金川超大型铜镍矿床钴的赋存状态与富集过程研究

王亚磊, 李文渊, 林艳海, 王永才, 张照伟, 李德贤. 2023. 金川超大型铜镍矿床钴的赋存状态与富集过程研究. 西北地质, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
引用本文: 王亚磊, 李文渊, 林艳海, 王永才, 张照伟, 李德贤. 2023. 金川超大型铜镍矿床钴的赋存状态与富集过程研究. 西北地质, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
WANG Yalei, LI Wenyuan, LIN Yanhai, WANG Yongcai, ZHANG Zhaowei, LI Dexian. 2023. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit. Northwestern Geology, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
Citation: WANG Yalei, LI Wenyuan, LIN Yanhai, WANG Yongcai, ZHANG Zhaowei, LI Dexian. 2023. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit. Northwestern Geology, 56(2): 133-150. doi: 10.12401/j.nwg.2023023

金川超大型铜镍矿床钴的赋存状态与富集过程研究

  • 基金项目: 中国地质调查局项目“西北地区昆仑–秦岭等成矿区带重点调查区锂镍等战略性矿产调查评价”(DD20230048)、“全国海陆矿产资源图件编制更新”(DD20221696),国家自然科学基金面上项目“东昆仑夏日哈木铜镍矿床硫化物不混溶作用研究”(41873053),第二次青藏科考项目课题“东昆仑成矿带西段及柴北缘成矿带西段铜镍(钴)成矿潜力研究”(2019QZKK0801)联合资助
详细信息
    作者简介: 王亚磊(1986−),男,副研究员,博士研究生,主要从事铜镍矿成矿规律与找矿勘查工作。E–mail:wangyalei1986@126.com
    通讯作者: 林艳海(1986−),男,工程师,硕士,主要从事地质矿产与找矿研究工作。E–mail:85785187@qq.com
  • 中图分类号: P588.1;P597

Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit

More Information
  • 金川矿床位于龙首山隆起带东段,是中国最大的岩浆镍钴(铂族元素)矿床。该矿床中最重要的金属硫化物组合是磁黄铁矿、镍黄铁矿和黄铜矿,仅局部含有微量的辉钴矿等独立钴矿物。全岩成矿元素分析显示:矿石中Co与S、Ni之间呈良好的正相关性,与As相关性较差,Co/Ni随硫化物含量的增加而降低。电子探针分析结果表明:镍黄铁矿中Co含量较高,其含量为0.32%~1.93%,平均为0.81%;磁黄铁矿和黄铜矿(方黄铜矿)中Co的含量较低,变化范围分别为0.02%~0.11%和0.01%~0.08%。元素面扫描结果表明:Co含量较高的部位与镍黄铁矿范围完全一致,说明Co主要赋存于镍黄铁矿中。金川矿床整体Co/Ni平均值为0.042,与全球典型橄榄岩相地幔Co/Ni值(0.055)相似,表明其岩浆源区主要为橄榄岩相。高程度的部分熔融可能是导致其母岩浆中Co绝对含量较高,但Co/Ni值相对较低的原因之一。硫化物熔离时,Co更倾向于进入硫化物;但相对于Ni,进入硫化物的Co较少,导致不同矿石类型之间S含量与Co/Ni值之间呈明显的负相关性。硫化物分离结晶作用进一步促使Co向镍黄铁矿中富集。

  • 钴作为一种新型的关键金属矿产资源,在动力电池、军事、航空等领域有着广泛应用,由于其较高的能量密度,被作为锂电池的核心材料,且在目前具有不可替代性。近年来,为应对气候快速升温,尽快实现碳达峰和碳中和目标,全球范围内对新能源电动汽车需求呈快速上涨趋势,预计2040年全球钴需求量将增长21倍,对未来钴的供应提出了新挑战。早在2016年,《全国矿产资源规划(2016~2020年)》首次将钴列入战略性关键矿产名录,加大了对钴矿的勘查力度,但相对于国内对钴需求量的快速增加,该项工作仍亟需加强。2018年,中国钴消费量约占全球钴消费量的65%,其中钴的对外依存度高达95%,仅次于铌和铬(赵俊兴等,2019翟明国等,2021),为严重紧缺关键矿产。据中国自然资源部和中国地质调查局全球矿产资源战略研究中心发布的《中国矿产资源报告(2021)》和《全球锂、钴、镍、锡、钾盐矿产资源储量评估报告(2021)》,截止2020年底,中国保有钴矿储量为13.74万t,仅占全球的1.95%。因此,在拓展国外资源获取渠道的同时,有必要进一步加强国内钴矿的勘查及研究,将其作为国内矿产勘查的重点方向之一。

    全球钴资源主要来自现代海底钴矿和大陆钴矿,但目前海底钴矿仍无法开采,大陆钴矿仍是钴矿资源的最主要来源(王辉等,2019王焰等,2020)。在大陆钴矿中,沉积岩层控型矿床钴约占60%,岩浆铜镍硫化物矿床中钴约占23%,红土型矿床钴占15%,其他热液型含钴矿床仅占2%(Schulz et al.,2018王焰等,2020),资源分布极不均衡。在中国,钴矿主要分为岩浆铜镍硫化物型、热液及火山成因型、沉积岩赋矿层控型和红土型,其中岩浆铜镍硫化物型钴矿是中国最重要的钴矿类型(丰成友等,2004),其蕴藏的钴资源储量约占全国的50%(徐昱等,2014)。但是,钴在铜镍硫化物矿床中的赋存状态及富集过程方面的研究仍较薄弱,一定程度上制约了对该类型钴矿的勘查及高效综合利用。

    金川矿床为中国最大,世界第三大铜镍硫化物矿床,其中Co作为最重要的伴生元素之一,是目前国内已知最大的钴矿来源,其中钴品位为0.021%~0.054%,平均品位为0.03%,目前已累计探明钴资源量为16.8万t,保有资源量为11.3万t,为中国钴资源的自我供给提供了重要保障。前期虽然对金川矿床开展过大量研究,对其矿物组合也进行过较系统的总结(甘肃省地质矿产局第六地质队,1984汤中立等,1995Tang et al.,2009李仔栓,2018),但专门针对Co的赋存状态及富集过程的研究仍是空白。笔者针对金川矿床选择典型钻孔进行系统的采样,通过精细的镜下观察、全岩化学分析及电子探针等技术方法,试图查明金川矿床中Co的赋存状态和富集过程,为进一步深刻理解铜镍硫化物矿床中Co的富集成矿过程提供参考,也为进一步提高钴的综合回收率提供依据。

    金川矿床位于华北克拉通西南缘龙首山隆起带东段(图1a),南邻北祁连早古生代造山带(图1b)。金川矿床赋矿岩体侵位于古元古代白家咀子组地层,与地层产状呈10°夹角,直接围岩主要为角砾状-均质混合岩、条带状–均质混合岩、大理岩和黑云斜长片麻岩(图2a)。岩体被后期一系列断层错断,由西向东分别为Ⅲ、Ⅰ、Ⅱ、Ⅳ号岩体(图2a),其中Ⅰ和Ⅱ号岩体出露地表,Ⅲ和Ⅳ岩体均被第四系或白家咀子组覆盖,为隐伏岩体。赋矿岩体总体走向约为310°,沿走向长约为6 500 m,宽为20~527 m,出露面积约为1.34 km2,倾向南西,倾角为50°~80°,目前已控制最大延深约为1 200 m(图2b),且矿体深部仍未尖灭。依据最新勘探资料,金川矿床中共赋存有4个主要矿体,由西向东依次为Ⅲ-1号、24号、1号、2号(图2b),Ⅲ-1号矿体与之前勘探成果相比深部变厚大。

    图 1.  金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据Duan et al.,2016修改)
    Figure 1.  (a) The location of the Jinchuan Ni–Cu deposit in China and (b) simplified geologic map of the Longshoushan terrane
    图 2.  金川矿床矿区地质简图(a)、矿床纵投影图(b)及典型勘探线剖面图(c)
    Figure 2.  (a) Geological map of the Jinchuan intrusion, (b) a projected long section, and (c) selected cross–sections with sample locations

    金川矿床各主要矿体之间产状及矿石类型存在明显差异,矿体底部呈明显的“锯齿状”,不同矿体之间互不相连(图2b)。Ⅲ-1号矿体具有明显的向南东方向侧伏的特征,且向南东方向,矿体具有变厚变富的趋势。24号矿体中已发现富矿主要集中于岩体东部,但最新的勘探进展表明,向西岩体一直未尖灭,且有在深部变厚大的趋势,同时发现了之前未见报道的伟晶状二辉橄榄岩。1号矿体主体以海绵陨铁状富矿为主,目前勘探深度最大,矿体主要赋存于岩体中心偏下部位(图2c),在Ⅱ号岩体3行及14~16行埋深最大,但向东、西两侧,埋深急剧减小。2号矿体受F17断层影响,在38行以西,矿体埋深明显较大,矿石类型中块状特富矿所占比例明显高于其他主要矿体,矿体向东品位逐渐降低,赋存于Ⅳ号岩体中的部分矿体品位较低,以星点状和稀疏浸染状为主,矿体主要赋存于岩体下部(图2c)。

    本文样品采自金川矿床Ⅰ-ZK-4-5、Ⅱ-DZK12-5和Ⅳ-ZK16-2钻孔,分别代表金川矿床24号、1号和2号矿体(图2b)。矿石类型包括星点状、稀疏浸染状和海绵陨铁状,可全面总结并对比金川矿床各矿体及不同矿石类型中Co的赋存状态,探讨富集机制。在手标本尺度对不同矿石类型进行系统分类的基础上,进一步在显微镜和扫描电镜下对主要硫化物组合特征、产状及共生关系进行详细分类,为开展系统的矿物晶体化学分析提供基础。硫化物电子探针点分析和面扫描工作均在自然资源部岩浆作用成矿与找矿重点实验室完成。电子探针仪器型号为KEOL JXA-8230,单矿物点分析时电压为20 kV,电流为10 nA,束斑直径为1 μm,元素峰值检测时间为10 s,上下背景检测时间为5 s,校正方法为ZAF。开展硫化物元素面扫描时,工作电压为20 kV,电流为20 nA,各点驻留时间为10 msec(毫秒)。

    矿石全岩Ni、Cu、Co、S、As等元素分析测试在自然资源部岩浆作用成矿与找矿重点实验室完成。Ni、Cu和Co采用ICP–MS测定,仪器型号为SX-155;As、Bi、Se、Te元素采用原子荧光光度计AFS-2202E测定,仪器型号为SX-40;S含量测定采用燃烧碘量法。

    金川矿床中矿石类型主要为海绵陨铁状、浸染状和星点状,局部发育块状、斑杂状等矿石类型,本次研究所涉及的矿石类型为海绵陨铁状、浸染状和星点状矿石。前人对金川矿床不同矿石类型中金属矿物的种类及组合特征开展了大量研究工作(甘肃省地质矿产局第六地质队,1984汤中立等,1995Chen et al.,2015芮会超等,2017),共发现各类硫化物、砷化物、铂族矿物等约40余种,其中最重要的金属矿物组合为磁黄铁矿、镍黄铁矿和黄铜矿。磁黄铁矿为矿床中最发育的金属硫化物,镍黄铁矿次之,二者之间通常紧密共生,但在单颗粒硫化物尺度上二者之间的相对含量、粒径及产出特征具有明显差异。

    为系统对比不同产状矿物之间的成分差异,深入探讨Co的富集过程,笔者重点依据单颗粒硫化物中磁黄铁矿和镍黄铁矿之间相对含量及矿物粒度的关系,主要将其分为以下4类:①镍黄铁矿含量及粒径明显大于磁黄铁矿(Pn>Po)(图3a图3c),该特征在24号及1号矿体的海绵陨铁状矿石中普遍存在,在部分稀疏浸染状矿石中也较常见,但在星点状矿石中较少见;部分单颗粒硫化物中镍黄铁矿所占比例大于80%,甚至几乎全部为镍黄铁矿,黄铜矿少见。②镍黄铁矿与磁黄铁矿粒径及含量相似(Pn≈Po)(图3d图3e),该现象在3种矿石类型中都较普遍。③镍黄铁矿含量及粒度明显小于磁黄铁矿(图3f图3g)(Pn<Po),镍黄铁矿主要沿磁黄铁矿边部产出,或被磁黄铁矿包裹,该类矿物颗粒中黄铜矿相对较发育。④矿物颗粒几乎全部为磁黄铁矿(Po),仅局部可见少量的镍黄铁矿或黄铜矿(图3h图3i)。在同一矿石类型中,上述几种产状特征往往均有不同程度发育。

    图 3.  金川矿床磁黄铁矿与镍黄铁矿产状特征
    Pn>Po. 镍黄铁矿粒度及含量明显大于磁黄铁矿(a、b、c);Pn≈Po. 镍黄铁矿粒度及含量与磁黄铁矿相当(d、e);Pn<Po. 镍黄铁矿粒度及含量明显小于磁黄铁矿(f、g);Po. 单硫化物矿物颗粒几乎全为磁黄铁矿(h、i);Po. 磁黄铁矿;Pn. 镍黄铁矿;Ccp. 黄铜矿;Mag. 磁铁矿
    Figure 3.  The relationship between the pyrrhotite and pentlandite in the Jinchuan deposit.

