Discussion on Relative Lacustrine Level Changes of Triassic in Yingmaili Area, Tarim Basin
-
摘要:
以塔里木盆地英买力地区三叠系为研究对象,综合岩心、测井曲线等多种资料,将传统高分辨率层序定性识别与小波变换定量分析的方法相结合,对其进行层序单元定量划分,共划分出长期层序5个、中期层序13个、短期层序53个及超短期层序256个;基于超短期旋回绘制Fischer图解,结果显示三叠系相对湖平面呈现湖退到湖侵的过程,在SQ4时期湖平面上升至最高点,内部次一级的湖侵湖退过程与长期旋回相互对应。通过综合对比分析,发现随湖平面的升降变化,沉积相带呈现辫状河三角洲前缘近端、远端与滨浅湖沉积交替演变的特征。笔者研究弄清了英买力地区三叠系湖平面升降规律及其与沉积相带的演化关系,为后续地质研究提供了基础依据。
Abstract:Taking the Triassic in the Yingmaili area of Tarim Basin as an example, it combined with the traditional qualitative identification of high–resolution sequence and quantitative analysis method of wavelet transform. The sequence division of Triassic in Yingmaili area of Tarim Basin was done by using the data of logging, drilling and core, and the Fischer plots was drawn based on the calculation of super short–term sequence cycles. It turns out the law that the relative lacustrine level changes were integrally from a long–time lacustrine regression to a long time lacustrine transgressive and rose the largest during the SQ4. The complete lacustrine transgressive and lacustrine regression of Triassic was corresponded well to the long–term sequence cycles. Compared with integrated analysis, we find the lacustrine level changes is closely related with vertical evolution of sedimentary facies. This study clarifies the law of lake level changes of Triassic in Yingmaili area and its evolution relationship with sedimentary facies belt, which provides a basic basis for subsequent geological research.
-
-
图 1 塔里木盆地塔北隆起构造单元划分及研究区位置图(据顾家裕等,2004)
Figure 1.
表 1 SL1井三叠系超短期层序划分及厚度偏移累计统计表
Table 1. Accumulated statistical data table of super short-term sequences thickness deviation of Well SL1 of Triassic
层位 编号 顶深(m) 底深(m) 累计偏差(m) 层位 编号 顶深(m) 底深(m) 累计偏差(m) 层位 编号 顶深(m) 底深(m) 累计偏差(m) T3h 256 4 436.00 4 437.96 0.00 T2k 170 4 617.88 4 619.86 −0.81 T1e 85 4 811.26 4 813.28 −15.22 T3h 255 4 437.96 4 439.74 0.15 T2k 169 4 619.86 4 621.86 −0.68 T1e 84 4 813.28 4 815.16 −15.14 T3h 254 4 439.74 4 441.72 0.4 7 T2k 168 4 621.86 4 623.94 −0.58 T1e 83 4 815.16 4 816.92 −14.91 T3h 253 4 441.72 4 443.62 0.60 T2k 167 4 623.94 4 626.46 −0.55 T1e 82 4 816.92 4 818.70 −14.57 T3h 252 4 443.62 4 44 5.48 0.80 T2k 166 4 626.46 4 630.80 −0.97 T1e 81 4 818.70 4 820.30 −14.24 T3h 251 4 445.48 4 44 7.20 1.05 T2k 165 4 630.80 4 632.74 −3.20 T1e 80 4 820.30 4 821.80 −13.74 T3h 250 4 447.20 4 44 9.04 1.43 T2k 164 4 632.74 4 634.60 −3.04 T1e 79 4 821.80 4 823.68 −13.13 T3h 24 9 4 449.04 4 450.90 1.70 T2k 163 4 634.60 4 636.30 −2.79 T1e 78 4 823.68 4 825.80 −12.91 T3h 24 8 4 450.90 4 452.80 1.94 T2k 162 4 636.30 4 638.14 −2.39 T1e 77 4 825.80 4 827.70 −12.92 T3h 24 7 4 452.80 4 455.14 2.15 T2k 161 4 638.14 4 640.14 −2.12 T1e 76 4 827.70 4 829.50 −12.72 T3h 24 6 4 455.14 4 457.62 1.91 T2k 160 4 640.14 4 642.44 −2.02 T1e 75 4 829.50 4 831.24 −12.41 