Petrological Characteristics and Sedimentary Environment of the Upper Ordovician Pingliang Formation in the Southwestern Margin of Ordos Basin
-
摘要:
为研究鄂尔多斯盆地西南缘上奥陶统平凉组岩石特征及沉积环境,基于沉积学相关理论和方法,根据野外露头、古生物及粒度分析等资料,对研究区岩石特征、沉积相及主控因素开展了研究。结果表明:①研究区平凉组可划分3种岩相和2种岩相组合。②通过综合研究岩性、古生物、沉积构造及粒度参数等资料,确定平凉组沉积环境为深水斜坡。③沉积相为海底扇,在此基础上可划分为中扇和下扇2个亚相,近端朵叶和远端朵叶2个微相。④海底扇的主控因素为相对海平面升降、构造运动和物源供给。
Abstract:In order to study the petrological characteristics and sedimentary environment of the Upper Ordovician Pingliang Formation in the southwest margin of Ordos basin, the petrological characteristics, sedimentary facies, and main controlling factors of the study area were studied by using sedimentology theories and methods based on outcrops, paleontology and grain–size analysis data. The result shows that: ① The Pingliang Formation in the study area can be divided into three lithofacies and two lithofacies associations. ② Based on an analysis of the lithologic character, sedimentary structure, palaeobiologic fossils and grain size parameters, it is believed that the sedimentary environment of Pingliang Formation is mainly deep–water slope. ③ The sedimentary facies is submarine fan, which can be further divided into two subfacies (middle fan and lower fan) and two microfacies (proximal lobe and distal lobe). ④ The main controlling factors of submarine fan include relative sea level, tectonic movement and provenance supply.
-
Key words:
- turbidites /
- submarine fan /
- deep–water slope /
- Pingliang Formation /
- Upper Ordovician /
- Ordos basin
-
表 1 近端朵叶沉积与远端朵叶沉积特征表
Table 1. Characteristics of proximal lobe deposition and distal lobe deposition
组合类型 沉积类型 岩相组成 岩性 沉积构造 占比 沉积层序 岩相组合1 近端朵叶沉积 Sg、Sp、Sh 细砂岩、页岩、细砂质页岩 粒序层理、平行层理、冲刷面、槽模、水平层理 40% 下粗上细正粒序鲍马层序(Tab, Tac, Tabce) 岩相组合2 远端朵叶沉积 Sp、Sh 细砂岩、粉砂岩、页岩、粉砂质页岩 平行层理、交错层理、水平层理、冲刷面、砂泥互层层理 60% 下粗上细正粒序鲍马层序(Tbc, Tbce) 表 2 粒度参数特征表
Table 2. Characteristics of particle size parameters
样品编号 平均粒径(Φ) 中值(Md) 标准偏差(δ) 偏度(SK) 峰度(KG) S1-15-1 3.26(细砂) 3.22(细砂) 0.67(分选较好) 0.09(近对称) 0.95(中等) S1-14-1 3.06(细砂) 2.99(细砂) 0.78(分选中等) 0.14(正偏) 0.98(中等) S1-13-1 3.11(细砂) 3.10(细砂) 0.72(分选中等) 0.05(近对称) 1.00(中等) S1-12-1 2.33(细砂) 2.29(细砂) 0.64(分选较好) 0.11(正偏) 1.06(中等) S1-11-1 2.82(细砂) 2.74(细砂) 0.75(分选中等) 0.17(正偏) 1.01(中等) S1-10-1 3.22(细砂) 3.20(细砂) 0.66(分选较好) 