    样品全岩Co、Ni、Cu等金属元素含量分析结果见表1。不含矿岩石中成矿元素含量低,Ni含量为0~0.12%,Co含量为0~0.01%,Cu含量为0~0.06%, S含量为0.01%~0.24%,Co/Ni为0.08~0.11。不同矿石类型之间成矿元素含量变化较大,各矿石类型中Ni含量为0.10%~3.16%,Co含量为0.01%~0.06%,Cu含量为0.02%~5.45%,S含量为0.22%~11.71%;星点状矿石中Co/Ni为0.04~0.1,浸染状矿石中Co/Ni为0.02~0.05,海绵陨铁状富矿的Co/Ni为0.02~0.03,暗示随着硫化物含量的增加,Co/Ni呈逐渐变小的趋势。在成矿元素相关性图解上,当S含量小于0.5%时,S与Co之间无相关性;当S含量大于0.5%时,S与Co之间呈明显的正相关性(图4a)。在所有样品中Ni与Co之间具有明显的正相关性(图4b),Cu与Co之间也呈较明显的正相关性,但相对于Ni与Co之间,其相关性较差(图4c),As与Co之间无明显的正相关性(图4d),S与Co/Ni之间呈现明显的负相关性(图4e)。

    表 1.  金川矿床全岩Ni、Co、Cu、S等元素含量(%)
    Table 1.  The Ni, Co, Cu, and S contents (%) of the ores in the Jinchuan deposit
    样品编号矿石类型矿体编号SCoCuNiAs
    ZK-4-5-1浸染状矿化24号矿体2.380.020.160.531.57
    ZK-4-5-2稠密浸染状矿化10.520.052.152.981.90
    ZK-4-5-5稠密浸染状矿化9.120.025.450.941.75
    ZK-4-5-7稠密浸染状矿化11.710.061.062.741.22
    ZK-4-5-9稠密浸染状矿化7.840.034.361.434.11
    ZK-4-5-12稠密浸染状矿化3.890.021.691.184.06
    ZK-4-5-15稠密浸染状矿化9.360.061.763.161.90
    ZK-4-5-17稠密浸染状矿化9.100.061.843.071.25
    ZK-4-5-19稠密浸染状矿化4.080.030.271.352.53
    ZK-4-5-21浸染状矿化1.520.020.250.372.30
    ZK-4-5-22星点状矿化0.220.010.040.101.18
    ZK-4-5-23星点状矿化0.960.010.160.252.05
    ZK-4-5-24星点状矿化0.260.010.020.111.52
    ZK12-5-1岩石1号矿体0.010.000.000.000.42
    ZK12-5-5岩石0.100.010.010.091.20
    ZK12-5-6岩石0.240.010.060.122.15
    ZK12-5-7星点状矿化0.850.010.080.241.41
    ZK12-5-8浸染状2.060.020.130.521.87
    ZK12-5-9浸染状1.920.020.540.431.69
    ZK12-5-10浸染状5.660.041.421.331.85
    ZK12-5-11浸染状1.210.010.090.341.17
    ZK12-5-12浸染状3.530.020.170.831.56
    ZK12-5-15稠密浸染状矿化5.850.040.491.333.10
    ZK12-5-16稠密浸染状矿化7.330.040.471.561.99
    ZK12-5-21稠密浸染状矿化9.310.051.911.750.29
    ZK12-5-23稠密浸染状矿化8.220.050.521.973.34
    ZK12-5-26稠密浸染状矿化8.930.051.072.001.31
    ZK12-5-30稠密浸染状矿化8.610.040.301.510.22
    ZK12-5-34稠密浸染状矿化8.390.041.522.012.84
    ZK12-5-35星点状矿化0.930.010.130.211.55
    ZK12-5-36浸染状3.420.010.560.521.99
    ZK16-2-4岩石2号矿体0.090.010.000.120.85
    ZK16-2-6岩石0.070.010.000.100.44
    ZK16-2-8岩石0.040.010.010.090.57
    ZK16-2-9星点状矿化0.220.010.040.130.44
    ZK16-2-10星点状矿化0.280.010.030.200.80
    ZK16-2-12星点状矿化0.300.010.030.190.72
    ZK16-2-14浸染状1.200.010.110.422.58
    ZK16-2-15浸染状2.810.020.170.540.41
    ZK16-2-19星点状矿化0.620.010.120.190.34
    ZK16-2-23星点状矿化0.620.010.040.180.67
    ZK16-2-30浸染状2.300.020.710.390.69
    ZK16-2-32浸染状2.010.020.160.460.62
    ZK16-2-34浸染状2.560.020.160.580.83
    ZK16-2-39浸染状2.440.020.520.470.52
    ZK16-2-40浸染状2.820.020.170.585.31
     | Show Table
    DownLoad: CSV
    图 4.  S、Ni、Cu及As元素与Co和Co/Ni的相关性图解
    Figure 4.  Plots of S vs Ni, Cu, As, and Co vs Co/Ni

    磁黄铁矿为金川矿床中最发育的金属硫化物,其矿物晶体化学成分见表2。依据矿物光学及晶体化学特征,主要分为陨硫铁、六方磁黄铁矿和单斜磁黄铁矿(甘肃省地质矿产局第六地质队,1984汤中立等,1995丁瑞颖,2012芮会超等,2017)。依据前人对不同种属磁黄铁矿中Fe原子占比的划分(Arnold,1967乌顿布格等,1975),金川矿床中陨硫铁Fe原子含量为49.8%~50%,六方磁黄铁矿Fe原子含量为47%~49.7%,单斜磁黄铁矿中Fe原子含量为46%~47%。本次所分析样品中,陨硫铁主要产于星点状及海绵陨铁状矿石中,稀疏浸染状矿石中较少,在单颗粒硫化物上,磁黄铁矿含量与粒径与镍黄铁矿相似或略小于镍黄铁矿。陨硫铁中Fe含量为62.74%~63.88%,Ni含量为0~0.03%(平均为0.01%),Co含量为0.05%~0.11%(平均为0.08%)。六方磁黄铁矿最为发育,在不同矿石类型和不同产状的磁黄铁矿颗粒中均较发育(图5)。六方磁黄铁矿中Fe含量为60.49%~63.46%,Ni含量为0~0.12%(平均为0.02%),Co含量为0.02%~0.11%(平均为0.07%)。单斜磁黄铁矿主要产于海绵陨铁状和稀疏浸染状矿石中,其中在Po≈Pn及全部为Po的硫化物颗粒中最发育。单斜磁黄铁矿中Fe含量为59.18%~60.42%,Ni含量为0.03%~0.31%(平均为0.16%),Co含量为0.04%~0.10%(平均为0.07%)。不同矿石类型及产状中由陨硫铁→六方磁黄铁矿→单斜磁黄铁矿,Fe含量呈逐渐降低的趋势;陨硫铁和六方磁黄铁矿中Ni含量相似且较低,单斜磁黄铁矿中Ni含量明显增高(图5a)。不同种属磁黄铁矿中Co含量都较低,且变化范围相似(图5b)。

    表 2.  磁黄铁矿电子探针分析结果(%)
    Table 2.  The EPMA result (%) of pyrrhotite in the Jinchuan deposit
    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk4-524号矿体星点状六方Po≈Pn60.920.020.0538.4099.4547.58
    六方Po≈Pn60.490.0638.7299.3247.21
    六方Po≈Pn60.770.0738.5999.4647.41
    六方Po≈Pn62.450.0636.8099.3249.28
    六方Po≈Pn60.810.040.0538.8399.7547.26
    海绵陨铁状单斜Po≈Pn59.970.140.0539.2499.4246.62
    单斜Po≈Pn59.410.070.0739.4999.0946.24
    单斜Po≈Pn59.750.190.0639.6699.6846.24
    单斜Po≈Pn59.770.050.0839.5399.4846.37
    六方Po≈Pn60.610.0638.8199.5247.20
    单斜Po<Pn59.490.200.0438.9998.7846.56
    单斜Po<Pn59.180.180.0739.1898.6746.31
    单斜Po<Pn59.950.160.0839.5599.8546.39
    zk12-51号矿体星点状陨硫铁Po>Pn62.750.0836.2399.0749.78
    陨硫铁Po>Pn63.450.0836.3699.9749.96
    六方Po61.490.0436.6199.4548.59
    六方Po62.980.0836.89100.2549.34
    陨硫铁Po≈Pn63.620.0636.45100.2949.97
    陨硫铁Po≈Pn63.690.030.0836.36100.1950.05
    陨硫铁Po≈Pn62.740.0736.1599.0149.83
    陨硫铁Po≈Pn63.320.0536.3699.8349.93
    陨硫铁Po≈Pn63.210.020.0536.4599.8449.81
    六方Po≈Pn62.890.020.0836.4399.4649.69
    浸染状六方Po>Pn62.900.010.0636.4799.5449.67
    六方Po>Pn62.760.1136.5499.4549.55
    陨硫铁Po>Pn63.280.030.0736.4699.9249.82
    陨硫铁Po>Pn63.300.0936.57100.0349.76
    陨硫铁Po>Pn63.180.020.0636.2499.5149.94
    海绵陨铁状陨硫铁Po≈Pn62.980.020.0836.1699.3049.90
    陨硫铁Po≈Pn63.290.0936.3999.9149.88
    陨硫铁Po≈Pn62.870.0636.2599.2249.82
    陨硫铁Po≈Pn63.180.1136.5099.9149.75
    陨硫铁Po≈Pn63.300.0936.4299.8349.86
    陨硫铁Po≈Pn63.110.0536.4499.6849.79
    六方Po≈Pn63.090.030.1136.85100.1249.47
    六方Po≈Pn62.910.0736.4899.5349.67
    六方Po≈Pn62.720.0636.3499.1349.70
    六方Po≈Pn62.750.0736.5199.3749.59
    六方Po≈Pn62.780.0936.6399.5549.51
    六方Po≈Pn63.020.0836.7299.9049.55
    六方Po≈Pn63.050.010.0836.6899.8549.58
    六方Po≈Pn63.200.0236.5899.8449.73
     | Show Table
    DownLoad: CSV
    续表2
    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk12-51号矿体海绵陨铁状六方Po≈Pn62.720.0436.4299.2249.64
    六方Po≈Pn62.460.0736.5499.1249.45
    六方Po≈Pn62.870.0636.4999.5449.65
    陨硫铁Po<Pn63.410.0736.58100.1549.80
    陨硫铁Po<Pn63.880.010.0636.48100.5250.05
    陨硫铁Po<Pn63.260.0836.4299.7849.85
    陨硫铁Po>Pn63.440.010.0936.52100.0949.84
    陨硫铁Po>Pn63.880.010.1036.33100.3950.14
    六方Po<Pn63.460.010.0536.72100.2649.74
    六方Po>Pn61.140.090.0838.5899.9547.52
    六方Po>Pn62.010.070.0737.95100.1148.30
    六方Po>Pn60.710.090.0738.3299.2547.52
    六方Po>Pn60.990.120.0738.4199.6447.57
    六方Po>Pn61.820.090.0637.94100.0448.23
    单斜Po60.190.250.1038.8599.4146.90
    单斜Po60.040.260.0938.8499.2446.85
    单斜Po60.420.310.0639.28100.1746.71
    单斜Po60.130.140.0939.3699.7546.59
    单斜Po>Pn59.950.120.0939.1999.4746.63
    单斜Po>Pn59.910.120.0739.6499.8046.33
    单斜Po>Pn60.110.130.0939.6199.9846.43
    单斜Po>Pn59.800.160.0439.2499.2746.54
    zk16-22号矿体浸染状六方Po>Pn63.130.0436.77100.1049.57
    六方Po>Pn62.870.0937.18100.2149.17
    单斜Po≈Pn60.190.030.0739.63100.0546.48
    单斜Po≈Pn60.160.310.0739.58100.1846.42
    单斜Po≈Pn59.750.060.0839.5899.4946.34
    六方Po≈Pn61.080.0638.7599.8947.43
    六方Po≈Pn60.830.0738.9499.8847.21
    六方Po≈Pn61.280.010.0539.17100.5347.25
    单斜Po≈Pn59.800.120.0739.3899.4246.46
    单斜Po>Pn59.910.280.0839.6399.9946.27
    陨硫铁Po>Pn63.220.020.1036.4199.7649.82
    六方Po>Pn61.620.020.0838.65100.4447.70
    六方Po>Pn61.100.0738.4499.6347.64
     注:“–”表示低于检测线0.01%。
     | Show Table
    DownLoad: CSV
    图 5.  金川矿床不同矿石类型及产状磁黄铁矿Fe原子比与Ni、Co含量图解
    Figure 5.  Plots of Fe alloy vs Ni, Co content of different ore types and pyrrhotite