T3h 24 5 4 457.62 4 459.90 1.54 T2k 159 4 642.44 4 644.52 −2.21 T1e 74 4 831.24 4 833.04 −12.04 T3h 24 4 4 459.90 4 462.30 1.37 T2k 158 4 644.52 4 648.42 −2.18 T1e 73 4 833.04 4 834.72 −11.74 T3h 243 4 462.30 4 464.56 1.07 T2k 157 4 648.42 4 650.58 −3.98 T1e 72 4 834.72 4 836.14 −11.31 T3h 242 4 464.56 4 466.58 0.92 T2k 156 4 650.58 4 652.92 −4.03 T1e 71 4 836.14 4 837.54 −10.63 T3h 241 4 466.58 4 468.54 1.00 T2k 155 4 652.92 4 655.20 −4.27 T1e 70 4 837.54 4 838.98 −9.92 T3h 240 4 468.54 4 470.30 1.15 T2k 154 4 655.20 4 656.96 −4.4 4 T1e 69 4 838.98 4 840.52 −9.26 T3h 239 4 470.30 4 471.92 1.4 9 T2k 153 4 656.96 4 658.46 −4.10 T1e 68 4 840.52 4 842.36 −8.69 T3h 238 4 471.92 4 472.82 1.98 T2k 152 4 658.46 4 659.82 −3.4 9 T1e 67 4 842.36 4 844.14 −8.43 T3h 237 4 472.82 4 474.20 3.18 T2k 151 4 659.82 4 661.82 −2.75 T1e 66 4 844.14 4 845.84 −8.10 T3h 236 4 474.20 4 475.96 3.91 T2k 150 4 661.82 4 664.00 −2.64 T1e 65 4 845.84 4 847.18 −7.70 T3h 235 4 475.96 4 477.90 4.25 T2k 14 9 4 664.00 4 666.94 −2.71 T1e 64 4 847.18 4 848.62 −6.93 T3h 234 4 477.90 4 479.58 4.42 T2k 14 8 4 666.94 4 669.60 −3.55 T1e 63 4 848.62 4 850.38 −6.26 T3h 233 4 479.58 4 481.08 4.85 T2k 14 7 4 669.60 4 672.32 −4.10 T1e 62 4 850.38 4 852.42 −5.92 T3h 232 4 481.08 4 482.56 5.4 5 T2k 14 6 4 672.32 4 675.08 −4.72 T1e 61 4 852.42 4 855.02 −5.85 T3h 231 4 482.56 4 484.44 6.08 T2k 14 5 4 675.08 4 677.30 −5.37 T1e 60 4 855.02 4 857.78 −6.35 T3h 230 4 484.44 4 486.12 6.30 T2k 14 4 4 677.30 4 679.00 −5.4 9 T1e 59 4 857.78 4 860.08 −7.00 T3h 229 4 486.12 4 490.12 6.73 T2k 143 4 679.00 4 680.76 −5.08 T1e 58 4 860.08 4 864.00 −7.20 T3h 228 4 490.12 4 492.82 4.83 T2k 142 4 680.76 4 682.82 −4.74 T1e 57 4 864.00 4 866.12 −9.01 T3h 227 4 492.82 4 495.24 4.24 T2k 141 4 682.82 4 686.58 −4.69 T1e 56 4 866.12 4 868.16 −9.03 T3h 226 4 495.24 4 497.56 3.92 T2k 140 4 686.58 4 688.80 −6.35 T1e 55 4 868.16 4 870.56 −8.96 T3h 225 4 497.56 4 499.82 3.71 T2k 139 4 688.80 4 690.88 −6.4 6 T1e 54 4 870.56 4 874.18 −9.26 T3h 224 4 499.82 4 501.62 3.56 T2k 138 4 690.88 4 693.22 −6.43 T1e 53 4 874.18 4 876.68 −10.77 T3h 223 4 501.62 4 503.36 3.86 T2k 137 4 693.22 4 695.44 −6.67 T1e 52 4 876.68 4 879.70 −11.16 T3h 222 4 503.36 4 504.98 4.23 T2k 136 4 695.44 4 696.96 −6.78 T1e 51 4 879.70 4 882.20 −12.08 续表1 层位 编号 顶深(m) 底深(m) 累计偏差(m) 层位 编号 顶深(m) 底深(m) 累计偏差(m) 层位 编号 顶深(m) 底深(m) 累计偏差(m) T3h 221 4 504.98 4 506.76 4.71 T2k 135 4 696.96 4 698.24 −6.20 T1e 50 4 882.20 4 884.66 −12.4 7 T3h 220 4 506.76 4 508.52 5.04 T2k 134 4 698.24 4 699.76 −5.37 T1e 4 9 4 884.66 4 886.94 −12.83 T3h 219 4 508.52 4 509.76 5.38 T2k 133 4 699.76 4 701.58 −4.79 T1e 4 8 4 886.94 4 888.84 −13.00 T3h 218 4 509.76 4 511.02 6.25 T2k 132 4 701.58 4 703.30 −4.50 T1e 4 7 4 888.84 4 890.62 −12.80 T3h 217 4 511.02 4 512.90 7.09 T2k 131 4 703.30 4 705.02 −4.12 T1e 4 6 4 890.62 4 892.20 −12.47 T3h 