Rb-Sr isotopic dating and ore-forming fluid characteristics of the Zhongbujie large Pb-Zn deposit, Jiangxi Province
-
摘要:
江西众埠街矿床位于钦杭成矿带东段,是近年来取得重大找矿突破的大型铅锌多金属矿床。为研究众埠街矿床成矿作用,对成矿阶段的石英、方解石开展流体包裹体和氢-氧同位素研究,采用闪锌矿Rb-Sr定年方法测定众埠街大型铅锌多金属矿床的成矿时代,通过闪锌矿Sr同位素初始比(87Sr/86Sr)i判断成矿物质来源。测得闪锌矿Rb-Sr等时线年龄为359±7 Ma,表明铅锌成矿期为早石炭世。闪锌矿Sr同位素初始(87Sr/86Sr)i值介于0.6937~0.7163之间,平均值为0.709,表明成矿物质来源于壳幔混合。流体包裹体显微测温结果显示,均一温度范围为154~310℃,盐度范围为0.70%~5.70% NaCleqv。石英氢-氧同位素结果显示,δDⅤ-SMOW值变化范围为-75.4‰~-58.1‰,δ18OH2O值为1.0‰~8.1‰。综合研究表明,成矿流体主要为岩浆水,混合少量的大气降水。众埠街铅锌矿为岩浆热液型矿床,与沉积型锰矿床没有成因联系。
-
关键词:
- 众埠街铅锌矿 /
- Rb-Sr同位素测年 /
- 流体包裹体 /
- 氢-氧同位素 /
- 钦杭成矿带
Abstract:Zhongbujie is a large Pb-Zn polymetallic deposit that has achieved major prospecting breakthroughs in recent years, located in the eastern section of the Qinhang metallogenic belt.In order to study the mineralization of the Zhongbujie deposit, this paper carried out fluid inclusions and H-O isotope studies of quartz and calcite in the metallogenic stage.The Rb-Sr isochronous dating method of sphalerites was used to determine the metallogenic age of the Zhongbujie deposit and the study of (87Sr/86Sr) i of sphalerite is used to determine the source of the ore-forming material.The obtained sphalerite isochron age is 359±7 Ma, indicating that the lead-zinc metallogenic period is the Early Carboniferous.The (87Sr/86Sr) i of sphalerite ranges from 0.6937 to 0.7163, with an average value of 0.709, indicating that the ore-forming material of the ore bodies was derived from crust-mantle hybrid.The microscopic temperature results of fluid inclusions show that the homogeneous temperature ranges from 154℃ to 310℃, and the salinity ranges from 0.70% to 5.70% NaCleqv.The results of quartz H-O isotope show that the δDⅤ-SMOW value ranges from -75.4‰ to -58.1‰, and the δ18OH2O value ranges from 1.0‰ to 8.1‰.Comprehensive analysis shows that the ore-forming fluid is mainly magmatic water mixed with a small amount of atmospheric precipitation.The Zhongbujie lead-zinc deposit is a magmatic hydrothermal deposit and has no genetic connection with the sedimentary manganese deposits.
-
图 1 众埠街矿区所在大地构造简图(据杨明桂等,2009修改)
Figure 1.
图 11 众埠街铅锌多金属矿床成矿流体δ18OH2O-δD同位素关系图(底图据Sheppard,1986;Taylor,1997)
Figure 11.
图 12 众埠街铅锌多金属矿床氧同位素组成分布图(底图据Sheppard,1986;郑永飞等,2000)
Figure 12.