    镍黄铁矿作为金川矿床中最重要的含镍金属硫化物,其含量仅次于磁黄铁矿,其矿物晶体化学成分见表3。星点状矿石中镍黄铁矿Fe含量为31.22%~35.63%,Co含量为0.83%~1.91%(平均为1.10%),Ni含量为29.48%~34.11%(平均为31.93%)。稀疏浸染状矿石中镍黄铁矿Fe含量为28.08%~34.9%,Co含量为0.41%~1.93%(平均为1.02%),Ni含量为30.93%~38.17%(平均为34.77%)。海绵陨铁状矿石中镍黄铁矿Fe含量为30.19%~41.27%,Co含量为0.32%~0.90%(平均为0.64%),Ni含量为22.44%~36%(平均为32.20%)。由此可见,稀疏浸染状矿石中镍黄铁矿的Ni含量最高,海绵陨铁状矿石次之,星点状矿石最低;但镍黄铁矿中Co含量由星点状→稀疏浸染状→海绵陨铁状,呈逐渐降低的趋势。在元素含量相关性图解上,镍黄铁矿中Ni与Fe之间呈明显的负相关性(图6a);当Fe含量小于35%时,Fe与Co之间呈弱的正相关性;当Fe含量大于30%时,Ni与Co之间呈弱的负相关性(图6b图6b)。

    表 3.  镍黄铁矿电子探针分析结果(%)
    Table 3.  The EPMA results (%) of pentlandite in the Jinchuan deposit
    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk4-524号矿体星点状Po≈Pn31.2833.740.880.030.8132.9599.75
    Po≈Pn31.2234.110.980.010.7833.20100.32
    Po≈Pn32.9231.290.870.770.7033.3799.93
    Po<Pn33.1032.211.050.020.6532.4799.52
    Po<Pn31.9733.601.030.030.3033.11100.14
    海绵陨铁状Po≈Pn31.2132.600.471.150.6933.5499.66
    Po≈Pn35.3329.040.320.180.2634.0799.21
    Po≈Pn30.2936.000.470.050.3333.22100.40
    Po≈Pn31.2332.980.521.810.7233.65100.96
    Po≈Pn31.3234.650.490.160.2833.08100.01
    Po≈Pn30.1935.280.570.210.8333.19100.33
    Po<Pn32.2233.610.400.160.2833.41100.14
    Po<Pn31.3634.370.500.040.3033.79100.35
    Po<Pn31.4434.090.380.080.2933.2399.54
    Pn38.9226.990.330.5831.9898.81
    Pn41.2723.560.440.310.2433.0498.95
    Pn41.1922.440.410.730.5433.9999.32
     | Show Table
    DownLoad: CSV
    续表3
    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk12-51号矿体星点状Po≈Pn32.9732.580.880.000.7532.80100.02
    Po≈Pn33.0532.530.850.030.7033.17100.38
    Po≈Pn32.9732.980.880.060.7933.18100.88
    Po≈Pn33.8532.080.830.040.6632.98100.46
    Po≈Pn33.1732.650.920.010.2732.93100.00
    Po≈Pn33.3932.360.860.020.7833.31100.79
    Po>Pn35.0629.831.320.040.2933.2899.87
    Po>Pn34.8429.761.910.030.7233.35100.69
    Po>Pn35.6329.481.870.020.7532.98100.78
    Po>Pn35.1029.751.420.020.2433.3799.92
    浸染状Po>Pn34.4131.300.860.010.2532.9599.79
    Po>Pn34.9030.930.850.020.3033.25100.31
    海绵陨铁状Po<Pn33.0732.660.740.010.3033.0799.89
    Po<Pn33.5132.780.780.020.7633.14101.02
    Pn32.9833.230.770.010.3033.09100.38
    Pn35.7230.850.770.070.7133.56101.73
    Pn33.4732.970.780.100.2733.13100.77
    Pn33.4732.150.740.030.2633.41100.09
    Po>Pn32.9431.240.650.030.2632.9498.16
    Po>Pn33.2431.980.620.060.7633.0199.68
    Po>Pn33.2632.260.700.020.6833.18100.14
    Po>Pn33.1232.880.620.7233.09100.50
    Po>Pn33.3832.700.660.010.6832.97100.43
    Po>Pn32.8232.350.670.010.2933.88100.07
    Po>Pn33.0132.260.680.010.2632.8599.08
    Po>Pn32.8232.600.670.020.7833.44100.39
    Po>Pn33.0232.440.680.040.2632.9899.43
    Po>Pn32.4832.180.680.010.7733.3399.52
    Po>Pn32.5832.530.740.3133.3699.56
    Po>Pn32.6332.610.720.030.7533.30100.06
    Po>Pn32.4332.540.710.6733.1499.51
    Po>Pn33.9332.140.640.060.7433.34100.86
    Po>Pn34.0331.610.630.040.7033.33100.41
    Po>Pn33.6431.800.600.050.6733.1599.91
    Po>Pn33.4631.820.650.030.2633.3299.55
    Po>Pn33.9832.230.680.020.7733.34101.05
    Po>Pn32.1933.410.870.030.2933.0099.84
    Po>Pn31.7532.980.830.010.2732.8398.81
    Po>Pn31.9033.570.850.040.8433.65100.91
    Po>Pn30.9734.370.820.030.8233.07100.11
    Po>Pn31.3634.210.810.020.7633.15100.34
    Po>Pn33.6032.830.730.010.7933.47101.52
    Po>Pn33.4032.630.900.100.2633.49100.82
    zk16-22号矿体浸染状Po≈Pn30.5734.120.710.070.7733.4299.68
    Po≈Pn31.9333.721.260.180.8233.06100.98
    Po≈Pn34.4431.291.750.310.2633.45101.57
    Po≈Pn29.0436.470.970.140.3033.27100.27
    Po≈Pn29.9935.841.090.160.3233.11100.54
    Po>Pn28.8438.020.410.030.3233.21100.86
    Po>Pn30.0435.480.990.050.3233.35100.26
    Po>Pn30.5435.630.800.050.2933.22100.60
    Po>Pn28.8636.311.930.050.3133.00100.49
    Po>Pn28.0838.170.650.220.3133.45100.90
     注:“–”表示低于检测限。
     | Show Table
    DownLoad: CSV
    图 6.  金川矿床镍黄铁矿中各元素含量及元素比值相关性图解
    Figure 6.  Plots of Fe vs Ni, Co, and Ni vs Co of pentlandite in Jinchuan deposit

    不同矿石类型中镍黄铁矿Co、Ni含量存在明显差异,进一步对比了相同矿石类型中不同产状硫化物的成分差异,在相同矿石类型中不同产状镍黄铁矿的Co、Ni含量也存在一定差异。在星点状矿石中,当Pn>Po或Pn≈Po时,其Ni含量高于Pn<Po的硫化物颗粒,但Co含量则相反;在稀疏浸染状矿石中,Pn<Po与Pn≈Po的镍黄铁矿相比,前者Ni含量较高,但Co含量较低;在海绵陨铁状矿石中,Pn≈Po和Pn>Po时,其Ni含量最高,但钴含量最低,Pn<Po时,其Ni含量相对较低,但Co含量最高,当单颗粒硫化物全部为镍黄铁矿时,其中的Ni、Co含量均较低。

    黄铜矿和方黄铜矿都是金川矿床中含Cu的主要硫化物,其中黄铜矿含量及分布范围均大于方黄铜矿。本次所采集的样品中均发育有黄铜矿和方黄铜矿,其电子探针数据分析结果见表4。黄铜矿Cu含量为33.95%~35.16%,Ni含量为0.01%~0.35%(平均为0.04%),Co含量为0.01%~0.07%(平均为0.03%)。方黄铜矿中Cu含量为18.3%~23.82%,Ni含量为0.01%~0.8%(平均为0.17%),Co含量为0.03%~0.08%(平均为0.05%)。黄铜矿中Cu含量明显大于方黄铜矿,2种矿物中Ni、Co含量均较低,但Ni含量略高于Co含量。在Cu与Ni、Co的相关性图解上,黄铜矿与方黄铜矿中Cu与Ni、Co之间均无明显相关性(图7)。

    表 4.  黄铜矿和方黄铜矿矿电子探针分析结果(%)
    Table 4.  The EPMA result (%) of chalcopyrite and cubanite in the Jinchuan deposit
    钻孔编号矿体编号矿石类型矿物种属FeCuNiCoSTotal
    zk4-524号矿体星点状Cb41.0123.820.010.0635.0499.99
    Cb41.1623.500.0435.0999.83
    Ccp30.3534.700.0234.2999.37
    海绵陨铁状Cb41.7622.460.010.0635.2899.64
    Cb41.0723.390.090.0335.38100.01
    Cb44.0118.300.800.0835.0998.31
    zk12-51号矿体星点状矿石Ccp30.8134.850.0734.88100.65
    浸染状矿石Ccp30.6535.100.0334.72100.57
    Ccp30.5035.030.0434.77100.34
    海绵陨铁状Ccp30.2633.970.350.0535.1599.82
    Ccp30.1734.520.150.0434.9899.90
    Ccp30.0434.750.010.0434.4599.39
    Ccp30.6035.160.0234.87100.65
    Ccp30.1634.550.0335.20100.01
    Ccp30.6233.950.010.0133.8998.54
    Ccp30.7034.530.0134.75100.06
    Ccp31.1334.400.020.0334.71100.30
    zk16-22号矿体星点状矿化Cb42.8620.620.230.0534.6198.40
    浸染状矿石Cb41.0323.640.070.0634.8899.70
     注:“–”表示低于检测限。
     | Show Table
    DownLoad: CSV
    图 7.  黄铜矿、方黄铜矿Cu–Ni(a)和Cu–Co(b)的相关性图解
    Figure 7.  Plots of Cu vs Ni, Co of chalcopyrite and Cubanite