0.06(近对称) 1.02(中等) S1-9-1 2.98(细砂) 3.01(细砂) 0.76(分选中等) −0.08(近对称) 0.89(中等) S1-8-1 2.85(细砂) 2.74(细砂) 0.73(分选中等) 0.26(正偏) 1.13(尖锐) S1-7-1 3.28(细砂) 3.29(细砂) 0.82(分选中等) −0.04(近对称) 1.14(尖锐) S1-6-3 2.90(细砂) 2.91(细砂) 0.55(分选较好) 0.03(近对称) 1.08(中等) S1-6-1 2.47(细砂) 2.45(细砂) 0.65(分选较好) 0.07(近对称) 0.93(中等) S1-5-1 2.52(细砂) 2.52(细砂) 0.62(分选较好) −0.01(近对称) 0.97(中等) S1-4-6 2.99(细砂) 2.90(细砂) 0.69(分选较好) 0.20(正偏) 1.04(中等) S1-4-5 2.62(细砂) 2.60(细砂) 0.54(分选较好) 0.10(近对称) 1.14(尖锐) S1-4-4 3.17(细砂) 3.15(细砂) 0.58(分选较好) 0.08(近对称) 1.02(中等) S1-4-2 2.85(细砂) 2.86(细砂) 0.60(分选较好) −0.02(近对称) 0.97(中等) S1-4-1 2.62(细砂) 2.60(细砂) 0.54(分选较好) 0.10(正偏) 1.14(尖锐) S1-3-1 2.30(细砂) 2.31(细砂) 0.64(分选较好) 0.03(近对称) 1.12(尖锐) S1-2-2 2.65(细砂) 2.62(细砂) 0.74(分选中等) 0.08(近对称) 0.90(中等) S1-2-1 2.42(细砂) 2.41(细砂) 0.62(分选较好) 0.02(近对称) 0.99(中等) S1-1-3 3.94(粉砂) 3.94(粉砂) 0.73(分选中等) −0.01(近对称) 1.01(中等) S1-1-2 2.89(细砂) 2.85(细砂) 0.77(分选中等) 0.09(近对称) 0.91(中等) S1-1-1 2.52(细砂) 2.44(细砂) 0.74(分选中等) 0.18(正偏) 0.91(中等) 表 3 沉积微相类型及特征表
Table 3. Types and characteristics of sedimentary microfacies
相 亚相 微相 水动力 与物源区距离 岩性 沉积构造 频率曲线 C–M图解 概率累积曲线 海底扇 中扇 近端朵叶
沉积相对较强 相对较近 细砂岩、
粉砂岩、
页岩、
细砂质页岩粒序层理、平行
层理、冲刷面、
槽模水平层理对称单峰 平行C=M线 一段式 下扇 远端朵叶
沉积相对较弱 相对较远 细砂岩、
粉砂岩、
页岩、
粉砂质页岩平行层理、交错层
理、水平层理、
冲刷面、
砂泥互层层理近对称单峰 平行C=M线 两段式 表 4 各期次砂泥厚度及砂泥比
Table 4. Sand-mud thickness and sand–mud ratio of each period
期次 砂岩厚度(cm) 泥岩厚度(cm) 砂泥比 水动力 P3-c 365 648 0.56 中低能 P3-b 325 340 0.95 中能 P3-a 348 253 1.37 中高能 -
陈飞, 罗平, 张兴阳, 等. 陕北地区上三叠统延长组三角洲骨架砂体粒度特征[J]. 沉积学报, 2010, 28(01): 58-67 doi: 10.14027/j.cnki.cjxb.2010.01.014
CHEN Fei, LUO Ping, ZHANG Xingyang, et al. Characteristics of Grain Size of Delta Sandbody Framework in Yanchang Formation Upper Triassic, North Shanxi[J]. Acta Sedimentologica Sinica, 2010, 28(01): 58-67. doi: 10.14027/j.cnki.cjxb.2010.01.014
陈欢庆, 舒治睿, 林春燕, 等. 粒度分析在砾岩储层沉积环境研究中的应用-以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 西安石油大学学报(自然科学版), 2014, 29(06): 6-12+34+112
CHEN Huanqing, SHU Zhirui, LIN Chunyan, et al. Application of grain-size analysis in research of sedimentary environment of conglomerate reservoir: taking alluvial fan reservoir in the lower member of Kelamayi Formation in some area of the northwestern margin of Zhunger Basin as an example[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2014, 29(06): 6-12+34+112.
