.012 0.027 0.028 I 53.02 0.16 1.54 2.89 1.88 0.68 0.38 0.85 1.12 N 8024 34 353 450 1 201 134 242 219 F 72019 27 299 1765 6 163 132 176 198 S 37619 5 103 624 6 61 49 67 61 Total C 14.35 0.00 0.49 0.81 1.64 0.25 0.32 0.26 0.36 Pd 13.0 0.0 0.5 0.6 1.0 0.4 0.3 0.5 0.2 Pt 100.9 0.0 0.6 1.9 3.1 0.4 0.3 0.4 0.4 Au 532.31 0.07 1.29 11.75 9.12 0.58 0.33 0.63 0.89 注:主量元素含量单位为%,Hg、Au、Pt、Pd含量单位为10-9,其他元素含量单位为10-6 表 2 坦桑尼亚元素浓度克拉克值分布
Table 2. Enrichment factor for elements analyzed in Tanzania
K1值 K1 < 0.2 0.2≤K1 < 0.5 0.5≤K1 < 0.8 0.8≤K1 < 1.2 1.2≤K1 < 2.0 2.0≤K1 < 3.0 3.0≤K1 备注 元素 MgO P、Sr、CaO、Na2O、Sc、Li、Co、Ni、Cu、Zn、Cs、S As、Bi、Ge、Al2O3、Rb、Mn、Cr、V、Ga、K2O、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Be、Y、Tl、In、F、Pt、Pd B、Sn、Ag、Sb、Ti、Ba、La、Ce、Pr、Nd、Mo、W、Pb、U Hg、Se、SiO2、TFe2O3、Zr、Nb、Cl、Th、Hf、Cd、Au Ta Br、Te、I、N、Total C K1=元素算数平均值/克拉克值 元素 CaO、Na2O、MgO As、Bi、Al2O3、P、Ti、Rb、Mn、Cr、V、Ga、Sr、K2O、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Li、Co、Ni、Cu、Zn、Cs、W、In、Cd、F、S B、Ag、Sb、Ge、TFe2O3、Ba、Cl、La、Ce、Pr、Gd、Be、Mo、Pb、U、Y、Tl、Au、Pt、Pd Sn、Se、Zr、Nb、Th、Hf、Ta Hg、SiO2 Br、Te、I、N、Total C K1=元素几何平均值/克拉克值 表 3 地球化学异常模式谱系与规模分类(据Xie et al., 1993)
Table 3. Classification of geochemical patterns according to the sizes
规模/km2 地球化学异常模式谱系 0.n~n 局部异常 n×10~1000 区域异常 1000~10 000 地球化学省 地球化学块体 10 000~100 000 地球化学巨省 100 000~1 000 000 地球化学域 >1 000 000? 地球化学洲? 表 4 坦桑尼亚金重要地球化学块体统计
Table 4. Gold geochemical blocks of Tanzania
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 异常编码 异常面积/km2 异常内样品数 异常内最大值/10-9 异常内最小值/10-9 异常内平均值/10-9 异常内中位数/10-9 背景值(总体中位数)/10-9 异常下限/10-9 异常内几何平均数/10-9 异常内离差 变异系数 异常强度 异常衬度 面金属量 规格化面金属量 金属总量/104 t 总资源量/t Au01 1501.71 5 26.57 0.313 5.906 0.625 0.582 1.11 1.24 10.34 1.75 10.15 5.32 8870 7991 2.39 65.26 Au02 4874.00 34 532.31 0.2185 18.180 0.548 0.582 1.11 1.01 89.79 4.94 31.24 16.38 88610 79829 23.92 651.95 Au03 2724.16 12 30.5377 0.45685 3.593 0.97021 0.582 1.11 1.23 8.17 2.27 6.17 3.24 9788 8818 2.64 72.01 Au04 4855.48 32 241.15 0.284 9.065 0.704 0.582 1.11 0.97 41.87 4.62 15.58 8.17 44015 39653 11.88 323.84 Au05 1590.26 8 9.718 0.763 2.193 1.0605 0.582 1.11 1.42 2.86 1.30 3.77 1.98 3488 3142 0.94 25.66 Au06 17385.00 148 294.57 0.241 8.452 1.1545 0.582 1.11 1.57 37.26 4.41 14.52 7.61 146936 132375 39.67 1081.08 Au07 2406.58 21 35.46 0.256 3.132 1.022 0.582 1.11 1.22 7.40 2.36 5.38 2.82 7537 6790 2.04 55.45 Au08 1876.67 17 3.06702 0.2598 1.510 1.24982 0.582 1.11 1.29 0.79 0.52 2.59 1.36 2834 2553 0.77 20.85 Au09 1261.14 9 3.6438 0.54182 1.396 0.93806 0.582 1.11 1.13 1.00 0.72 2.40 1.26 1760 1586 0.48 12.95 Au10 2360.81 