    大陆钴矿中钴主要有两种赋存状态:①独立钴矿物,包括硫化物、砷化物和氧化物等,如硫钴矿、方硫钴矿、硫钴镍矿、辉钴矿和水钴矿等。②主矿物类质同象,Co通常以类质同象形式替代Fe、Cu、Ni等元素进入氧化物和硫化物中,常见的此类富钴矿物为黄铁矿、磁黄铁矿、镍黄铁矿和辉砷镍矿等(秦克章等,2007卢宜冠等,2021)。

    在铜镍硫化物型钴矿中,钴既以独立矿物形式存在,也呈类质同象形式存在。在夏日哈木、图拉尔根等典型铜镍硫化物矿床中均发现有镍辉砷钴矿和钴辉砷镍矿等(慕纪录,1996孙燕等,1996秦克章等,2007刘超等,2020Han et al.,2021)。金川矿床作为国内最大的铜镍硫化物型钴矿,早期研究过程中仅发现有微量的镍辉砷钴矿、铁镍辉钴矿及含钴辉砷镍矿,且这些富钴矿物多产于铜镍贫矿石中,与磁黄铁矿密切共生(汤中立等,1995),但这些微量的独立钴矿物与金川蕴含的巨量钴金属严重不符。

    在全岩成矿元素相关性图解上,当S>0.5%时,Co与S之间呈明显的正相关性,表明钴的含量与硫化物含量密切相关。在所有样品中Co与Ni之间均呈良好的正相关性,与Cu之间呈弱的正相关性,但与As之间无明显的相关性,暗示Co与Ni之间可能受相同矿物相控制,也表明金川矿床中辉钴矿不是主要的富钴矿物,这也与实际岩相学观察一致。

    在金川矿床中最发育的3种硫化物是磁黄铁矿、镍黄铁矿和黄铜矿,电子探针分析结果表明不同矿石类型及产状的磁黄铁矿中Co的含量仅为0.02%~0.11%,平均为0.07%,其含量明显较低。镍黄铁矿中,Co含量为0.32%~1.93%,平均高达0.81%,明显高于磁黄铁矿,也明显高于方黄铜矿及黄铜矿中Co的含量(平均为0.04%)。在硫化物单元素面扫描图像上(图8),Co含量较高区域与镍黄铁矿分布范围完全一致。综合硫化物点分析及面扫描结果,认为金川矿床中Co主要呈类质同象形式赋存于镍黄铁矿中。

    图 8.  金川矿床硫化物电子探针元素面扫描
    Po. 磁黄铁矿;Pn. 镍黄铁矿;Spl. 铬尖晶石
    Figure 8.  EMPA elemental maps showing the distribution of chalcophile elements in pyrrhotite and pentlandite

    Co与Ni的地球化学行为十分相似,均为典型的幔源元素,具有明显的亲铁性和亲硫性。岩浆铜镍硫化物矿床中钴的富集过程与镍相似,与地幔源区性质、部分熔融程度、硫化物熔离及其分离结晶过程密切相关(赵俊兴等,2019王焰等,2020)。

    已有研究表明,金川铜镍钴矿床岩浆源区为富集型岩石圈地幔(张宗清等,2004Li et al.,2011Duan et al.,2016)。通过对地幔捕虏体成分研究,认为岩石圈地幔源区主要为橄榄岩相,岩性主要为二辉橄榄岩、方辉橄榄岩和尖晶石二辉橄榄岩等,同时由于地幔交代作用,部分橄榄岩相转变为辉石岩相,地幔源区成分存在明显的不均一性(Sobolev et al.,2006郑建平等,2013Hughes et al.,2016),其Co、Ni含量及Co/Ni值也存在一定的差异。如橄榄岩相地幔中Co含量为30×10−6~217×10−6,平均为109.62×10−6,Co/Ni值为0.008~0.86,平均为0.055(n=660);辉石岩相地幔中Co含量相对较低,其含量为7×10−6~131×10−6,平均为66.45×10−6,但其Co/Ni值则相对较大,其比值为0.039~0.954,平均为0.165(n=125)(数据引自PetDB,http://www.earthchem.org/petdb),表明橄榄岩相地幔较辉石岩相地幔更加富镍而贫钴。不同性质地幔源区在相同部分熔融程度下,形成的原始岩浆中Co含量及Co/Ni值均存在明显差异。鉴于硫化物熔离及分离结晶对不同矿石类型Co/Ni值有较大影响,本文筛选出贫矿岩石、星点状和稀疏浸染状矿石开展不同矿床之间Co/Ni值的对比研究,这些样品由于硫化物之间连通性较差,导致硫化物分离结晶作用对Co/Ni值影响较小,可以近似认为其代表了母岩浆的Co/Ni值。通过系统搜集各典型矿床的相关数据,金川矿床Co/Ni值为0.014~0.407,平均为0.042;夏日哈木镍钴矿床Co/Ni值为0.012~0.407,平均为0.044,二者变化范围及平均值均相似,但明显低于东天山地区典型铜镍矿床Co/Ni值(图拉尔根、黄山东和黄山的Co/Ni值分别为0.133、0.26和0.278),表明金川矿床虽然Co资源储量巨大,但其母岩浆却相对富Ni贫Co。

    地幔中Co主要赋存于硅酸盐矿物、硫化物及氧化物中,其中硫化物中Co含量最高,一般为69×10−6~4387×10−6,局部甚至可高达3%~34.3%(Davies et al.,2004Aulbach et al.,2004Wang et al.,2010Hughes et al.,2016),且在Co含量低的样品中,Co与Ni之间呈明显的正相关性(Hughes et al.,2016)。地幔源区部分熔融过程中,首先发生熔融的是硫化物,紧接着是石榴子石和单斜辉石,然后依次为斜方辉石、铬尖晶石和橄榄石(Pearson et al.,2003)。随着部分熔融程度的增加,地幔源区中硫化物的含量逐渐降低,当部分熔融程度约达到约13.5%时,地幔源区的硫化物会全部溶解(Li et al.,2009Naldrett,2011)。随着部分熔融程度的增加,硅酸盐矿物(橄榄石、尖晶石等)会继续释放出少量的Co,使其岩浆体系中Co的绝对含量进一步增加。通过对全球范围内科马提岩、苦橄岩和玄武岩中Co含量进行统计发现,其Co含量平均值分别为105.4×10−6、101.8×10−6和48.8×10−6(数据引自PetDB;http://www.earthchem.org/petdb),表明地幔源区部分熔融程度越高,母岩浆中Co的绝对含量也越高。但由于地幔源区中主要硅酸盐矿物(橄榄石)中的Ni含量(平均为2 344×10−6)普遍高于Co含量(平均仅为72.5×10−6),导致虽然其母岩浆中Co的绝对含量增加,但Co/Ni值可能呈逐渐降低的趋势,这可能也是造成金川矿床中Co/Ni值小于东天山地区铜镍矿床Co/Ni值的原因之一。

    金川铜镍矿床中可利用的Co均赋存于金属硫化物中(图8),Co的富集与硫化物熔离及分离结晶过程密切相关。实验岩石学及对天然MORB样品中硫化物成分研究计算表明,基性岩浆中DCoSul/Sil值为17~114,明显小于DNiSul/Sil(210~1270)(Rajamani et al.,1978Peach et al.,1990Gaetani et al.,1997Li et al.,2012Patten et al.,2013Barnes et al.,2016),表明在硫化物熔离过程中,Co与Ni地球化学行为相似,均倾向于进入硫化物中,但与Ni相比,进入硫化物中Co的量相对较低,导致硫化物含量越高,其Co/Ni值越小(图4e),且几乎无独立钴矿物发育。

    硫化物熔离后,成矿元素均匀分布于硫化物熔体中(图9a),随着温度的降低,硫化物开始发生分离结晶作用(Naldrett,2011Patten et al.,2013)。研究表明,当岩浆体系温度高于950 ℃时,硫化物熔体已开始发生分离结晶,形成单硫化物固溶体(MSS)和残余硫化物熔体(Residual sulfide Liquid;RSL)(图9b),且随着温度的降低,结晶出的单硫化物固溶体(MSS)越来越多。在此过程中,成矿元素由于分配系数不同,发生明显的分馏。Co在MSS/RSL之间的分配系数为2.69~6.43(Barnes et al.,2006Helmy et al.,2021),更倾向于进入MSS中(图9b图9c)。随着温度的继续降低,约为450 ℃~550 ℃,在单硫化物固溶体的前端开始结晶出少量细粒的镍黄铁矿(图9c),此时富铜的残余硫化物熔体也进一步固结为成分均一的中间硫化物熔体(ISS)(图9c)。由于温度的降低,导致MSS进一步分解形成磁黄铁矿和镍黄铁矿,研究表明当结晶温度在400 ℃以上时,镍黄铁矿的出溶和成矿元素的扩散速率都非常快(Etschmann et al.,2004),形成颗粒粗大的镍黄铁矿(图9d),此时大量的Co和Ni快速进入镍黄铁矿中,Chen等(2015)通过计算表明超过65%的Co进入了镍黄铁矿,但部分的Co和Ni仍残留在磁黄铁矿中,形成富Co–Ni的磁黄铁矿(图9d)。随着温度的进一步降低,富Co–Ni的磁黄铁矿中进一步出溶出呈叶片状或颗粒细小的镍黄铁矿(图9e图9f),部分Co进一步进入镍黄铁矿中,但此时形成的镍黄铁矿中Co的含量相对较低(图6b)。

    图 9.  硫化物分离结晶过程中Co、Ni等亲铜元素的富集过程示意图(据Chen et al.,2015Helmy et al.,2021修改)
    MSS.单硫化物固溶体;ISS.中间硫化物熔体;Pn.镍黄铁矿;Po.磁黄铁矿;Ccp.黄铜矿;Cb.方黄铜矿;Ni–Co–rich Po. 富含Ni–Cu磁黄铁矿
    Figure 9.  Schematic illustration of magmatic sulfide liquid evolution and centration process of chalcophile elements

    (1)金川超大型铜镍硫化物型矿床中,Co的含量主要受硫化物含量控制;Co主要以类质同象形式赋存于镍黄铁矿中,在不同类型磁黄铁矿中其含量相似且均较低。

    (2)受硫化物分离结晶作用影响小的贫矿岩石、星点状和稀疏浸染状矿石的Co/Ni平均值为0.042,可近似代表其母岩浆的Co/Ni,与全球橄榄岩相地幔Co/Ni(0.055)接近,明显小于辉石岩相地幔Co/Ni(0.165),表明金川矿床岩浆源区表现为相对富镍贫钴的特征,其岩浆源区应为橄榄岩相。

    (3)硫化物熔离过程中,尽管Co和Ni具有相似的地球化学行为,但二者在硫化物熔体/玄武质熔体之间分配系数的巨大差异,导致母岩浆中的Co相对于Ni进入硫化物中的量较少,使硫化物具有更低的Co/Ni,表现出S含量与Co/Ni明显的负相关性。

    (4)硫化物分离结晶过程中,Co更倾向于进入单硫化物固溶体(MSS)中,且随着温度的降低,Co进一步迁移至镍黄铁矿中,不同产状镍黄铁矿中Co含量存在较大差异,磁黄铁矿中仅残留少量的Co。

    致谢:野外工作得到了金川集团股份有限公司王韵棋、黄钊会及其他相关人员的大力支持,同时与金川公司索文德高级工程师、卢建全高级工程师、高亚林高级工程师等在野外进行了有益的讨论;室内测试工作得到了西安地质调查中心周宁超的指导和帮助;审稿专家提出的建设性修改意见对完善本文起到了重要的帮助作用;在此一并表示衷心的感谢!