高振中, 罗顺社, 何幼斌, 等. 鄂尔多斯西缘奥陶纪海底扇沉积体系[J]. 石油与天然气地质, 1995, 16(02): 119-125 doi: 10.3321/j.issn:0253-9985.1995.02.015
GAO Zhenzhong, LUO Shunshe, HE Youbin, et al. Ordovician submarine fan systems in west margin of Ordos[J]. Oil & Gas Geology, 1995, 16(02): 119-125. doi: 10.3321/j.issn:0253-9985.1995.02.015
高振中, 彭德堂. 鄂尔多斯盆地南缘铁瓦殿剖面发现大规模重力流沉积[J]. 石油天然气学报, 2006, 28(4): 18-24 doi: 10.3969/j.issn.1000-9752.2006.04.005
GAO Zhengzhong, PENG Detang. The Massive Gravity Flow Sediments Revealed at Tiewadia Outcrop Section in Southern Margin of Ordos Basin[J]. Oil & Gas Geology, 2006, 28(4): 18-24. doi: 10.3969/j.issn.1000-9752.2006.04.005
郭彦如, 赵振宇, 徐旺林, 等. 鄂尔多斯盆地奥陶系层序地层格架[J]. 沉积学报, 2014, 32(1): 44-60 doi: 10.14027/j.cnki.cjxb.2014.01.006
GUO Yanru, ZHAO Zhenyu, XU Wanglin, et al. Sequence Stratigraphy of the Ordovician System in the Ordos Basin[J]. Acta Sedimentologica Sinica, 2014, 32(01): 44-60. doi: 10.14027/j.cnki.cjxb.2014.01.006
何幼斌, 高振中, 罗顺社, 等. 陕西陇县地区平凉组三段发现内潮汐沉积[J]. 石油天然气学报, 2007, 29(4): 28-33 doi: 10.3969/j.issn.1000-9752.2007.04.005
HE Youbin, GAO Zhenzhong, LUO Shunshe, et al. Discovery of Internal-tide Deposits from the Third Member of Pingliang Formation in Longxian Area, Shaanxi Province[J]. Oil & Gas Geology, 2007, 29(4): 28-33. doi: 10.3969/j.issn.1000-9752.2007.04.005
晋慧娟, 孙明良, 李育慈. 内蒙古桌子山中奥陶统的“特殊”浊积岩系[J]. 沉积学报, 2005, (01): 34-40 doi: 10.3969/j.issn.1000-0550.2005.01.005
JIN Huijuan, SUN Mingliang, LI Yuci. The “Special” Turbidite Measure of the Middle Ordovician Series in Zhuozishan Area, Inner Mongolia[J]. Acta Sedimentologica Sinica, 2005, (01): 34-40. doi: 10.3969/j.issn.1000-0550.2005.01.005
李文厚, 陈强, 李智超, 等. 鄂尔多斯地区早古生代岩相古地理[J]. 古地理学报, 2012, 14(01): 85-100
LI Wenhou, CHEN Qiang, LI Zhichao, et al. Lithofacies Palaeogeography of the Early Paleozoic in Ordos Area[J]. Journal of Palaeogeography (Chinese Edition), 2012, 14(01): 85-100.
李华, 何幼斌, 黄伟, 等. 鄂尔多斯盆地南缘奥陶系平凉组等深流沉积[J]. 古地理学报, 2016, 18(04): 631-642
LI Hua, HE Youbin, HUANG Wei, et al. Contourites of the Ordovician Pingliang Formation in Southern Margin of Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition), 2016, 18(04): 631-642.
李华, 何幼斌, 刘朱睿鸷, 等. 鄂尔多斯盆地西南缘奥陶系平凉组重力流沉积特征[J]. 中国科技论文, 2017, 12(15): 1774-1779 doi: 10.3969/j.issn.2095-2783.2017.15.017
LI Hua, HE Youbin, LIUZHU Ruizhi, et al. Characteristic of gravity flow deposit in Pingliang Formation of Ordovician in the southwest margin of the Ordos Basin[J]. China Sciencepaper, 2017, 12(15): 1774-1779. doi: 10.3969/j.issn.2095-2783.2017.15.017
李华, 何幼斌. 鄂尔多斯盆地西南缘奥陶系平凉组改造砂沉积特征及意义[J]. 石油与天然气地质, 2018, 39(02): 384-397 doi: 10.11743/ogg20180217
LI Hua, HE Youbin. Sedimentary Characteristics and Significance of Reworked Sands in the Ordovician Pingliang Formation, Southwestern Margin of Ordos Basin[J]. Oil & Gas Geology, 2018, 39(02): 384-397. doi: 10.11743/ogg20180217
梁积伟, 马晓军, 刘亚兰, 等. 鄂尔多斯盆地南部岐山地区上奥陶统平凉组深水沉积特征及古地理分析[J]. 西北地质, 2019, 52(1): 66-74 doi: 10.19751/j.cnki.61-1149/p.2019.01.006
LIANG Jiwei, MA Xiaojun, LIU Yalan, et al. Deep-water Sedimentary Characteristics and Paleogeographic Analysis of the Pingliang Formation in Qishan Area, Southern Ordos Basin[J]. Northwestern Geology, 2019, 52(1): 66-74. doi: 10.19751/j.cnki.61-1149/p.2019.01.006
刘朱睿鸷, 何幼斌, 李华, 等. 鄂尔多斯盆地西南缘上奥陶统平凉组砂岩微量元素特征及构造背景: 以陇县段家峡剖面为例[J]. 古地理学报, 2020, 22(02): 333-348
LIUZHU Ruizhi, HE Youbin, LI Hua, et al. Geochemical Characteristics of Trace Elements and Tectonic Setting of Sandstons from the Upper Ordovician Pingliang Formation, Southwestern Margin of Ordos Basin: A Case Study of the Duanjiaxia Profile, Longxian County[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(02): 333-348.