18 3.152 0.549 1.480 1.3515 0.582 1.11 1.34 0.69 0.47 2.54 1.33 3493 3147 0.94 25.70 Au11 2219.25 22 15.54 0.34 1.932 0.815 0.582 1.11 1.01 3.29 1.70 3.32 1.74 4289 3864 1.16 31.55 Au12 1280.26 9 3.0446 0.4814 1.757 1.79592 0.582 1.11 1.52 0.85 0.48 3.02 1.58 2249 2026 0.61 16.55 Au13 813.27 2 5.443 0.812 3.128 3.1275 0.582 1.11 2.10 2.32 0.74 5.37 2.82 2543 2291 0.69 18.71 Au14 642.28 2 2.191 1.613 1.902 1.902 0.582 1.11 1.88 0.29 0.15 3.27 1.71 1222 1101 0.33 8.99 Au15 3864.91 26 31.657 0.323 2.559 0.983 0.582 1.11 1.16 5.98 2.34 4.40 2.31 9891 8910 2.67 72.77 Au16 1401.51 1 3.238 3.238 3.238 3.238 0.582 1.11 3.24 0.00 0.00 5.56 2.92 4538 4088 1.23 33.39 Au17 1060.12 8 12.9894 0.34216 2.318 0.67315 0.582 1.11 1.00 4.05 1.75 3.98 2.09 2458 2214 0.66 18.08 Au18 644.78 6 8.78 0.554 2.436 1.123 0.582 1.11 1.43 2.91 1.19 4.19 2.19 1571 1415 0.42 11.56 Au19 652.64 1 2.09 2.09 2.090 2.09 0.582 1.11 2.09 0.00 0.00 3.59 1.88 1364 1229 0.37 10.04 Au20 1991.52 5 6.32 0.323 2.953 2.11 0.582 1.11 1.77 2.41 0.82 5.07 2.66 5881 5298 1.59 43.27 Au21 10332.00 37 12.6 0.307 1.671 1.285 0.582 1.11 1.26 1.97 1.18 2.87 1.51 17270 15558 4.66 127.06 Au22 10810.90 65 136.1 0.514 4.751 0.998 0.582 1.11 1.31 17.89 3.76 8.16 4.28 51360 46271 13.87 377.88 Au23 2512.51 16 2.055 0.895 1.271 1.1175 0.582 1.11 1.24 0.31 0.24 2.18 1.15 3194 2878 0.86 23.50 Au24 6309.28 41 12.71 0.478 1.752 0.939 0.582 1.11 1.10 2.70 1.54 3.01 1.58 11053 9958 2.98 81.32 Au25 811.36 5 2.729 0.865 1.602 1.328 0.582 1.11 1.45 0.71 0.45 2.75 1.44 1299 1171 0.35 9.56 Au26 1664.49 18 4.695 0.553 1.564 1.155 0.582 1.11 1.33 1.01 0.64 2.69 1.41 2603 2345 0.70 19.15 Au27 869.44 5 5.978 0.442 1.997 1.088 0.582 1.11 1.28 2.05 1.02 3.43 1.80 1736 1564 0.47 12.77 Au28 871.53 2 5.799 0.487 3.143 3.143 0.582 1.11 1.68 2.66 0.85 5.40 2.83 2739 2468 0.74 20.15 Au29 600.82 5 2.429 1.24 1.767 1.592 0.582 1.11 1.71 0.47 0.27 3.04 1.59 1062 956 0.29 7.81 Au30 766.24 10 5.541 0.514 1.589 0.6715 0.582 1.11 1.03 1.79 1.12 2.73 1.43 1217 1097 0.33 8.96 Au31 1904.80 5 25.28 0.574 5.669 0.797 0.582 1.11 1.52 9.81 1.73 9.74 5.11 10798 9728 2.92 79.45 Total 92859.72 595 457669 412314 123.57 3367.30 注: 12—变异系数=11/6;13—异常强度=6/8;14—异常衬度=6/9;15—面金属量=2×6;16—NAP(规格化面金属量)=15/9;17—金属总量=15×2.7/10000;18—总资源量=17×0.002725(成矿率) -
[1] Barth H. Provisional geological map of Lake Victoria gold fields, Tanzania 1:500 000(with explanation notes)[J]. Geologisches Jahrbuch, 1990, B72: 1-59.
[2] Baudet D. Etude palynologique dans le Protérozoique supérieur du Burundi[J]. Newsletter(IGCP 255), 1988, 1: 1-5.