  • 图 1  金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据Duan et al.,2016修改)

    Figure 1. 

    图 2  金川矿床矿区地质简图(a)、矿床纵投影图(b)及典型勘探线剖面图(c)

    Figure 2. 

    图 3  金川矿床磁黄铁矿与镍黄铁矿产状特征

    Figure 3. 

    图 4  S、Ni、Cu及As元素与Co和Co/Ni的相关性图解

    Figure 4. 

    图 5  金川矿床不同矿石类型及产状磁黄铁矿Fe原子比与Ni、Co含量图解

    Figure 5. 

    图 6  金川矿床镍黄铁矿中各元素含量及元素比值相关性图解

    Figure 6. 

    图 7  黄铜矿、方黄铜矿Cu–Ni(a)和Cu–Co(b)的相关性图解

    Figure 7. 

    图 8  金川矿床硫化物电子探针元素面扫描

    Figure 8. 

    图 9  硫化物分离结晶过程中Co、Ni等亲铜元素的富集过程示意图(据Chen et al.,2015Helmy et al.,2021修改)

    Figure 9. 

    表 1  金川矿床全岩Ni、Co、Cu、S等元素含量(%)

    Table 1.  The Ni, Co, Cu, and S contents (%) of the ores in the Jinchuan deposit

    样品编号矿石类型矿体编号SCoCuNiAs
    ZK-4-5-1浸染状矿化24号矿体2.380.020.160.531.57
    ZK-4-5-2稠密浸染状矿化10.520.052.152.981.90
    ZK-4-5-5稠密浸染状矿化9.120.025.450.941.75
    ZK-4-5-7稠密浸染状矿化11.710.061.062.741.22
    ZK-4-5-9稠密浸染状矿化7.840.034.361.434.11
    ZK-4-5-12稠密浸染状矿化3.890.021.691.184.06
    ZK-4-5-15稠密浸染状矿化9.360.061.763.161.90
    ZK-4-5-17稠密浸染状矿化9.100.061.843.071.25
    ZK-4-5-19稠密浸染状矿化4.080.030.271.352.53
    ZK-4-5-21浸染状矿化1.520.020.250.372.30
    ZK-4-5-22星点状矿化0.220.010.040.101.18
    ZK-4-5-23星点状矿化0.960.010.160.252.05
    ZK-4-5-24星点状矿化0.260.010.020.111.52
    ZK12-5-1岩石1号矿体0.010.000.000.000.42
    ZK12-5-5岩石0.100.010.010.091.20
    ZK12-5-6岩石0.240.010.060.122.15
    ZK12-5-7星点状矿化0.850.010.080.241.41
    ZK12-5-8浸染状2.060.020.130.521.87
    ZK12-5-9浸染状1.920.020.540.431.69
    ZK12-5-10浸染状5.660.041.421.331.85
    ZK12-5-11浸染状1.210.010.090.341.17
    ZK12-5-12浸染状3.530.020.170.831.56
    ZK12-5-15稠密浸染状矿化5.850.040.491.333.10
    ZK12-5-16稠密浸染状矿化7.330.040.471.561.99
    ZK12-5-21稠密浸染状矿化9.310.051.911.750.29
    ZK12-5-23稠密浸染状矿化8.220.050.521.973.34
    ZK12-5-26稠密浸染状矿化8.930.051.072.001.31
    ZK12-5-30稠密浸染状矿化8.610.040.301.510.22
    ZK12-5-34稠密浸染状矿化8.390.041.522.012.84
    ZK12-5-35星点状矿化0.930.010.130.211.55
    ZK12-5-36浸染状3.420.010.560.521.99
    ZK16-2-4岩石2号矿体0.090.010.000.120.85
    ZK16-2-6岩石0.070.010.000.100.44
    ZK16-2-8岩石0.040.010.010.090.57
    ZK16-2-9星点状矿化0.220.010.040.130.44
    ZK16-2-10星点状矿化0.280.010.030.200.80
    ZK16-2-12星点状矿化0.300.010.030.190.72
    ZK16-2-14浸染状1.200.010.110.422.58
    ZK16-2-15浸染状2.810.020.170.540.41
    ZK16-2-19星点状矿化0.620.010.120.190.34
    ZK16-2-23星点状矿化0.620.010.040.180.67
    ZK16-2-30浸染状2.300.020.710.390.69
    ZK16-2-32浸染状2.010.020.160.460.62
    ZK16-2-34浸染状2.560.020.160.580.83
    ZK16-2-39浸染状2.440.020.520.470.52
    ZK16-2-40浸染状2.820.020.170.585.31
    下载: 导出CSV

    表 2  磁黄铁矿电子探针分析结果(%)

    Table 2.  The EPMA result (%) of pyrrhotite in the Jinchuan deposit

    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk4-524号矿体星点状六方Po≈Pn60.920.020.0538.4099.4547.58
    六方Po≈Pn60.490.0638.7299.3247.21
    六方Po≈Pn60.770.0738.5999.4647.41
    六方Po≈Pn62.450.0636.8099.3249.28
    六方Po≈Pn60.810.040.0538.8399.7547.26
    海绵陨铁状单斜Po≈Pn59.970.140.0539.2499.4246.62
    单斜Po≈Pn59.410.070.0739.4999.0946.24
    单斜Po≈Pn59.750.190.0639.6699.6846.24
    单斜Po≈Pn59.770.050.0839.5399.4846.37
    六方Po≈Pn60.610.0638.8199.5247.20
    单斜Po<Pn59.490.200.0438.9998.7846.56
    单斜Po<Pn59.180.180.0739.1898.6746.31
    单斜Po<Pn59.950.160.0839.5599.8546.39
    zk12-51号矿体星点状陨硫铁Po>Pn62.750.0836.2399.0749.78
    陨硫铁Po>Pn63.450.0836.3699.9749.96
    六方Po61.490.0436.6199.4548.59
    六方Po62.980.0836.89100.2549.34
    陨硫铁Po≈Pn63.620.0636.45100.2949.97
    陨硫铁Po≈Pn63.690.030.0836.36100.1950.05
    陨硫铁Po≈Pn62.740.0736.1599.0149.83
    陨硫铁Po≈Pn63.320.0536.3699.8349.93
    陨硫铁Po≈Pn63.210.020.0536.4599.8449.81
    六方Po≈Pn62.890.020.0836.4399.4649.69
    浸染状六方Po>Pn62.900.010.0636.4799.5449.67
    六方Po>Pn62.760.1136.5499.4549.55
    陨硫铁Po>Pn63.280.030.0736.4699.9249.82
    陨硫铁Po>Pn63.300.0936.57100.0349.76
    陨硫铁Po>Pn63.180.020.0636.2499.5149.94
    海绵陨铁状陨硫铁Po≈Pn62.980.020.0836.1699.3049.90
    陨硫铁Po≈Pn63.290.0936.3999.9149.88
    陨硫铁Po≈Pn62.870.0636.2599.2249.82
    陨硫铁Po≈Pn63.180.1136.5099.9149.75
    陨硫铁Po≈Pn63.300.0936.4299.8349.86
    陨硫铁Po≈Pn63.110.0536.4499.6849.79
    六方Po≈Pn63.090.030.1136.85100.1249.47
    六方Po≈Pn62.910.0736.4899.5349.67
    六方Po≈Pn62.720.0636.3499.1349.70
    六方Po≈Pn62.750.0736.5199.3749.59
    六方Po≈Pn62.780.0936.6399.5549.51
    六方Po≈Pn63.020.0836.7299.9049.55
    六方Po≈Pn63.050.010.0836.6899.8549.58
    六方Po≈Pn63.200.0236.5899.8449.73
    下载: 导出CSV
    续表2
    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk12-51号矿体海绵陨铁状六方Po≈Pn62.720.0436.4299.2249.64
    六方Po≈Pn62.460.0736.5499.1249.45
    六方Po≈Pn62.870.0636.4999.5449.65
    陨硫铁Po<Pn63.410.0736.58100.1549.80
    陨硫铁Po<Pn63.880.010.0636.48100.5250.05
    陨硫铁Po<Pn63.260.0836.4299.7849.85
    陨硫铁Po>Pn63.440.010.0936.52100.0949.84
    陨硫铁Po>Pn63.880.010.1036.33100.3950.14
    六方Po<Pn63.460.010.0536.72100.2649.74
    六方Po>Pn61.140.090.0838.5899.9547.52
    六方Po>Pn62.010.070.0737.95100.1148.30
    六方Po>Pn60.710.090.0738.3299.2547.52
    六方Po>Pn60.990.120.0738.4199.6447.57
    六方Po>Pn61.820.090.0637.94100.0448.23
    单斜Po60.190.250.1038.8599.4146.90
    单斜Po60.040.260.0938.8499.2446.85
    单斜Po60.420.310.0639.28100.1746.71
    单斜Po60.130.140.0939.3699.7546.59
    单斜Po>Pn59.950.120.0939.1999.4746.63
    单斜Po>Pn59.910.120.0739.6499.8046.33
    单斜Po>Pn60.110.130.0939.6199.9846.43
    单斜Po>Pn59.800.160.0439.2499.2746.54
    zk16-22号矿体浸染状六方Po>Pn63.130.0436.77100.1049.57
    六方Po>Pn62.870.0937.18100.2149.17
    单斜Po≈Pn60.190.030.0739.63100.0546.48
    单斜Po≈Pn60.160.310.0739.58100.1846.42
    单斜Po≈Pn59.750.060.0839.5899.4946.34
    六方Po≈Pn61.080.0638.7599.8947.43
    六方Po≈Pn60.830.0738.9499.8847.21
    六方Po≈Pn61.280.010.0539.17100.5347.25
    单斜Po≈Pn59.800.120.0739.3899.4246.46
    单斜Po>Pn59.910.280.0839.6399.9946.27
    陨硫铁Po>Pn63.220.020.1036.4199.7649.82
    六方Po>Pn61.620.020.0838.65100.4447.70
    六方Po>Pn61.100.0738.4499.6347.64
     注:“–”表示低于检测线0.01%。
    下载: 导出CSV

    表 3  镍黄铁矿电子探针分析结果(%)