表 1 众埠街铅锌多金属矿床原生包裹体显微测温结果
Table 1. Microthermometry data of the fluid inclusions from the Zhongbujie Pb-Zn polymetallic deposit
样品号 寄主矿物 成矿阶段划分 包裹体数量/个 类型 相比/% 完全均一温度/℃ 冰点/℃ 盐度/%NaCl eqv ZK302-969.69 石英 石英-硫化物 9 V+L 10~15 274~322 -3.5~-2.5 4.2~5.7 ZK302-384.6 石英 石英-硫化物 5 V+L 10~15 212~257 -3.0~-1.8 3.1~5.0 ZK301-842.1 石英 石英-硫化物 5 V+L 10~15 198~278 -2.5~-0.8 1.4~4.2 ZK301-604.9 石英 石英-硫化物 4 V+L 10~20 221~289 -2.0~-1.4 2.4~3.4 ZK7001-948.7 方解石 碳酸岩盐 11 V+L 5~15 188~226 -3.4~-1.3 2.2~5.6 ZK7001-889.7 石英 石英-硫化物 5 V+L 10~15 189~221 -2.4~-1.2 2.1~4.0 ZK7001-677.7 石英 石英-硫化物 3 V+L 10 178~191 -2.1~-0.8 1.4~3.5 ZK702-769.7 石英 石英-硫化物 15 V+L 51~70 272~321 -3.7~-2.3 3.9~6.0 ZK702-708.5 石英 石英-硫化物 5 V+L 10~15 234~285 -2.6~-1.5 2.6~4.3 ZK702-667.5 石英 石英-硫化物 5 V+L 10~15 238~277 -2.9~-1.3 2.2~4.8 ZK1101-639 石英 石英-硫化物 5 V+L 5~15 175~204 -2.2~-0.8 1.4~3.7 ZK1101-544.1 石英 石英-硫化物 3 V+L 10~15 205~221 -1.2~-0.5 0.9~2.1 ZK2301-563.5 石英 碳酸盐硫化物 4 V+L 10~15 154~201 -1.4~-0.4 0.7~2.4 ZK2301-752.8 石英 碳酸盐硫化物 3 V+L 10 168~177 -1.5~-0.8 1.4~2.6 表 2 众埠街铅锌多金属矿床石英氢-氧同位素组成
Table 2. H-O isotopic analyses of quartz from the Zhongbujie Pb-Zn polymetallic deposit
样品号 矿物 δDⅤ-SMOW/‰ δ18OⅤ-SMOW/‰ δ18OH2O/‰ 温度/℃ ZK302-969.69 石英 -74.1
-75.414.9 8.1 302
302ZK302-384.6 石英 -64.9 12.9 3.4 238 ZK7001-889.7 石英 -58.1 12.6 1.0 202 表 3 众埠街铅锌多金属矿床闪锌矿Rb-Sr同位素组成
Table 3. Rb-Sr isotopic analyses of sphalerite from the Zhongbujie Pb-Zn polymetallic deposit
样品序号 样品位置 样品名称 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr 2σ ISr 1 ZK302-756.1 闪锌矿 0.4062 0.1277 9.203 0.7407 0.000027 0.6937 2 ZK302-969.69 闪锌矿 0.2437 0.0384 18.5 0.8086 0.00103 0.7141 3 ZK7001-601.5 闪锌矿 0.0337 0.0428 2.27 0.7137 0.00011 0.7021 4 ZK702-688.9 闪锌矿 0.5053 0.2659 5.499 0.7444 0.0018 0.7163 5 ZK301-604.9 闪锌矿 0.9123 3.1140 0.8455 0.7182 0.00004 0.7139 6 ZK2301-590.7 闪锌矿 0.7600 0.7512 2.923 0.7288 0.00009 0.7138 -
[1] Brannon J C, Podosek F A, McLimans R K. A Permian Rb-Sr Age for Sphalerite from the Upper Mississippi Valley Zinc-Lead District, southwest Wisconsin[J]. Nature, 1992, 356: 509-511. doi: 10.1038/356509a0
[2] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange between Quartz and Water[J]. Journal of Geophysical Research, 1972, 77(17): 3057-3067. doi: 10.1029/JB077i017p03057
[3] Faure G. Principles of Isotope Geology[M]. John Wiley﹠Sons(2nd edition), 1986: 183-199.
[4] Hall D L, Sterner S M, Bodnar R J. Freezing point and depression of NaCl-KCl-H2O solution[J]. Economic Geology, 1988, 83(1): 197-202. doi: 10.2113/gsecongeo.83.1.197
[5] Hoefs J. StableIsotope Geochemistry[M]. 4th Edition. Berlin: Springer Verlag, 1997: 1-201.