216 4 512.90 4 515.06 7.32 T2k 130 4 705.02 4 706.44 −3.73 T1e 4 5 4 892.20 4 893.96 −11.95 T3h 215 4 515.06 4 517.40 7.26 T2k 129 4 706.44 4 707.96 −3.05 T1e 4 4 4 893.96 4 896.20 −11.60 T3h 214 4 517.40 4 519.64 7.03 T2k 128 4 707.96 4 709.68 −2.4 6 T1e 43 4 896.20 4 898.24 −11.74 T3h 213 4 519.64 4 521.92 6.90 T2k 127 4 709.68 4 711.72 −2.07 T1e 42 4 898.24 4 900.10 −11.67 T3h 212 4 521.92 4 524.88 6.72 T2k 126 4 711.72 4 713.84 −2.01 T1e 41 4 900.10 4 901.86 −11.42 T3h 211 4 524.88 4 527.48 5.87 T2k 125 4 713.84 4 715.90 −2.02 T1e 40 4 901.86 4 904.32 −11.08 T3h 210 4 527.48 4 530.06 5.37 T2k 124 4 715.90 4 717.52 −1.98 T1e 39 4 904.32 4 907.00 −11.43 T3h 209 4 530.06 4 532.24 4.90 T2k 123 4 717.52 4 719.14 −1.4 9 T1e 38 4 907.00 4 909.34 −12.01 T3h 208 4 532.24 4 533.98 4.82 T2k 122 4 719.14 4 720.96 −1.01 T1e 37 4 909.34 4 911.28 −12.24 T3h 207 4 533.98 4 535.18 5.19 T2k 121 4 720.96 4 722.74 −0.72 T1e 36 4 911.28 4 912.80 −12.08 T3h 206 4 535.18 4 536.80 6.09 T2k 120 4 722.74 4 724.46 −0.40 T1e 35 4 912.80 4 914.12 −11.4 9 T2k 205 4 536.80 4 539.12 6.58 T2k 119 4 724.46 4 726.06 −0.01 T1e 34 4 914.12 4 916.46 −10.71 T2k 204 4 539.12 4 541.84 6.36 T2k 118 4 726.06 4 727.36 0.4 9 T1e 33 4 916.46 4 918.90 −10.94 T2k 203 4 541.84 4 544.62 5.75 T2k 117 4 727.36 4 728.68 1.30 T1e 32 4 918.90 4 920.80 −11.28 T2k 202 4 544.62 4 546.86 5.08 T2k 116 4 728.68 4 730.42 2.09 T1e 31 4 920.80 4 922.20 −11.07 T2k 201 4 546.86 4 548.48 4.94 T2k 115 4 730.42 4 732.34 2.4 5 T1e 30 4 922.20 4 923.56 −10.36 T2k 200 4 548.48 4 549.26 5.43 T2k 114 4 732.34 4 734.50 2.64 T1e 29 4 923.56 4 925.30 −9.62 T2k 199 4 549.26 4 551.16 6.75 T2k 113 4 734.50 4 737.88 2.58 T1e 28 4 925.30 4 927.26 −9.25 T2k 198 4 551.16 4 552.92 6.96 T2k 112 4 737.88 4 740.08 1.31 T1e 27 4 927.26 4 929.28 −9.11 T2k 197 4 552.92 4 554.26 7.30 T2k 111 4 740.08 4 742.10 1.21 T1e 26 4 929.28 4 931.36 −9.02 T2k 196 4 554.26 4 555.90 8.07 T2k 110 4 742.10 4 743.70 1.30 T1e 25 4 931.36 4 933.36 −9.00 T2k 195 4 555.90 4 558.02 8.53 T2k 109 4 743.70 4 745.30 1.80 T1e 24 4 933.36 4 935.24 −8.89 T2k 194 4 558.02 4 560.38 8.52 T2k 108 4 745.30 4 746.96 2.31 T1e 23 4 935.24 4 936.62 −8.67 T2k 193 4 560.38 4 563.40 8.26 T2k 107 4 746.96 4 750.12 2.75 T1e 22 4 936.62 4 938.12 −7.94 T2k 192 4 563.40 4 565.90 7.35 T2k 106 4 750.12 4 752.60 1.70 T1e 21 4 938.12 4 940.02 −7.33 T2k 191 4 565.90 4 570.16 6.96 T2k 105 4 752.60 4 755.10 1.33 T1e 20 4 940.02 4 941.84 −7.13 T2k 190 4 570.16 4 571.96 4.80 T2k 104 4 755.10 4 759.68 0.93 T1e 19 4 941.84 4 943.18 −6.84 T2k 189 4 571.96 4 573.66 5.11 T2k 103 4 759.68 4 762.38 −1.54 T1e 18 4 943.18 4 944.38 −6.08 T2k 188 4 573.66 4 575.22 5.51 T2k 102 4 762.38 4 766.70 −2.14 T1e 17 4 944.38 4 945.98 −5.17 T2k 187 4 575.22 4 576.78 6.06 T2k 101 4 766.70 4 769.02 −4.35 T1e 16 4 945.98 4 947.84 −4.67 T2k 186 4 576.78 4 