李华, 何明薇, 邱春光, 等. 深水等深流与重力流交互作用沉积(2000-2022年)研究进展[J]. 沉积学报: 1-25.
LI Hua, HE Mingwei, QIU Chunguang, et al. Research Processes on Deep-water Interaction between Contour Current and Gravity Flow Deposits, 2000 to 2022[J]. Acta Sedimentologica Sinica, 2022, 1-25.
李祥辉,王成善,金玮,等.深海沉积理论发展及其在油气勘探中的意义[J].沉积学报,2009,27(01):77-86.
LI Xianghui, WANG Chengshan, JIN Wei, et al. A review on deep-sea sedimentation theory: significances to oil gas exploration[J].Acta Sedimentologica Sinica, 2009,27(1):77-86.
马伟. 新疆滴水砂岩型铜矿沉积物粒度特征及沉积体系研究[D]. 沈阳: 东北大学, 2013
MA Wei. Sediments Grain-size Characteristics and Depositional System Research of Dishui Sandstone-hosted Copper Ore in Xinjiang[D]. Shenyang: Northeastern University, 2013.
马晓军, 梁积伟, 李建星, 等. 鄂尔多斯盆地中西部中新生代构造抬升及演化[J]. 西北地质, 2019, 52(4): 127-136 doi: 10.3969/j.issn.1009-6248.2019.04.010
MA Xiaojun, LIANG Jiwei, LI Jianxing, et al. Meso-cenozoic Tectonic Uplift and Evolution of Central and Western Ordos Basin[J]. Northwestern Geology, 2019, 52(4): 127-136. doi: 10.3969/j.issn.1009-6248.2019.04.010
彭芳. 邢台地区晚更新世以来沉积环境分析[D]. 北京: 中国地质大学(北京), 2014
PENG Fang. The Sedimentary Environment Analysis since the late Pleistocene in Xingtai City[D]. Beijing: China University of Geosciences (Beijing), 2014.
谈明轩, 吴峰, 马皓然, 等. 海底扇沉积相模式、沉积过程及其沉积记录的指示意义[J]. 沉积学报, 2022, 40(02): 435-449
TAN Mingxuan, WU Feng, MA Haoran, et al. Facies Model, Sedimentary Process and Depositional Record of Submarine Fans, and Their Implications[J]. Acta Sedimentologica Sinica, 2022, 40(02): 435-449.
吴胜和, 冯增昭. 鄂尔多斯盆地西缘及南缘中奥陶统平凉组重力流沉积[J]. 石油与天然气地质, 1994, 15(3): 226-234 doi: 10.11743/ogg19940306
WU Shenghe, FENG Zengzhao. Sedimentology of Gravity Flow Deposits of Middle Ordovician Pingliang Formation in West and South Margins of Ordos[J]. Oil & Gas Geology, 1994, 15(3): 226-234. doi: 10.11743/ogg19940306
王振涛, 周洪瑞, 王训练, 等. 鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用[J]. 地质学报, 2015, 89(11): 1990-2004
WANG Zhentao, ZHOU Hongrui, WANG Xunlian, et al. Ordovician Geological Events Group in the West and South Ordos Basin[J]. Acta Geologica Sinica, 2015, 89(11): 1990-2004.
于兴河, 付超, 华柑霖, 等. 未来接替能源: 天然气水合物面临的挑战与前景[J]. 古地理学报, 2019, 21(1): 107-126 doi: 10.7605/gdlxb.2019.01.006
YU Xinghe, FU Chao, HUA Ganlin, et al. Future Alternative Energy: Challenges and Prospects of Natural Gas Hydrate[J]. Journal of Palaeogeography(Chinese Edition), 2019, 21(1): 107-126. doi: 10.7605/gdlxb.2019.01.006
曾小明,潘燕,于佳,等.陵水凹陷北坡低密度浊流海底扇沉积特征[J].科学技术与工程,2015,15(33):48-53+78.
ZENG Xiaoming, PAN Yan, YU Jia, et al.Low-density turbidity submarine fan sedimentary characteristics in north slope of Lingshui sag[J].Science Technology and Engineering, 2015, 15(33):48-53+78.