[6] Li W B, Huang Z L, Yin M D. Dating of the Giant Huize Zn-Pb Ore Field of Yunnan Province, Southwest China: Constraints from the Sm-Nd System in Hydrothermal Calcite[J]. Resource Geology, 2006, 57(1): 90-97.
[7] Liu J, Wu G, Qiu H N, et. al. 40Ar/39Ar Dating, Fluid Inclusions and S-Pb Isotope Systematics of the Shabaosi Gold Deposit, Heilongjiang Province[J]. China. Geol. J., 2015, 50: 592-606.
[8] Liu J, Li T G, Duan C. Rb-Sr Isochron Dating and Isotopic Geochemistry Characteristics of the Bajiazi Large Gold Deposit, Jilin Province China[J]. Acta Geologica Sinica., 2018, 92: 1432-1446. doi: 10.1111/1755-6724.13636
[9] Liu J, Zhang L J, Wang S L, et al. Formation of the Wulong Gold Deposit, Liaodong Gold Province, NE China: Constraints from Zircon U-Pb Age, Sericite Ar-Ar Age, and H-O-S-He Isotopes[J]. Ore Geology Reviews, 2019, 109: 130-143. doi: 10.1016/j.oregeorev.2019.04.013
[10] Ludwig K R. User's Manual for Isoplot/ex. Version 3.00: a Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.
[11] Mao J W, Cheng Y B, Chen M H, et al. Major Types and Time-space Distribution of Mesozoic Ore Deposits in South China and their Geodynamic Settings[J]. Minerium Deposita, 2013, 48: 267-294. doi: 10.1007/s00126-012-0446-z
[12] Mao J W, Pirajno F, Lehmann B, et al. Distribution of Porphyry Deposits in the Eurasian Continent and their Corresponding Tectonic Settings[J]. Journal of Asian Earth Science, 2014, 79: 576-584. doi: 10.1016/j.jseaes.2013.09.002
[13] Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr Dating of Sphalerites from Tennessce and the Genesis of Mississippi Vally-type Ore Deposit[J]. Nature, 1990, 346: 354-357. doi: 10.1038/346354a0
[14] Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr Dating of Sphalerites from Mississippi Vally-type (MVT) Ore Deposit[J]. Geochemica et Cosmochimica Acta, 1993, 57: 417-427. doi: 10.1016/0016-7037(93)90440-8
[15] Pettke T, Diamond L W. Rb-Sr Dating of Sphalerite Based on Fluid Inclusion-host Mineral Isochrons; a Clarification of Why it Works[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1996, 91(5): 951-956. doi: 10.2113/gsecongeo.91.5.951
[16] Pirajno F. Hydrothermal Processes and Mineral System[M]. Berlin: Springer, 2009: 1-125.
[17] Reesman R H. The Rb-Sr Analysis of Some Sulfide Minneralization[J]. Earth and Planetary Science Letters, 1968, 5: 23-26. doi: 10.1016/S0012-821X(68)80005-6
[18] Sheppard S M F. Characterization and Isotopic Variations in Natural Water[J]. Reviews in Mineralogy, 1986, 16(1): 165-183.
[19] Stein H J, Markey R J, Morgan J W, et al. The Remarkable Re-Os Chronometer in Molybdenite: How and Why it Works[J]. Terra Nova, 2001, 13: 479-486. doi: 10.1046/j.1365-3121.2001.00395.x
[20] Taylor H P. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits[M]. 3rd Edition. New York, John Wiley, 1997: 229-302.
[21] Yuan S D, Peng J T, Shen N P, et al. 40Ar-39Ar Isotopic Dating of the Xianghualing Sn-polymetallic Orefield in Southern Hunan and its Geological Implication[J]. Acta Geologica Sinica, 2007, 81(2): 278-286. doi: 10.1111/j.1755-6724.2007.tb00951.x
[22] Yuan S D, Mao J W, Zhao P L, et al. Geochronology and Petrogenesis of the Qibaoshan Cu-polymetallic Deposit, Northeastern Hunan Province: Implications for the Metal Source and Metallogenic Evolution of the Intracontinental Qinhang Cu-polymetallic Belt, South China[J]. Lithos, 2018, 302/303: 519-534. doi: 10.1016/j.lithos.2018.01.017
[23] Zeng C Y, Zhou Y Z, Zheng Y, et al. Plate Tectonism of Qinzhou Bay-Hangzhou Bay Juncture Orogenic Belt (South China) before Mesozoic Tectonic Transition Event[J]. Earth Science Frontiers, 2015, 20(2): 54-63.