578.32 6.60 T2k 100 4 769.02 4 771.86 −4.57 T1e 15 4 947.84 4 949.56 −4.42 续表1 层位 编号 顶深(m) 底深(m) 累计偏差(m) 层位 编号 顶深(m) 底深(m) 累计偏差(m) 层位 编号 顶深(m) 底深(m) 累计偏差(m) T2k 185 4 578.32 4 580.14 7.17 T2k 99 4 771.86 4 776.34 −5.30 T1e 14 4 949.56 4 951.00 −4.04 T2k 184 4 580.14 4 581.92 7.4 5 T2k 98 4 776.34 4 779.36 −7.68 T1e 13 4 951.00 4 952.54 −3.37 T2k 183 4 581.92 4 584.02 7.78 T2k 97 4 779.36 4 781.90 −8.59 T1e 12 4 952.54 4 954.54 −2.81 T2k 182 4 584.02 4 587.64 7.78 T2k 96 4 781.90 4 784.54 −9.03 T1e 11 4 954.54 4 956.50 −2.70 T2k 181 4 587.64 4 589.98 6.27 T2k 95 4 784.54 4 787.12 −9.56 T1e 10 4 956.50 4 958.72 −2.55 T2k 180 4 589.98 4 592.58 6.04 T2k 94 4 787.12 4 791.02 −10.03 T1e 9 4 958.72 4 960.26 −2.67 T2k 179 4 592.58 4 597.16 5.54 T2k 93 4 791.02 4 793.36 −11.83 T1e 8 4 960.26 4 961.96 −2.10 T2k 178 4 597.16 4 599.74 3.07 T2k 92 4 793.36 4 797.48 −12.06 T1e 7 4 961.96 4 963.74 −1.70 T2k 177 4 599.74 4 603.04 2.59 T2k 91 4 797.48 4 800.14 −14.08 T1e 6 4 963.74 4 965.48 −1.37 T2k 176 4 603.04 4 605.62 1.40 T2k 90 4 800.14 4 802.34 −14.63 T1e 5 4 965.48 4 967.36 −1.01 T2k 175 4 605.62 4 607.80 0.92 T1e 89 4 802.34 4 804.54 −14.73 T1e 4 4 967.36 4 969.18 −0.78 T2k 174 4 607.80 4 612.10 0.85 T1e 88 4 804.54 4 806.74 −14.82 T1e 3 4 969.18 4 971.54 −0.50 T2k 173 4 612.10 4 614.66 −1.35 T1e 87 4 806.74 4 809.04 −14.92 T1e 2 4 971.54 4 973.76 −0.75 T2k 172 4 614.66 4 616.60 −1.80 T1e 86 4 809.04 4 811.26 −15.11 T1e 1 4 973.76 4 975.00 −0.87 T2k 171 4 616.60 4 617.88 −1.64 -
陈茂山. 测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J]. 石油地球物理勘探, 1999, 34(1): 57-64
CHEN Maoshan. Two novel depth-domain frequency spectrum analysis methods for logging data and their application to sequence stratigraphy research[J]. Oil Geophysical Prospecting, 1999, 34(1): 57-64.
崔海峰, 郑多明, 张年春, 等. 英买力地区复合潜山的地层分布及意义[J]. 地球物理学进展, 2008, 23(5): 1514-1519
CUI Haifeng, ZHENG Duoming, ZHANG Nianchun, et al. Stratigraphic Distribution of Complex Buried Hill and Its Significance in the Yingmaili Aera[J]. Progress in Geophysics, 2008, 23(5): 1514-1519.
崔海峰, 郑多明. 英买力—牙哈地区复式油气藏油气分布规律[J]. 石油地球物理勘探, 2009, 44(4): 445-450 doi: 10.3321/j.issn:1000-7210.2009.04.012
CUI Haifeng, ZHENG Duoming. Hydrocarbon distribution rule of complex reservoir in Yingmali-Yaha area [J]. Oil Geophysical Prospecting, 2009, 44(4): 445-450. doi: 10.3321/j.issn:1000-7210.2009.04.012
邓宏文. 美国层序地层研究中的新学派──高分辨率层序地层学[J]. 石油与天然气地质, 1995, 16(2): 89-97 doi: 10.3321/j.issn:0253-9985.1995.02.012
DENG Hongwen. A New School of Thought in Sequence Stratigraphic Studies in U. S. : High-Resolution Sequence Stratigraphy[J]. Oil & Gas Geology, 1995, 16(2): 89-97. doi: 10.3321/j.issn:0253-9985.1995.02.012
董长虹. Matlab小波分析工具箱与应用[M]. 北京: 国防工业出版社, 2004: 20
DONG Changhong. Matlab Wavelet Analysis Toolbox and Its Application[M]. Beijing: National Defense Industry Press, 2004: 20.