[3] Borg G, Krogh T. Isotopic age data of single zircons from the Archaæan Sukumaland Greenstone Belt, Tanzania[J]. Journal of African Earth Sciences, 1999, 29(2): 301-312. doi: 10.1016/S0899-5362(99)00099-8
[4] Borg G. New aspects of the lithostratigraphy and evolution of the Siga Hills, an Archaean granite-greenstone terrain in NW Tanzania[J]. Zeitschrift fur Angewandte Geologie, 1992, 38: 89-93.
[5] Borg G. The Geita gold deposit in NW Tanzania: Geology, ore petrology, geochemistry and timing of events[J]. Geologisches Jahrbuch, 1994, 100: 545-595.
[6] Cook Y A, Sanislav I V, Hammerli J, et al. A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton[J]. Geoscience Frontiers, 2016, 7(6): 911-926. doi: 10.1016/j.gsf.2015.11.008
[7] Daly M. Crustal shear zones in Central Africa: a kinematic approach to Proterozoic tectonics[J]. Episodes, 1988, 11: 5-11. doi: 10.18814/epiiugs/1988/v11i1/003
[8] Dawson J. The Neogene-Recent volcanic rocks[J]. Geological Society, London, Memoirs, 2008, 33: 39-77. doi: 10.1144/M33.7
[9] Gabert G. Lithostratigraphic and tectonic setting of gold mineralization in the Archean cratons of Tanzania and Uganda, East Africa[J]. Precambrian Research, 1990, 46(1): 59-69.
[10] Gobba J M. Kimberlite exploration in Tanzania[J]. Journal of African Earth Sciences(and the Middle East), 1989, 9(3/4): 565-578.
[11] Kabete J M, Groves D I, Mcnaughton N J, et al. A new tectonic and temporal framework for the Tanzanian Shield: Implications for gold metallogeny and undiscovered endowment[J]. Ore Geology Reviews, 2012a, 48: 88-124. doi: 10.1016/j.oregeorev.2012.02.009
[12] Kabete J M, Mcnaughton N J, Groves D I, et al. Reconnaissance SHRIMP U-Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid-greenstone belts in the Central Tanzania Region and the Southern East African Orogen[J]. Precambrian Research, 2012b, 216/219: 232-266.
[13] Kapilima S. Stratigraphische und paläontologische Untersuchungen im Jura un der Kreide des tansanischen Küstenstreifens im Hinterland von Dar-Es Salaam und Bagamoyo[J]. Berliner Geowiss. Abh., 1984, 57: 1-77.
[14] Kent P E, Hunt M, Johnstone M. The geology and geophysics of coastal Tanzania[J]. Geophysical Paper, 1971, 6: 1-101.
[15] Kuehn S, Ogola J, Sango P. Regional setting and nature of gold mineralization in Tanzania and southwest Kenya[J]. Precambrian Research, 1990, 46(1): 71-82.
[16] Kwelwa S D, Sanislav I V, Dirks P H G M, et al. Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization[J]. Journal of African Earth Sciences, 2018, 139: 38-54. doi: 10.1016/j.jafrearsci.2017.11.027
[17] Lawley C J M, Selby D, Condon D, et al. Palaeoproterozoic orogenic gold style mineralization at the Southwestern Archaean Tanzanian cratonic margin, Lupa Goldfield, SW Tanzania: Implications from U-Pb titanite geochronology[J]. Gondwana Research, 2014, 26(3): 1141-1158.
[18] Leger C, Barth A, Falk D, et al. Explanatory notes for the minerogenic map of Tanzania[J]. Geological Survey of Tanzania, 2015.
[19] Maboko M. The geochemistry of Banded Iron Formations in the Sukumaland Greenstone Belt of Geita, northern Tanzania: Evidence for mixing of hydrothermal and clastic sources of the chemical elements[J]. Tanzania Journal of Science, 2001, 27: 21-36.
[20] Manya S, Kobayashi K, Maboko M A H, et al. Ion microprobe zircon U-Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton[J]. Journal of African Earth Sciences, 2006, 45(3): 355-366. doi: 10.1016/j.jafrearsci.2006.03.004
[21] Manya S, Maboko M A H. Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton using the Sm-Nd method: implications for the geological evolution of the Tanzania Craton[J]. Precambrian Research, 2003, 121(1): 35-45.
[22] Manya S, Maboko M A H. Geochemistry of the Neoarchaean mafic volcanic rocks of the Geita area, NW Tanzania: Implications for stratigraphical relationships in the Sukumaland greenstone belt[J]. Journal of African Earth Sciences, 2008, 52(4): 152-160.
[23] Mcconnell R B. Outline of the geology of Ufipa and Ubende[J]. Geological Survey Department, Tanganyika Territory, Bulletin, 1950, 19: 62.