[24] Zhao P L, Yuan S D, Mao J, et al. Geochronological and Petrogeochemical Constraints on the Skarn Deposits in Tongshanling Ore District, Southern Hunan Province: Implications for Jurassic Cu and W Metallogenic Events in South China[J]. Ore Geology Reviews, 2016, 78: 120-137. doi: 10.1016/j.oregeorev.2016.03.004
[25] Zhao P L, Yuan S D, Mao J W, et al. Zircon U-Pb and Hf-O Isotopes Trace the Architecture of Polymetallic Deposits: a Case Study of the Jurassic Ore-forming Porphyries in the Qin-Hang Metallogenic Belt, China[J]. Lithos, 2017, 292/293: 132-145. doi: 10.1016/j.lithos.2017.08.016
[26] Zheng W, Mao J W, Zhao H J, et al. Geochemistry, Sr-Nd-Pb-Hf Isotopes Systematics and Geochronological Constrains on Petrogenesis of the Xishan A-type Granite and Associated W-Sn Mineralization in Guangdong Province, South China[J]. Ore Geology Reviews, 2017, 88: 739-752.
[27] Zheng W, Yu X F. Geochronological and Geochemical Constraints on the Petrogenesis and Geodynamic Setting of the Daheishan Porphyry Mo Deposit, Northeast China[J]. Resource Geology, 2018, 68: 1-21.
[28] 蔡报元, 李红忠, 欧阳淇生, 等. 江西省乐平市众埠街锰矿地质特征及外围找矿方向[J]. 矿产与地质, 2017, 31(5): 903-907. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201705010.htm
[29] 陈毓川, 王平安, 秦克令, 等. 秦岭地区主要金属矿床成矿系列划分及区域成矿规律探讨[J]. 矿床地质, 1994, 13(4): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ404.000.htm
[30] 顾连兴. 江西乐华层状锰矿与脉状铅-锌矿的成因联系[J]. 地质论评, 1987, 33(3): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198703007.htm
[31] 侯明兰, 蒋少涌, 姜耀辉, 等. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J]. 岩石学报, 2006, 22(10): 2524-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610012.htm
[32] 胡乔青, 王义天, 王瑞廷, 等. 陕西凤太矿集区二里河铅锌矿床的成矿时代: 来自闪锌矿Rb-Sr同位素年龄的证据[J]. 岩石学报, 2012, 28(1): 258-266. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201021.htm
[33] 黄乾峰, 张云蛟, 戴塔根, 等. 区域地质体空间分布格局对矿田找矿潜力指示探讨——以江西乐华多金属矿田为例[J]. 矿物学报, 2015(增刊): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1016.htm
[34] 蒋江波, 吴堑虹, 张云蛟, 等. 江西乐华锰铅锌矿床中层状锰矿与脉状铅锌矿成因联系[J]. 矿产与地质, 2019, 33(4): 613-622. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201904006.htm
[35] 江西省地质矿产勘查开发局. 中国区域地质志江西志[M]. 北京: 地质出版社, 2017.
[36] 李红忠, 蔡报元, 龚兴, 等. 江西省乐平市众埠街铅锌矿床地质特征及找矿方向[J]. 矿产与地质, 2017, 31(6): 1048-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201706006.htm
[37] 李文博, 黄智龙, 许德如, 等. 铅锌矿床Rb-Sr定年研究综述[J]. 大地构造与成矿学, 2002, 26(4): 436-441.
[38] 刘斌, 段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198704010.htm
[39] 刘建明, 沈洁, 赵善仁, 等. 金属矿床同位素精确定年的方法和意义[J]. 有色金属矿产与勘查, 1998, 7(2): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS802.007.htm
[40] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 1-492.