冯斌, 李华, 何幼斌, 等. 深水等深流沉积中记录的米兰科维奇特性——以陕西富平地区上奥陶统赵老峪组为例[J]. 地球科学与环境学报, 2019, 41(1): 69-82 doi: 10.3969/j.issn.1672-6561.2019.01.006
FENG Bin, LI Hua, HE Youbin, et al. Characteristics of Milankovitch Cycles in Deep Water Contourites[J]. Journal of Earth Sciences and Environment, 2019, 41(1): 69-82. doi: 10.3969/j.issn.1672-6561.2019.01.006
顾家裕, 张兴阳. 陆相层序地层学进展与在油气勘探开发中的应用[J]. 石油与天然气地质, 2004, 25(5): 484-490 doi: 10.3321/j.issn:0253-9985.2004.05.002
GU Jiayu, ZHANG Xingyang. Progress in Continental Sequence Stratigraphy and its Application in Petroleum Exploration and Development[J]. Oil & Gas Geology, 2004, 25(5): 484-490. doi: 10.3321/j.issn:0253-9985.2004.05.002
胡书毅, 文玲, 田海芹. 卫城油田卫81断块沙四段高分辨率层序地层学研究[J]. 西北地质, 2002, 35(2): 46-54 doi: 10.3969/j.issn.1009-6248.2002.02.008
HU Shuyi, WEN Ling, TIAN Haiqin. Study of the high resolution sequence stratigraphy of Sha-4memberinWei-81fault block, Weicheng oil field[J]. Northwestern Geology, 2002, 35(2): 46-54. doi: 10.3969/j.issn.1009-6248.2002.02.008
黄克难, 詹家祯, 邹义声, 等. 新疆库车河地区三叠系和侏罗系沉积环境及古气候[J]. 古地理学报, 2003, (2): 197-208 doi: 10.3969/j.issn.1671-1505.2003.02.008
HUANG Kenan, ZHAN Jiazhen, ZOU Yisheng, et al. Sedimentary Environments and Palaeoclimate of the Triassic and the Jurassic in Kuqa River, Xinjiang[J]. Journal of Palaeogeography, 2003, (2): 197-208. doi: 10.3969/j.issn.1671-1505.2003.02.008
黄少英, 杨文静, 卢玉红, 等. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505 doi: 10.11764/j.issn.1672-1926.2018.09.012
HUANG Shaoying, YANG Wenjing, LU Yuhong, et al. Geologi-cal conditions, resource potential and exploration direction ofnatural gas in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1497-1505. doi: 10.11764/j.issn.1672-1926.2018.09.012
纪友亮, 吴胜和, 张锐. 自旋回和异旋回的识别及其在油藏地层对比中的作用[J]. 中国石油大学学报(自然科学版), 2012, 36(4): 1-6
JI Youliang, WU Shenghe, ZHANG Rui. Recognition of Auto-cycle and Allo-cycle and Its Role in Stratacorrelation of Reservoirs[J]. Journal of China University of Petroleum, 2012, 36(4): 1-6.
贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 177-183
JIA Chengzao. Structural Characteristics and Oil/Gas Accumulative Regularity in Tarim Basin. XinJiang etroleum Geology, 1999, 20(3): 177-183.
贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997: 320-343
JIA Chengzao. Tectonic Characteristics and Petroleum Tarim Basin China[M]. Beijing: Petroleum Insdustry Press, 1997: 320-343.
康玉柱. 塔里木盆地油气资源潜力及勘探方向[J]. 石油科学通报, 2018, 3(4): 369-375
KANG Yuzhu. The resource potential and exploration for oil andgas in the Tarim Basin[J]. Petroleum Science Bulletin, 2018, 3(4): 369-375.
李凤杰, 王多云. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339-344 doi: 10.3969/j.issn.1672-1926.2006.03.012
LI Fengjie, WANG Duoyun. The High-Resolution Sequence Stratigrapgic Feature of Yanchang Formation in Xifeng Oilfield, Ordos Basin[J]. Natural Gas Geoscience, 2006, 17(3): 339-344. doi: 10.3969/j.issn.1672-1926.2006.03.012
李相博, 郭彦如, 刘化清, 等. 浅谈小波分析在鄂尔多斯盆地延长组层序地层划分中的应用[J]. 天然气地球科学, 2006, 17(6): 779-782 doi: 10.3969/j.issn.1672-1926.2006.06.008
LI Xiangbo, GUO Yanru, LIU Huaqing, et al. The Application of Wavelet Analysis in Sequence Stratigraphic Subdivision of the Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2006, 17(6): 779-782. doi: 10.3969/j.issn.1672-1926.2006.06.008
李曰俊, 杨海军, 张光亚, 等. 重新划分塔里木盆地塔北隆起的次级构造单元[J]. 岩石学报, 2012, 28(8): 2466-2478
LI Yuejun, YANG Haijun, ZhANG Guangya, et al. Redivision of the tectonic units of Tabei Rise in Tarim Basin, NW China. [J]Acta Petrologica Sinica, 2012, 28(8): 2466-2478.