[24] Mruma A H. Stratigraphy, Metamorphism and tectonic Evolution of the Early Proterozoic Usagaran Belt, Tanzania[D]. University of Dar es Salaam, 1990.
[25] Petzet A. Deepwater, land discoveries: High-grade East African margin[J]. Oil and Gas Journal, 2012, 110(4): 1-70.
[26] Roberts E M, O Connor P M, Stevens N J, et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa[J]. Journal of African Earth Sciences, 2010, 57(3): 179-212. doi: 10.1016/j.jafrearsci.2009.09.002
[27] Sanislav I V, Blenkinsop T G, Dirks P H G M. Archaean crustal growth through successive partial melting events in an oceanic plateau-like setting in the Tanzania Craton[J]. Terra Nova, 2018, 30(3): 169-178. doi: 10.1111/ter.12323
[28] Sanislav I V, Wormald R J, Dirks P H G M, et al. Zircon U-Pb ages and Lu-Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt: Implications for crustal growth of the Tanzania Craton[J]. Precambrian Research, 2014, 242: 187-204. doi: 10.1016/j.precamres.2013.12.026
[29] Schlüter T. Geology of East Africa[M]. Stuttgart, Germany: Schweizerbart Science Publishers, 1997: 1-484.
[30] Sun K, Zhang L, Zhao Z, et al. Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions[J]. China Geology, 2018, 1(2): 210-224. doi: 10.31035/cg2018025
[31] Wang X, Liu X, Han Z, et al. Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China[J]. Journal of Geochemical Exploration, 2015, 154: 32-48. doi: 10.1016/j.gexplo.2015.01.008
[32] Xie X, Cheng H. The suitability of flood plain sediment as a global sampling medium: evidence from China[J]. Journal of Geochemical Exploration, 1997, 58(1): 51-62. doi: 10.1016/S0375-6742(96)00051-9
[33] Xie X J, Binchuan Y. Geochemical patterns from local to global[J]. Journal of Geochemical Exploration. 1993, 47(1): 109-129.
[34] Zhao G, He F, Dai X, et al. Ultra-low density geochemical mapping in Zimbabwe[J]. Journal of Geochemical Exploration, 2014, 144: 552-571. doi: 10.1016/j.gexplo.2013.11.001
[35] 何金祥, 吴智慧. 非洲矿产资源勘探和开发——坦桑尼亚[J]. 中国地质, 1997, 5: 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199705015.htm
[36] 何胜飞, 刘晓阳, 王杰, 等. 非洲中部基巴拉造山带地质特征与资源潜力分析[J]. 地质调查与研究, 2014a, 37(3): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201403001.htm
[37] 何胜飞, 孙凯, 王杰, 等. 坦桑尼亚西北部卡邦加铜镍硫化物矿床研究进展[J]. 地质调查与研究, 2014b, 37(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201401002.htm
[38] 李欢, 徐国志, 孙璐, 等. 化探综合异常图定量编制方法及应用[J]. 地质通报, 2019, 38(6): 1062-1070. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190616&flag=1
[39] 李明辉, 陈富荣, 张笑蓉, 等. 皖西大别山区富锌土壤分布特征及成因分析[J]. 地质调查与研究, 2019, (3): 235-240. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201903011.htm
[40] 刘军, 朱谷昌. 坦桑尼亚汉德尼金矿床地质特征与找矿方向分析[J]. 地质与勘探, 2012, 48(1): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201201024.htm
[41] 刘晓阳, 龚鹏辉, 许康康, 等. 坦桑尼亚乌本迪活动带西北部元古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与研究, 2020, 43(1): 5-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001002.htm
[42] 吕梦鸿, 刘洪, 黄瀚霄, 等. 水系沉积物地球化学勘查在西藏松多幅的找矿应用[J]. 地质调查与研究, 2019, 42(2): 143-153. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201902013.htm
[43] 牟妮妮, 孙祥, 万修权. 西藏米拉山地区化探异常特征与找矿预测[J]. 地质通报, 2020, 39(8): 62-70. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200806&flag=1
[44] 孙凯, 周肃, 缪振平, 等. 河北峪耳崖金矿苋草沟区次生晕异常及找矿预测[J]. 地质与勘探, 2011, 47(4): 566-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201104005.htm
[45] 徐善法, 王学求, 张必敏, 等. 中国铀地球化学块体与远景区划分[J]. 地球学报, 2020, 41(6): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006005.htm
[46] 许康康, 刘晓阳, 孙凯, 等. 坦桑尼亚乌本迪带内花岗岩类的LA-MC-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质调查与研究, 2020, 43(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001007.htm
[47] 杨昭颖, 冯磊, 姜德才, 等. 基于邻域约束聚类的地球化学异常提取[J]. 地质通报, 2019, 38(12): 2077-2084. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20191216&flag=1