    Table 3.  The EPMA results (%) of pentlandite in the Jinchuan deposit

    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk4-524号矿体星点状Po≈Pn31.2833.740.880.030.8132.9599.75
    Po≈Pn31.2234.110.980.010.7833.20100.32
    Po≈Pn32.9231.290.870.770.7033.3799.93
    Po<Pn33.1032.211.050.020.6532.4799.52
    Po<Pn31.9733.601.030.030.3033.11100.14
    海绵陨铁状Po≈Pn31.2132.600.471.150.6933.5499.66
    Po≈Pn35.3329.040.320.180.2634.0799.21
    Po≈Pn30.2936.000.470.050.3333.22100.40
    Po≈Pn31.2332.980.521.810.7233.65100.96
    Po≈Pn31.3234.650.490.160.2833.08100.01
    Po≈Pn30.1935.280.570.210.8333.19100.33
    Po<Pn32.2233.610.400.160.2833.41100.14
    Po<Pn31.3634.370.500.040.3033.79100.35
    Po<Pn31.4434.090.380.080.2933.2399.54
    Pn38.9226.990.330.5831.9898.81
    Pn41.2723.560.440.310.2433.0498.95
    Pn41.1922.440.410.730.5433.9999.32
    下载: 导出CSV
    续表3
    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk12-51号矿体星点状Po≈Pn32.9732.580.880.000.7532.80100.02
    Po≈Pn33.0532.530.850.030.7033.17100.38
    Po≈Pn32.9732.980.880.060.7933.18100.88
    Po≈Pn33.8532.080.830.040.6632.98100.46
    Po≈Pn33.1732.650.920.010.2732.93100.00
    Po≈Pn33.3932.360.860.020.7833.31100.79
    Po>Pn35.0629.831.320.040.2933.2899.87
    Po>Pn34.8429.761.910.030.7233.35100.69
    Po>Pn35.6329.481.870.020.7532.98100.78
    Po>Pn35.1029.751.420.020.2433.3799.92
    浸染状Po>Pn34.4131.300.860.010.2532.9599.79
    Po>Pn34.9030.930.850.020.3033.25100.31
    海绵陨铁状Po<Pn33.0732.660.740.010.3033.0799.89
    Po<Pn33.5132.780.780.020.7633.14101.02
    Pn32.9833.230.770.010.3033.09100.38
    Pn35.7230.850.770.070.7133.56101.73
    Pn33.4732.970.780.100.2733.13100.77
    Pn33.4732.150.740.030.2633.41100.09
    Po>Pn32.9431.240.650.030.2632.9498.16
    Po>Pn33.2431.980.620.060.7633.0199.68
    Po>Pn33.2632.260.700.020.6833.18100.14
    Po>Pn33.1232.880.620.7233.09100.50
    Po>Pn33.3832.700.660.010.6832.97100.43
    Po>Pn32.8232.350.670.010.2933.88100.07
    Po>Pn33.0132.260.680.010.2632.8599.08
    Po>Pn32.8232.600.670.020.7833.44100.39
    Po>Pn33.0232.440.680.040.2632.9899.43
    Po>Pn32.4832.180.680.010.7733.3399.52
    Po>Pn32.5832.530.740.3133.3699.56
    Po>Pn32.6332.610.720.030.7533.30100.06
    Po>Pn32.4332.540.710.6733.1499.51
    Po>Pn33.9332.140.640.060.7433.34100.86
    Po>Pn34.0331.610.630.040.7033.33100.41
    Po>Pn33.6431.800.600.050.6733.1599.91
    Po>Pn33.4631.820.650.030.2633.3299.55
    Po>Pn33.9832.230.680.020.7733.34101.05
    Po>Pn32.1933.410.870.030.2933.0099.84
    Po>Pn31.7532.980.830.010.2732.8398.81
    Po>Pn31.9033.570.850.040.8433.65100.91
    Po>Pn30.9734.370.820.030.8233.07100.11
    Po>Pn31.3634.210.810.020.7633.15100.34
    Po>Pn33.6032.830.730.010.7933.47101.52
    Po>Pn33.4032.630.900.100.2633.49100.82
    zk16-22号矿体浸染状Po≈Pn30.5734.120.710.070.7733.4299.68
    Po≈Pn31.9333.721.260.180.8233.06100.98
    Po≈Pn34.4431.291.750.310.2633.45101.57
    Po≈Pn29.0436.470.970.140.3033.27100.27
    Po≈Pn29.9935.841.090.160.3233.11100.54
    Po>Pn28.8438.020.410.030.3233.21100.86
    Po>Pn30.0435.480.990.050.3233.35100.26
    Po>Pn30.5435.630.800.050.2933.22100.60
    Po>Pn28.8636.311.930.050.3133.00100.49
    Po>Pn28.0838.170.650.220.3133.45100.90
     注:“–”表示低于检测限。
    下载: 导出CSV

    表 4  黄铜矿和方黄铜矿矿电子探针分析结果(%)

    Table 4.  The EPMA result (%) of chalcopyrite and cubanite in the Jinchuan deposit

    钻孔编号矿体编号矿石类型矿物种属FeCuNiCoSTotal
    zk4-524号矿体星点状Cb41.0123.820.010.0635.0499.99
    Cb41.1623.500.0435.0999.83
    Ccp30.3534.700.0234.2999.37
    海绵陨铁状Cb41.7622.460.010.0635.2899.64
    Cb41.0723.390.090.0335.38100.01
    Cb44.0118.300.800.0835.0998.31
    zk12-51号矿体星点状矿石Ccp30.8134.850.0734.88100.65
    浸染状矿石Ccp30.6535.100.0334.72100.57
    Ccp30.5035.030.0434.77100.34
    海绵陨铁状Ccp30.2633.970.350.0535.1599.82
    Ccp30.1734.520.150.0434.9899.90
    Ccp30.0434.750.010.0434.4599.39
    Ccp30.6035.160.0234.87100.65
    Ccp30.1634.550.0335.20100.01
    Ccp30.6233.950.010.0133.8998.54
    Ccp30.7034.530.0134.75100.06
    Ccp31.1334.400.020.0334.71100.30
    zk16-22号矿体星点状矿化Cb42.8620.620.230.0534.6198.40
    浸染状矿石Cb41.0323.640.070.0634.8899.70
     注:“–”表示低于检测限。
    下载: 导出CSV
  • 丁瑞颖. 甘肃金川镍铜铂岩浆硫化物矿床Ⅱ矿区矿物特征研究[M]. 西安:长安大学, 2012: 1−96

    DING Ruiying. Study on mineral characteristics of Segment Ⅱ, Jinchuan Ni-Cu(PGE) sulfide deposits, Gansu Province[M]. Xi’an: Chang’an University, 2012: 1−96.

    丰成友, 张德全, 党兴彦. 中国钴资源及其开发利用概况[J]. 矿床地质, 2004, 23(1): 93-100

    FENG Chengyou, ZHANG Dequan, DANG Xingyan. Cobalt resources of China and their exploration and utilization[J]. Mineral Deposit, 2004, 23(1): 93-100.

    甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984: 1−229.

    SGU(the sixth geological unit of the geological survey of Gansu Province). Geology of the Baijiazuizi Cu-Ni sulfide deposit[M]. Beijing: Geological Publishing House, 1984: 1−225.

    李仔栓. 甘肃金川铜镍矿矿相学、成矿与成矿关系研究[M]. 北京: 中国地质大学(北京), 2018: 1−47

    LI Zishuan. Study on the mineragraphy, relationship between diagenesis and mineralization on Jinchuan Copper-Nickel deposit in Gansu[M]. China University of Geosciences(Beijing), 2018: 1−47.

    刘超, 王亚磊, 张照伟, 等. 东昆仑夏日哈木矿床镍黄铁矿、磁黄铁矿成因认识及钴赋存特征[J]. 西北地质, 2020, 53(2): 183-199

    LIU Chao, WANG Yalei, ZHANG Zhaowei, et al. The Genetic significance of Pentlandite and Pyrrhotite and the characteristics of cobalt occurrence in Xiarihamu cobalt-nickel deposit of Eastern Kunlun[J]. Northwestern Geology, 2020, 53(2): 183-199.

    卢宜冠, 涂家润, 孙凯, 等. 中非赞比亚成矿带谦比希通钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 2021, 28(3): 338-354

    LU Yiguan, TU Jiarun, SUN Kai, et al. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian Copperbelt, Central Africa[J]. Earth Science Frontiers, 2021, 28(3): 338-354.

    慕纪录. 新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制[J]. 矿物岩石, 1996, 16(1): 58-67

    MO Jilu. On the characteristics and forming mechanism of the rich and shallow-seated ores in the Huangshan Ni-Cu sulfide deposit, Hami, Xinjiang[J]. Mineral Petro, 1996, 16(1): 58-67.

    秦克章, 丁奎首, 许英霞, 等. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 2007, 26(1): 1-14 doi: 10.3969/j.issn.0258-7106.2007.01.001

    QIN Kezhang, DING Kuishou, XU Yingxia, et al. Ore potential of protoliths and modes of Co-Ni occurrence in Tulaergen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 2007, 26(1): 1-14. doi: 10.3969/j.issn.0258-7106.2007.01.001

    芮会超, 焦建刚, 靳树芳. 金川铜镍硫化物矿床磁黄铁矿矿物学特征及成因意义[J]. 矿床地质, 2017, 36(2): 501-514 doi: 10.16111/j.0258-7106.2017.02.015

    RUI Huichao, JIAO Jiangang, JIN Shufang. Typomorphic characteristics and genetic significance of pyrrhotite in Jinchuan Cu-Ni sulfide deposit[J]. Mineral Deposit, 2017, 36(2): 501-514. doi: 10.16111/j.0258-7106.2017.02.015

    孙燕, 帅德权, 慕纪录, 等. 新疆黄山铜镍成矿带中含镍系列矿物成分特征[J]. 成都理工学院学报, 1996, 23(2): 19-20

    SUN Yan, SHUAI Dequan, MU Jilu, et al. Composition characteristics of the nickel ferrous series in the Cu-Ni mineralization zone, Huangshan, Xinjiang[J]. Journal of Chengdu Institute Technology, 1996, 23(2): 19-20.

    汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 1−209

    TANG Zhongli, LI Wenyuan. The metallogenetic model and geological characteristics of the Jinchuan Pt-bearing Ni-Cu sulfide deposit[M]. Beijing: Geological Publishing House, 1995: 1−209.

    王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750.

    WANG Hui, FENG Chengyou, ZHANG Mingyu. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 730-750.

    王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825-3838 doi: 10.1360/TB-2020-0202

    WANG Yan, ZHONG Hong, CAO Yonghua, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825-3838. doi: 10.1360/TB-2020-0202

    乌顿布格, 伯克. 金属矿物显微镜鉴定表[M]. 北京: 地质出版社, 1975

    W. U. E. A. Burke. Tables for Microscopic identification of ore minerals. Beijing: Geological Publishing House, 1975.

    徐昱, 王建平, 吴景荣. 我国钴资源现状及进口分析[J]. 矿业研究与开发, 2014, 34(5): 112-132

    XU Yu, WANG Jianping, WU Jingrong. Analysis on status of cobalt resources with its import and export in China[J]. Mining R&D, 2014, 34(5): 112-132.

    翟明国, 胡波. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1): 1-11.

    ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1): 1-11.

    张宗清, 杜安道, 唐索寒, 等. 金川铜镍矿床年龄和源区同位素地球化学特征[J]. 地质学报, 2004, 78(3): 359-365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    ZHANG Zongqing, DU Andao, TANG Suohan, et al. Age of the Jinchuan copper-nickel deposit and isotopic geochemical feature of its sources[J]. Acta Geological Sinica, 2004, 78(3): 359-365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500 doi: 10.1360/N972019-00134

    ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 2484-2500. doi: 10.1360/N972019-00134

    郑建平, 周新华. 华北岩石圈地幔岩石学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(4): 392-401 doi: 10.3969/j.issn.1007-2802.2013.04.002

    ZHENG Jianping, ZHOU Xinhua. Research progress of petrology of the lithospheric mantle in North China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 392-401. doi: 10.3969/j.issn.1007-2802.2013.04.002

    Arnold R G. Range in composition and structure of 82 natural terrestrial pyrrhotites[J]. Canadian Mineral, 1967, 9: 31-50.