[41] 路远发. Geokit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
[42] 毛景文, 王志良. 中国东部大规模成矿时限及其动力学背景的初步探讨[J]. 矿床地质, 2000, 19(4): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200004000.htm
[43] 毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 11(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm
[44] 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
[45] 毛景文, 胡瑞忠, 陈毓川, 等. 大规模成矿作用与大型矿集区[M]. 北京: 地质出版社, 2006: 58-70.
[46] 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm
[47] 裴荣富, 吴良士. 金属成矿省演化与成矿[J]. 地学前缘, 1994, 1(3/4): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY403.012.htm
[48] 孙省利. 西秦岭泥盆系西成矿化集中区烃碱流体成矿系列研究[D]. 成都理工学院博士学位论文, 2001: 43-44.
[49] 肖晓牛, 邢波, 余新明, 等. 闽中梅仙矿集区丁家山铅锌矿床成矿时代厘定及成矿物质来源: 来自闪锌矿Rb-Sr同位素的证据[J]. 地质通报, 2022, 41(11): 2026-2034. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20221111&flag=1
[50] 杨明桂, 梅勇文. 钦-杭古板块结合带与成矿带的主要特征[J]. 华南地质与矿产, 1997, 3: 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199703008.htm
[51] 杨明桂, 黄水保, 楼法生, 等. 中国东南陆区岩石圈结构与大规模成矿作用[J]. 中国地质, 2009, 36(3): 528-543. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903006.htm
[52] 张长青, 毛景文, 吴锁平, 等. 川滇黔地区MVT铅锌矿床分布、特征及成因[J]. 矿床地质, 2005, 24(3): 336-348. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200503012.htm
[53] 张长青, 李向辉, 余金杰, 等. 四川大梁子铅锌矿床单颗粒闪锌矿铷锶测年及地质意义[J]. 地质论评, 2008, 54(4): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200804017.htm
[54] 张长青, 余金杰, 毛景文, 等. 密西西比型(MVT) 铅锌矿床研究进展[J]. 矿床地质, 2009, 28(2): 195-210. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200902009.htm
[55] 赵海杰, 郑伟, 欧阳志侠, 等. 钦杭成矿带南段阳春盆地中侏罗世钨铅锌矿床的厘定及意义[J]. 岩石学报, 2021, 37(3): 927-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103017.htm
[56] 郑伟, 陈懋弘, 赵海杰, 等. 广东天堂铜铅锌多金属矿床Rb-Sr等时线年龄及其地质意义[J]. 矿床地质, 2013a, 32(2): 259-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201302004.htm
[57] 郑伟, 赵海杰, 陈懋弘, 等. 广东鹦鹉岭多金属矿床辉钼矿的Re-Os同位素定年及其意义[J]. 矿物岩石, 2013b, 33(3): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201303007.htm
[58] 郑伟. 云开地区阳春盆地燕山期多金属矿床成矿系列[D]. 中国地质大学(北京) 博士学位论文, 2016: 1-298.
[59] 郑伟, 欧阳荷根, 赵海杰, 等. 广东锡坪钼铜多金属矿床辉钼矿Re-Os同位素定年及其地质意义[J]. 岩石学报, 2017, 33(3): 843-858. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703013.htm
[60] 郑伟, 欧阳志侠, 陈友良, 等. 钦杭成矿带南段旗鼓岭铜钨钼多金属矿床的辉钼矿Re-Os同位素年龄及成矿物质来源[J]. 地质学报, 2018, 92(1): 94-106 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201801007.htm
[61] 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000: 143-192.
[62] 周永章, 曾长育, 李红中, 等. 钦州湾-杭州湾构造结合带(南段) 地质演化和找矿方向[J]. 地质通报, 2012, 31(2/3): 486-491. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020334&flag=1
[63] 周永章, 郑义, 曾长育, 等. 关于饮-杭成矿带的若干认识[J]. 地学前缘, 2015, 22(2): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502002.htm
[64] 周云, 段其发, 曹亮, 等. 湖南花垣矿集区李梅铅锌矿床闪锌矿Rb-Sr定年与成矿物质示踪[J]. 地球科学与环境学报, 2021, 43(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202104003.htm