张抗. 鄂尔多斯盆地西、南缘奥陶系滑塌堆积[J]. 沉积学报, 1992, 10(1): 11-18 doi: 10.14027/j.cnki.cjxb.1992.01.002
ZHANG Kang. Olistostrome in Ordovician System, West and Southern Margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 1992, 10(1): 11-18. doi: 10.14027/j.cnki.cjxb.1992.01.002
张兴阳, 罗顺社, 何幼斌. 沉积物重力流-深水牵引流沉积组合-鲍玛序列多解性探讨[J]. 江汉石油学院学报, 2001, (01): 1-4+6
ZHANG Xingyang, LUO Shunshe, HE Youbin. Deposit Assemblage of Gravity Flow and Traction Current in Deep Water--A Study of the Multiple interpretation of the Bouma Sequence[J]. Journal of Jianghan Petroleum Institute, 2001, (01): 1-4+6.
张元动, 陈旭. 奥陶纪笔石动物的多样性演变与环境背景[J]. 中国科学(D辑: 地球科学), 2008, (01): 10-21
ZHANG Yuandong, CHEN Xu. Diversity Evolution and Environmental Background of Ordovician Graptolites[J]. Sciences China- Earth Sciences, 2008, (01): 10-21.
周书昌, 冯乔, 赵伟, 等. 鄂尔多斯盆地南缘岐山剖面中奥陶统平凉组沉积环境分析[J]. 沉积与特提斯地质, 2011, 31(4): 28-33 doi: 10.3969/j.issn.1009-3850.2011.04.004
ZHOU Shuchang, FENG Qiao, ZHAO Wei, et al. Sedimentary Environments of the Middle Ordovician Pingliang Formation in the Qishan Section, Southern Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2011, 31(4): 28-33. doi: 10.3969/j.issn.1009-3850.2011.04.004
张佳佳, 吴胜和. 海底扇朵叶沉积构型研究进展[J]. 中国海上油气, 2019, 31(05): 88-106
ZHANG Jiajia, WU Shenghe. Research Progress on the Depositional Architecture of Submarine-fan Lobes[J]. China Offshore Oil and Gas, 2019, 31(05): 88-106.
Bouma H A. Sedimentology of some flysch deposits: a graphic approach to facies interpretation[M]. Amsterdam: Elsevier Pub. , 1962: 168–169.
Friendman G M, Johnson K G. Exercises in Sedimentology[M]. New York: John Wiley and Sons, 1982.
Li Hua, Zhao Hongyan, Xu Yanxia, et al. Characteristics of debrites, turbidites, and contourites in the Upper Ordovician Pingliang Formation along southwestern margin of the Ordos Basin, western China[J]. Arabian Journal of Geosciences, 2021, 14(17): 1-15.
Miall A D,Turner-Peterson C E. Variations in fluvial style in the Westwater Canyon Member,Morrison formation (Jurassic),San Juan basin,Colorado plateau[J].Sedimentary Geology,1989,63(1-2):21-60.
Yang Renchao, A J (Tom) van Loon, Jin Xiaohui, et al. From divergent to convergent plates: Resulting facies shifts along the southern and western margins of the Sino-Korean Plate during the Ordovician[J]. Journal of Geodynamics, 2019, 129: 149-161. doi: 10.1016/j.jog.2018.02.001
Shanmugam G, Moiola R J. Submarine fan models: Problems and solutions[A]. In: Bouma A H, Normark W R, Barnes N E. Submarine fans and related turbidite systems[M]. New York, NY: S pringer, 1985: 29–35.
Song Shuguang, Niu Yaoling, Su Li, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401. doi: 10.1016/j.gr.2012.02.004
Shanmugam G. Submarine fans: A critical retrospective (1950-2015) [J]. Journal of Palaeogeography (English Edition), 2016, 5(2): 110-184.
Spychala Y T, Hodgson D M, Prelat A, et al. Frontal and lateral submarine lobe fringes: Comparing sedimentary facies, architecture and flow processes[J]. Journal of Sedimentary Research, 2017, 87(1): 75-96. doi: 10.2110/jsr.2017.2
Piper D J W, Normark W R. Sandy fans-from Amazon to Hueneme and beyond[J]. AAPG Bulletin, 2001, 85(8): 1407-1438.
Portnov A, Cook A E, Sawyer D E, et al. Clustered BSRs: Evidence for gas hydrate-bearing turbidite complexes in folded regions, example from the Perdido Fold Belt, northern Gulf of Mexico[J]. Earth and Planetary Science Letters, 2019, 528: 115843. doi: 10.1016/j.jpgl.2019.115843