    Aulbach S, Griffin W L, Pearson N J, et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrystal[J]. Chemical Geology, 2004, 208: 61-88. doi: 10.1016/j.chemgeo.2004.04.006

    Barnes S J. Ripley E M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits[J]. Reviews in Mineralogy&Geochemistry, 2016, 81: 725-774.

    Barnes S J. Zientek R A. Platinum-group element, gold, silver, and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia[J]. Contribution to Mineral Petrology, 2006, 152: 187-200. doi: 10.1007/s00410-006-0100-9

    Chen L M, Song X Y, Danyushevsky L V, et al. A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu deposit, NW China[J]. Ore Geology Reviews, 2015, 65: 955-967. doi: 10.1016/j.oregeorev.2014.07.011

    Davies R M, Griffin W L, O’Reilly S Y, et al. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, D018, DD17, and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 2004, 77: 39-55.

    Duan J, Li C, Qian Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Miner Deposita, 2016, 51: 557−574.

    Etschmann B, Pring A, Putnis A, et al. A kinetic study of the exsolution of pentlandite (Ni, Fe) 9S8 from the monosulfide solid solution (Fe, Ni)S[J]. American Mineralogy, 2004, 89(1): 39–50. doi: 10.2138/am-2004-0106

    Gaetani G A, Groove T I. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars[J]. Geochim, Gosmochim, Acta, 1997, 61: 1829-1846. doi: 10.1016/S0016-7037(97)00033-1

    Han Yixiao, Liu Yunhua, Li Wenyuan. Minerals in Xiarihamu nickel-cobalt deposit, East Kunlun Orogen, China[J]. Frontiers in Earth Science, 2021, 8: 597469.

    Helmy H M, Botcharnikov R, Ballhaus C, et al. Evolution of magmatic sulfide liquids: how and when base metal sulfide crystallize?[J]. Contribution to Mineralogy and Petrology, 2021, 176: 107. Doi:https://doi.org/10.1007/s00410-021-01868-4

    Hughes H S R, McDonald L, Faithfull J W, et al. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle[J]. Lithos, 2016, 240-243: 202-227. doi: 10.1016/j.lithos.2015.11.007

    Li C, Ripley E M. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications[J]. Economic Geology, 2009, 104: 405-412. doi: 10.2113/gsecongeo.104.3.405

    Li C, Ripley E M. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis and exploration implications[J]. Economic Geology, 2011, 17: 163-180.

    Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth Planetary Science Letter, 2012, 355–356: 327–340.

    Naldrett A J. Fundamentals of magmatic sulfide deposits. Review Economic Geology, 2011, 17: 1−50.

    Patten C, Barnes S J, Mathez E A, et al. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets[J]. Chemical Geology, 2013, 358: 170-188. doi: 10.1016/j.chemgeo.2013.08.040

    Peach C L, Mathez E A, Keays R R. Sulfide melt silicate melt distribution coefficients for noble-metals and other chalcophile elements as deduced from MORB-implication for partial melting[J]. Geochim. Gosmochim. Acta, 1990, 54: 3379-3389. doi: 10.1016/0016-7037(90)90292-S

    Pearson D G, Canil D, Shirey S B. Mantle samples included in volcanic rocks: xenoliths and diamonds, Treatise on Geochemistry, 2003, 2: 171−275.

    Rajamani V, Naldrett A J. Partitioning of Fe、Co、Ni、and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits[J]. Economic Geology, 1978, 73: 82-93. doi: 10.2113/gsecongeo.73.1.82

    Schulz K J, DeYoung J H, Seal R R, et al. Critical mineral resources of the United States—Economic and environment geology and prospects for future supply. US Geological Survey Professional Paper Series, 2018, 1802: 1−797.

    Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts[J]. Nature, 2006, 434: 590-597.

    Tang Z L, Song X Y, Su S G. Ni-Cu deposits related to high Mg basaltic magma, Jinchuan, western China. In: Li C, Ripley EM (eds) New developments in magmatic Ni-Cu and PGE deposits. Beijing : Geological Publishing House, 2009: 121−140.

    Wang K L, O’Reilly S Y, Honda M, et al. Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: footprints of Proterozoic mantle plumes under the Cathaysia Block[J]. Journal of Asian Earth Sciences, 2010, 37: 229-245. doi: 10.1016/j.jseaes.2009.08.008

  • 期刊类型引用(5)

    1.  张照伟,吴华英,谭文娟,王亚磊,邵继,李文渊. 中国镍钴矿产资源禀赋条件与找矿潜力. 岩石学报. 2025(02): 416-430 . 百度学术
    2.  史冬岩,张玉鹏,张坤,孙景贵,常翔鲲,王秋阳,李文龙. 大兴安岭北东段森林沼泽区地球化学找矿方法研究:以黑龙江省二道坎村银多金属矿区为例. 西北地质. 2024(02): 107-120 . 本站查看
    3.  林文海,王焕,贺海洋,张汐,周敖日格勒,隋清霖,朱晓强,张焕宝,侯淡平,李朋刚. 全球沉积–变沉积型钴成矿规律及其对宁夏钴矿找矿研究的启示. 西北地质. 2024(03): 177-195 . 本站查看
    4.  张照伟,谭文娟,杜辉,黑欢,贺永康. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究. 西北地质. 2023(06): 242-253 . 本站查看
    5.  赵达成,王美乐,李章志贤,魏雅洁,李华,王金宏,张晓琪. 夏日哈木岩浆硫化物矿床中钴和镍关键金属的赋存状态及分布规律. 西北地质. 2023(06): 17-40 . 本站查看

    其他类型引用(2)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、PDF下载量统计信息摘要浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.7 %DOWNLOAD: 8.7 %摘要: 91.3 %摘要: 91.3 %DOWNLOAD摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 18.0 %其他: 18.0 %其他: 0.8 %其他: 0.8 %China: 0.2 %China: 0.2 %Kennedy Town: 0.4 %Kennedy Town: 0.4 %[]: 0.6 %[]: 0.6 %上海: 1.4 %上海: 1.4 %东京都: 0.4 %东京都: 0.4 %东莞: 0.6 %东莞: 0.6 %丹东: 0.2 %丹东: 0.2 %伊犁: 0.4 %伊犁: 0.4 %保定: 0.4 %保定: 0.4 %兰州: 1.9 %兰州: 1.9 %北京: 6.0 %北京: 6.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.5 %南昌: 0.5 %南通: 0.3 %南通: 0.3 %合肥: 1.2 %合肥: 1.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈密: 0.4 %哈密: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.5 %嘉兴: 0.5 %天水: 0.6 %天水: 0.6 %天津: 2.3 %天津: 2.3 %宁德: 0.1 %宁德: 0.1 %宁波: 0.2 %宁波: 0.2 %安康: 0.2 %安康: 0.2 %宝鸡: 0.2 %宝鸡: 0.2 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %庆阳: 0.4 %庆阳: 0.4 %廊坊: 0.6 %廊坊: 0.6 %延安: 0.7 %延安: 0.7 %张家口: 0.1 %张家口: 0.1 %恩施: 0.5 %恩施: 0.5 %惠州: 0.2 %惠州: 0.2 %成都: 0.8 %成都: 0.8 %扬州: 0.4 %扬州: 0.4 %昆明: 2.2 %昆明: 2.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.4 %杭州: 1.4 %柳州: 0.3 %柳州: 0.3 %武汉: 1.0 %武汉: 1.0 %比什凯克: 0.2 %比什凯克: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泗水: 0.2 %泗水: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %海西: 0.1 %海西: 0.1 %深圳: 0.7 %深圳: 0.7 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 4.3 %漯河: 4.3 %石家庄: 0.5 %石家庄: 0.5 %红河: 0.3 %红河: 0.3 %绵阳: 0.6 %绵阳: 0.6 %罗奥尔凯埃: 0.4 %罗奥尔凯埃: 0.4 %芒廷维尤: 20.5 %芒廷维尤: 20.5 %芝加哥: 2.4 %芝加哥: 2.4 %莫斯科: 2.0 %莫斯科: 2.0 %葫芦岛: 0.1 %葫芦岛: 0.1 %西宁: 7.2 %西宁: 7.2 %西安: 1.8 %西安: 1.8 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.2 %达州: 0.2 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.9 %郑州: 0.9 %重庆: 0.4 %重庆: 0.4 %金昌: 0.1 %金昌: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 5.0 %长沙: 5.0 %雅安: 0.5 %雅安: 0.5 %青岛: 0.2 %青岛: 0.2 %其他其他ChinaKennedy Town[]上海东京都东莞丹东伊犁保定兰州北京十堰南京南昌南通合肥呼和浩特哈密哥伦布嘉兴天水天津宁德宁波安康宝鸡宣城巴音郭楞常州平顶山广州庆阳廊坊延安张家口恩施惠州成都扬州昆明朝阳杭州柳州武汉比什凯克沈阳泗水洛阳济南海西深圳清远温州湖州漯河石家庄红河绵阳罗奥尔凯埃芒廷维尤芝加哥莫斯科葫芦岛西宁西安西雅图贵阳达州运城连云港邯郸郑州重庆金昌长春长沙雅安青岛Highcharts.com

(9)

(6)

计量
  • 文章访问数:  2357
  • PDF下载数:  183
  • 施引文献:  7
出版历程
收稿日期:  2022-10-13
修回日期:  2023-02-20
刊出日期:  2023-04-20