林孝先, 侯中健. 松辽盆地中部扶余油层相对湖平面变化定量研究[J]. 地层学杂志, 2014, 38(2): 170-180
LIN Xiaoxian, HOU Zhongjian. A Quantitative Analysis Research on Relative Lacustrine Level Changes in the Lower Cretaceous Fuyu Reservoir in the Songliao Basin[J]. Journal of Stratigraphy, 2014, 38(2): 170-180.
刘波. 基准面旋回与沉积旋回的对比方法探讨[J]. 沉积学报, 2002, 20(1): 112-117 doi: 10.3969/j.issn.1000-0550.2002.01.019
LIU Bo. Discussion on the Correlation Methods of Base-level Cycle and Sedimentary Cycle Sequence[J]. Acta Sedimentologica Sinica, 2002, 20(1): 112-117. doi: 10.3969/j.issn.1000-0550.2002.01.019
刘辰生. 塔里木盆地阿克库勒地区三叠系层序地层学与沉积相研究[D]. 湖南: 中南大学, 2006
LIU Chensheng. Study of Sequence Stratigrapgy and Sedimentary Facies of Triassic System of Akekule Area in Tarim Basin[D]. Hunan: Central Sourth University, 2006.
刘亚雷, 胡秀芳, 王道轩, 等. 塔里木盆地三叠纪岩相古地理特征[J]. 断块油气田, 2012, 19(6): 696-700 doi: 10.6056/dkyqt201206004
LIU Yalei, HU Xiufang, WANG Daoxuan, et al. Characteristics of Triassic lithofacies palaeogeography in Tarim Basin[J]. Fault-Block Oil & Gas Field, 2012, 19(6): 696-700. doi: 10.6056/dkyqt201206004
刘景彦, 曲爱英, 刘元贵, 等. 辽河东部凹陷红星地区古近系高精度层序地层和沉积体系研究[J]. 西北地质, 2008, 41(2): 73-80 doi: 10.3969/j.issn.1009-6248.2008.02.008
LIU Jingyan, QU Aiying, Liu Yuangui, et al. The High-Resolution Sequence Stratigraphy and Depositional System Study of Eogene Hongxing Area, Eastern Depression of Liaohe[J]. Northwestern Geology, 2008, 41(2): 73-80. doi: 10.3969/j.issn.1009-6248.2008.02.008
吕雪雁, 朱筱敏, 申银民, 等. 塔里木盆地台盆区三叠系层序地层研究和有利勘探区预测[J]. 石油勘探与开发, 2002, 29(1): 32-35
LÜ Xueyan, ZHU Xiaomin, SHEN Yinmin, et al, The Triassic Sequence Stratigrapgy andthe Prediction of the Favourable Exploration Targets in Tarim Basin[J]Petroleum Exploration and Development, 2002, 29(1): 32-35.
马瑶, 李文厚, 王若谷, 等. 鄂尔多斯盆地子洲地区上古生界沉积相及演化特征[J]. 地质科学, 2015, 50(1): 286-302 doi: 10.3969/j.issn.0563-5020.2015.01.019
MA Yao, LI Wenhou, WANG Ruogu, et al. Sedimentary facies and its evolution of the Upper Palaeozoic in Zizhou area of Ordos Basin[J]. Chinese Journal of Geology, 2015, 50(1): 286-302. doi: 10.3969/j.issn.0563-5020.2015.01.019
孟祥化, 葛铭. 中朝板块层序·事件·演化: 天文周期的沉积响应和意义[M]. 北京: 科学出版社, 2004
MENG Xianghua, GE Ming. Sequence stratigraphy and event evolution of the Sino Koreanplate: sedimentary response and significance of the astronomical cycle[M]. Beijing: Science Press, 2004.
钱利军, 时志强, 欧莉华. 二叠纪—三叠纪古气候研究进展——泛大陆巨型季风气候: 形成、发展与衰退[J]. 海相油气地质, 2010, 15(3): 52-58 doi: 10.3969/j.issn.1672-9854.2010.03.008
QIANG Lijun, SHI Zhiqiang, OU Lihua. Research Advances in Permian-Traissic Paleoclimate: Formation, Development and Decline of Pangaean Megamonsoon[J]. Marine Origin Petroleum Geology, 2010, 15(3): 52-58. doi: 10.3969/j.issn.1672-9854.2010.03.008
苏德辰, 李庆谋, 罗光文, 等. Fischer图解及其在旋回层序研究中的应用──以北京西山张夏组为例[J]. 现代地质, 1995, (3): 279-283
SU Dechen, LI Qingmou, LUO Guangwen, et al. Method for Drawing Fischer Plots and Its Applications on Studying Cyclic Sequences—Example from Middle Cambrian Zhangxia Formation, Western Hills of Beijing[J]Journal of Graduate School, China University of Geosciences, 1995, (3): 279-283.
唐武, 仲米虹, 田建华, 等. 塔北地区黄山街组湖盆滩坝砂体沉积模式[J]. 新疆石油地质, 2015, 36(3): 299-303
TANG Wu, ZHONG Mihua, TIAN Jianhua, et al. Depositional Model for Lacustrine Beach Bars of Huangshanjie Formation in Tabei Area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2015, 36(3): 299-303.
田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 272-282
TIAN Jun, WANG Qinghua, YANG Haijun, et al. Petroleum Exploration History and Enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 272-282.
王熠哲, 吴朝东, 马健, 等. 准噶尔盆地白垩纪——新近纪地层颜色韵律与古环境和古气候演化[J]. 古地理学报, 2019, 21(3): 451−468
WANG Yizhe, WU Chaodong, MA Jian, et al. Strata color rhythm of the Cretaceous-Neogene and evolution of palaeoenvironment and palaeoclimate in Junggar Basin[J]. 2019, 21(3): 451−468.
王志坤, 王多云, 宋广寿, 等. 测井信号小波分析在高分辨率层序地层划分中的应用[J]. 大庆石油学院学报, 2005, 29(6): 17-20
WANG Zhikun, WANG Duoyum, SONG Guangshou, et al. Application of Wavelet Analysis to Sequence Stratigraphic Division of High Resolution Sequence Stratigraphy[J]. Journal of Daqing Petroleum Institute, 2005, 29(6): 17-20.
温立峰, 吴胜和, 岳大力, 等. 胜二区沙二段7砂组地层基准面旋回与沉积微相研究[J]. 中国地质, 2010, 336(1): 144-151 doi: 10.3969/j.issn.1000-3657.2010.01.016
WEN Lifeng, WU Shenghe, YUE Dali, et al. Stratigraphic base-level cycles and sedimentary microfacies of Es_2-7 Formation in the Shengtuo Oilfield[J]. Geology in China, 2010, 336(1): 144-151. doi: 10.3969/j.issn.1000-3657.2010.01.016
吴艳宏, 李世杰. 湖泊沉积物色度在短尺度古气候研究中的应用[J]. 地球科学进展, 2004, (5): 789-792 doi: 10.3321/j.issn:1001-8166.2004.05.016
WU Yanhong, LI Shijie. Significance of Lake Sediment Color for Short Time Scale Climate Variation[J]. Advances in Earth Science, 2004, (5): 789-792. doi: 10.3321/j.issn:1001-8166.2004.05.016
夏辉, 林畅松, 刘永福, 等. 塔里木盆地英买力地区白垩系舒善河组相对湖平面变化[J]. 天然气地球科学, 2019, 30(11): 1579-1589 doi: 10.11764/j.issn.1672-1926.2019.11.007
XIA Hui, LIN Changsong, LIU Yongfu, et al. A Research on Relative Lacustrine Level Changes of Cretaceous Shushanhe Formation in the Yingmaili Area of Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(11): 1579-1589. doi: 10.11764/j.issn.1672-1926.2019.11.007
杨小萍, 刘桂侠, 马文杰. 层序地层学研究现状及发展趋势[J]. 西北地质, 2001, 34(2): 16-20 doi: 10.3969/j.issn.1009-6248.2001.02.003
YANG Xiaoping, LIU Guixia, MA Wenjie. Current situation and developing tendency of sequence stratigraphy[J]. Northwestern Geology, 2001, 34(2): 16-20. doi: 10.3969/j.issn.1009-6248.2001.02.003
余继峰, 李增学. 测井数据小波变换及其地质意义[J]. 中国矿业大学学报, 2003, 32(3): 336-339 doi: 10.3321/j.issn:1000-1964.2003.03.029
YU Jifeng, LI Zengxue. Wavelet Transform of Logging Data and Its Geological Significance[J]. Journal of China University of Mining & Technology, 2003, 32(3): 336-339. doi: 10.3321/j.issn:1000-1964.2003.03.029
余瑜, 林良彪, 蓝彬桓, 等. 基于小波分析的层序地层划分及识别——以川东地区上二叠统龙潭组为例[J]. 西北地质, 2018, 51(4): 43-52 doi: 10.3969/j.issn.1009-6248.2018.04.006
YU Yu, LIN Liangbiao, LAN Binheng, et al. Sequence Stratigraphic Division and Recognition Based on Wavelet Analysis: Example from the Upper Permian Longtan Formation in Eastern Sichuan Basin[J]. Northwestern Geology, 2018, 51(4): 43-52. doi: 10.3969/j.issn.1009-6248.2018.04.006
翟永红. 用Fischer图解研究山西临汾中奥陶世马家沟组旋回层序[J]. 岩石矿物学杂志, 1999, 18(2): 128-133 doi: 10.3969/j.issn.1000-6524.1999.02.004
ZHAI Yonghong. The Application of Fischer Plots to the Analysis of Cycles in Middle Ordovician Majiagou Formation in Linfen, ShanxiProvince[J]. Acta Petrologica et Mineralogica, 1999, 18(2): 128-133. doi: 10.3969/j.issn.1000-6524.1999.02.004
张荣茜. 塔北隆起西南部白垩系沉积层序演化及有利储层相带预测[D]. 北京: 中国地质大学, 2013: 47-70.
ZHANG Rongqian. Deposition and Stratigraphic Sequence Development and Evolution of Cretaceous of the Southwestern Tabei Uplift and Potential Reservior Prediction[D]. Beijing: China University of Geosciences (Beijing), 2013: 47-70.
张坦, 张昌民, 瞿建华, 等. 准噶尔盆地玛湖凹陷百口泉组相对湖平面升降规律研究[J]. 沉积学报, 2018, 36(4): 684-694
ZHANG Tan, ZHANG Changmin, QU Jianhua, et al. A Research on Relative Lacustrine Level Changes of the Lower Triassic Baikouquan Formation in Mahu Sag of Junggar Basin[J]. Acta Sedimentologica Sinica, 2018, 36(4): 684-694.
赵军龙, 谭成仟, 李娜, 等. 小波分析在高分辨率层序地层研究中的应用[J]. 地球科学与环境学报, 2007, 29(1): 90-94 doi: 10.3969/j.issn.1672-6561.2007.01.018
ZHAO Junlong, TAN Chengqian, LI Na, et al. Application of Wavelet Analysis in High Resolution Sequence Analysis[J]. Journal of Earth Sciences and Environment, 2007, 29(1): 90-94. doi: 10.3969/j.issn.1672-6561.2007.01.018
赵伟, 邱隆伟, 姜在兴, 等. 小波分析在高精度层序单元划分中的应用[J]. 中国石油大学学报(自然科学版), 2009, 33(02): 18-22
ZHAO Wei, QIU Longwei, JIANG Zaixing, et al. Application of wavelet analysis in high-resolution sequence unit division[J]. Journal of China University of Petroleum, 2009, 33(02): 18-22.
郑荣才, 彭军, 吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报, 2001, 19(2): 249-255 doi: 10.3969/j.issn.1000-0550.2001.02.015
ZHENG Rongcai, PENG Jun, WU Zhaorong. Grade Division of Base-Level Cycles of Terrigenous Basin and Its Implications[J]. Acta Sedimentologica Sinica, 2001, 16(2): 249-255. doi: 10.3969/j.issn.1000-0550.2001.02.015
郑荣才, 吴朝容, 叶茂才. 浅谈陆相盆地高分辨率层序地层研究思路[J]. 成都理工学院学报, 2000, 27(3): 241-244
ZHENG Rongcai, WU Zhaorong, YE Maocai. Research Thinking of High-Resolution Sequence Stratigraphy about a Terrigenous Basin[J]. Journal of Chengdu University of Technology, 2000, 27(3): 241-244.
周统顺. 中国三叠纪植物群、植物地理分区及古气候[J]. 地层古生物论文集, 1999, (00): 212-224
ZHOU Tongshun. Triassic Floras, Photogeographic Divisions and Palaeoclimate in China[J]. Proofessional Papers of Stratigraphy and Palaeontology, 1999, (00): 212-224.
Cross T A, Lessenger M A. Sediment volume partitioning: rationalefor stratigraphic model evaluation and high-resolution stratigraphiccorrelation[J]. Predictive High Resolution Sequence Stratigraphy: Norwegian Petroleum Society, Special Publication, 1998, 8: 171-196.
Fischer A G. The Lofer cyclothems of the alpine Triassic[J]. Kansas Geological Survey Bulletin, 1964, 169(1): 107−149.
Koerschner W W, Read J F. Field and modeling studies of Cambrian carbonate cycles, Virginia Appalachians[J]. Journal of Sedimentary Petrology. 1989, 59: 654−687.
Osleger D A, Read J F. Relation of eustasy to stacking patterns of meter-scale carbonate cycles, Late Cambrian, U S A[J]. Journal of Sedimentary Petrology, 1961, 61: 1225-1252.
-