目录

  • 表 1.  金川矿床全岩Ni、Co、Cu、S等元素含量(%)
    Table 1.  The Ni, Co, Cu, and S contents (%) of the ores in the Jinchuan deposit
    样品编号矿石类型矿体编号SCoCuNiAs
    ZK-4-5-1浸染状矿化24号矿体2.380.020.160.531.57
    ZK-4-5-2稠密浸染状矿化10.520.052.152.981.90
    ZK-4-5-5稠密浸染状矿化9.120.025.450.941.75
    ZK-4-5-7稠密浸染状矿化11.710.061.062.741.22
    ZK-4-5-9稠密浸染状矿化7.840.034.361.434.11
    ZK-4-5-12稠密浸染状矿化3.890.021.691.184.06
    ZK-4-5-15稠密浸染状矿化9.360.061.763.161.90
    ZK-4-5-17稠密浸染状矿化9.100.061.843.071.25
    ZK-4-5-19稠密浸染状矿化4.080.030.271.352.53
    ZK-4-5-21浸染状矿化1.520.020.250.372.30
    ZK-4-5-22星点状矿化0.220.010.040.101.18
    ZK-4-5-23星点状矿化0.960.010.160.252.05
    ZK-4-5-24星点状矿化0.260.010.020.111.52
    ZK12-5-1岩石1号矿体0.010.000.000.000.42
    ZK12-5-5岩石0.100.010.010.091.20
    ZK12-5-6岩石0.240.010.060.122.15
    ZK12-5-7星点状矿化0.850.010.080.241.41
    ZK12-5-8浸染状2.060.020.130.521.87
    ZK12-5-9浸染状1.920.020.540.431.69
    ZK12-5-10浸染状5.660.041.421.331.85
    ZK12-5-11浸染状1.210.010.090.341.17
    ZK12-5-12浸染状3.530.020.170.831.56
    ZK12-5-15稠密浸染状矿化5.850.040.491.333.10
    ZK12-5-16稠密浸染状矿化7.330.040.471.561.99
    ZK12-5-21稠密浸染状矿化9.310.051.911.750.29
    ZK12-5-23稠密浸染状矿化8.220.050.521.973.34
    ZK12-5-26稠密浸染状矿化8.930.051.072.001.31
    ZK12-5-30稠密浸染状矿化8.610.040.301.510.22
    ZK12-5-34稠密浸染状矿化8.390.041.522.012.84
    ZK12-5-35星点状矿化0.930.010.130.211.55
    ZK12-5-36浸染状3.420.010.560.521.99
    ZK16-2-4岩石2号矿体0.090.010.000.120.85
    ZK16-2-6岩石0.070.010.000.100.44
    ZK16-2-8岩石0.040.010.010.090.57
    ZK16-2-9星点状矿化0.220.010.040.130.44
    ZK16-2-10星点状矿化0.280.010.030.200.80
    ZK16-2-12星点状矿化0.300.010.030.190.72
    ZK16-2-14浸染状1.200.010.110.422.58
    ZK16-2-15浸染状2.810.020.170.540.41
    ZK16-2-19星点状矿化0.620.010.120.190.34
    ZK16-2-23星点状矿化0.620.010.040.180.67
    ZK16-2-30浸染状2.300.020.710.390.69
    ZK16-2-32浸染状2.010.020.160.460.62
    ZK16-2-34浸染状2.560.020.160.580.83
    ZK16-2-39浸染状2.440.020.520.470.52
    ZK16-2-40浸染状2.820.020.170.585.31
     | Show Table
    DownLoad: CSV
  • 表 2.  磁黄铁矿电子探针分析结果(%)
    Table 2.  The EPMA result (%) of pyrrhotite in the Jinchuan deposit
    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk4-524号矿体星点状六方Po≈Pn60.920.020.0538.4099.4547.58
    六方Po≈Pn60.490.0638.7299.3247.21
    六方Po≈Pn60.770.0738.5999.4647.41
    六方Po≈Pn62.450.0636.8099.3249.28
    六方Po≈Pn60.810.040.0538.8399.7547.26
    海绵陨铁状单斜Po≈Pn59.970.140.0539.2499.4246.62
    单斜Po≈Pn59.410.070.0739.4999.0946.24
    单斜Po≈Pn59.750.190.0639.6699.6846.24
    单斜Po≈Pn59.770.050.0839.5399.4846.37
    六方Po≈Pn60.610.0638.8199.5247.20
    单斜Po<Pn59.490.200.0438.9998.7846.56
    单斜Po<Pn59.180.180.0739.1898.6746.31
    单斜Po<Pn59.950.160.0839.5599.8546.39
    zk12-51号矿体星点状陨硫铁Po>Pn62.750.0836.2399.0749.78
    陨硫铁Po>Pn63.450.0836.3699.9749.96
    六方Po61.490.0436.6199.4548.59
    六方Po62.980.0836.89100.2549.34
    陨硫铁Po≈Pn63.620.0636.45100.2949.97
    陨硫铁Po≈Pn63.690.030.0836.36100.1950.05
    陨硫铁Po≈Pn62.740.0736.1599.0149.83
    陨硫铁Po≈Pn63.320.0536.3699.8349.93
    陨硫铁Po≈Pn63.210.020.0536.4599.8449.81
    六方Po≈Pn62.890.020.0836.4399.4649.69
    浸染状六方Po>Pn62.900.010.0636.4799.5449.67
    六方Po>Pn62.760.1136.5499.4549.55
    陨硫铁Po>Pn63.280.030.0736.4699.9249.82
    陨硫铁Po>Pn63.300.0936.57100.0349.76
    陨硫铁Po>Pn63.180.020.0636.2499.5149.94
    海绵陨铁状陨硫铁Po≈Pn62.980.020.0836.1699.3049.90
    陨硫铁Po≈Pn63.290.0936.3999.9149.88
    陨硫铁Po≈Pn62.870.0636.2599.2249.82
    陨硫铁Po≈Pn63.180.1136.5099.9149.75
    陨硫铁Po≈Pn63.300.0936.4299.8349.86
    陨硫铁Po≈Pn63.110.0536.4499.6849.79
    六方Po≈Pn63.090.030.1136.85100.1249.47
    六方Po≈Pn62.910.0736.4899.5349.67
    六方Po≈Pn62.720.0636.3499.1349.70
    六方Po≈Pn62.750.0736.5199.3749.59
    六方Po≈Pn62.780.0936.6399.5549.51
    六方Po≈Pn63.020.0836.7299.9049.55
    六方Po≈Pn63.050.010.0836.6899.8549.58
    六方Po≈Pn63.200.0236.5899.8449.73
     | Show Table
    DownLoad: CSV
  • 续表2
    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk12-51号矿体海绵陨铁状六方Po≈Pn62.720.0436.4299.2249.64
    六方Po≈Pn62.460.0736.5499.1249.45
    六方Po≈Pn62.870.0636.4999.5449.65
    陨硫铁Po<Pn63.410.0736.58100.1549.80
    陨硫铁Po<Pn63.880.010.0636.48100.5250.05
    陨硫铁Po<Pn63.260.0836.4299.7849.85
    陨硫铁Po>Pn63.440.010.0936.52100.0949.84
    陨硫铁Po>Pn63.880.010.1036.33100.3950.14
    六方Po<Pn63.460.010.0536.72100.2649.74
    六方Po>Pn61.140.090.0838.5899.9547.52
    六方Po>Pn62.010.070.0737.95100.1148.30
    六方Po>Pn60.710.090.0738.3299.2547.52
    六方Po>Pn60.990.120.0738.4199.6447.57
    六方Po>Pn61.820.090.0637.94100.0448.23
    单斜Po60.190.250.1038.8599.4146.90
    单斜Po60.040.260.0938.8499.2446.85
    单斜Po60.420.310.0639.28100.1746.71
    单斜Po60.130.140.0939.3699.7546.59
    单斜Po>Pn59.950.120.0939.1999.4746.63
    单斜Po>Pn59.910.120.0739.6499.8046.33
    单斜Po>Pn60.110.130.0939.6199.9846.43
    单斜Po>Pn59.800.160.0439.2499.2746.54
    zk16-22号矿体浸染状六方Po>Pn63.130.0436.77100.1049.57
    六方Po>Pn62.870.0937.18100.2149.17
    单斜Po≈Pn60.190.030.0739.63100.0546.48
    单斜Po≈Pn60.160.310.0739.58100.1846.42
    单斜Po≈Pn59.750.060.0839.5899.4946.34
    六方Po≈Pn61.080.0638.7599.8947.43
    六方Po≈Pn60.830.0738.9499.8847.21
    六方Po≈Pn61.280.010.0539.17100.5347.25
    单斜Po≈Pn59.800.120.0739.3899.4246.46
    单斜Po>Pn59.910.280.0839.6399.9946.27
    陨硫铁Po>Pn63.220.020.1036.4199.7649.82
    六方Po>Pn61.620.020.0838.65100.4447.70
    六方Po>Pn61.100.0738.4499.6347.64
     注:“–”表示低于检测线0.01%。
     | Show Table
    DownLoad: CSV
  • 表 3.  镍黄铁矿电子探针分析结果(%)
    Table 3.  The EPMA results (%) of pentlandite in the Jinchuan deposit
    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk4-524号矿体星点状Po≈Pn31.2833.740.880.030.8132.9599.75
    Po≈Pn31.2234.110.980.010.7833.20100.32
    Po≈Pn32.9231.290.870.770.7033.3799.93
    Po<Pn33.1032.211.050.020.6532.4799.52
    Po<Pn31.9733.601.030.030.3033.11100.14
    海绵陨铁状Po≈Pn31.2132.600.471.150.6933.5499.66
    Po≈Pn35.3329.040.320.180.2634.0799.21
    Po≈Pn30.2936.000.470.050.3333.22100.40
    Po≈Pn31.2332.980.521.810.7233.65100.96
    Po≈Pn31.3234.650.490.160.2833.08100.01
    Po≈Pn30.1935.280.570.210.8333.19100.33
    Po<Pn32.2233.610.400.160.2833.41100.14
    Po<Pn31.3634.370.500.040.3033.79100.35
    Po<Pn31.4434.090.380.080.2933.2399.54
    Pn38.9226.990.330.5831.9898.81
    Pn41.2723.560.440.310.2433.0498.95
    Pn41.1922.440.410.730.5433.9999.32
     | Show Table
    DownLoad: CSV
  • 续表3
    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk12-51号矿体星点状Po≈Pn32.9732.580.880.000.7532.80100.02
    Po≈Pn33.0532.530.850.030.7033.17100.38
    Po≈Pn32.9732.980.880.060.7933.18100.88
    Po≈Pn33.8532.080.830.040.6632.98100.46
    Po≈Pn33.1732.650.920.010.2732.93100.00
    Po≈Pn33.3932.360.860.020.7833.31100.79
    Po>Pn35.0629.831.320.040.2933.2899.87
    Po>Pn34.8429.761.910.030.7233.35100.69
    Po>Pn35.6329.481.870.020.7532.98100.78
    Po>Pn35.1029.751.420.020.2433.3799.92
    浸染状Po>Pn34.4131.300.860.010.2532.9599.79
    Po>Pn34.9030.930.850.020.3033.25100.31
    海绵陨铁状Po<Pn33.0732.660.740.010.3033.0799.89
    Po<Pn33.5132.780.780.020.7633.14101.02
    Pn32.9833.230.770.010.3033.09100.38
    Pn35.7230.850.770.070.7133.56101.73
    Pn33.4732.970.780.100.2733.13100.77
    Pn33.4732.150.740.030.2633.41100.09
    Po>Pn32.9431.240.650.030.2632.9498.16
    Po>Pn33.2431.980.620.060.7633.0199.68
    Po>Pn33.2632.260.700.020.6833.18100.14
    Po>Pn33.1232.880.620.7233.09100.50
    Po>Pn33.3832.700.660.010.6832.97100.43
    Po>Pn32.8232.350.670.010.2933.88100.07
    Po>Pn33.0132.260.680.010.2632.8599.08
    Po>Pn32.8232.600.670.020.7833.44100.39
    Po>Pn33.0232.440.680.040.2632.9899.43
    Po>Pn32.4832.180.680.010.7733.3399.52
    Po>Pn32.5832.530.740.3133.3699.56
    Po>Pn32.6332.610.720.030.7533.30100.06
    Po>Pn32.4332.540.710.6733.1499.51
    Po>Pn33.9332.140.640.060.7433.34100.86
    Po>Pn34.0331.610.630.040.7033.33100.41
    Po>Pn33.6431.800.600.050.6733.1599.91
    Po>Pn33.4631.820.650.030.2633.3299.55
    Po>Pn33.9832.230.680.020.7733.34101.05
    Po>Pn32.1933.410.870.030.2933.0099.84
    Po>Pn31.7532.980.830.010.2732.8398.81
    Po>Pn31.9033.570.850.040.8433.65100.91
    Po>Pn30.9734.370.820.030.8233.07100.11
    Po>Pn31.3634.210.810.020.7633.15100.34
    Po>Pn33.6032.830.730.010.7933.47101.52
    Po>Pn33.4032.630.900.100.2633.49100.82
    zk16-22号矿体浸染状Po≈Pn30.5734.120.710.070.7733.4299.68
    Po≈Pn31.9333.721.260.180.8233.06100.98
    Po≈Pn34.4431.291.750.310.2633.45101.57
    Po≈Pn29.0436.470.970.140.3033.27100.27
    Po≈Pn29.9935.841.090.160.3233.11100.54
    Po>Pn28.8438.020.410.030.3233.21100.86
    Po>Pn30.0435.480.990.050.3233.35100.26
    Po>Pn30.5435.630.800.050.2933.22100.60
    Po>Pn28.8636.311.930.050.3133.00100.49
    Po>Pn28.0838.170.650.220.3133.45100.90
     注:“–”表示低于检测限。
     | Show Table
    DownLoad: CSV
  • 表 4.  黄铜矿和方黄铜矿矿电子探针分析结果(%)
    Table 4.  The EPMA result (%) of chalcopyrite and cubanite in the Jinchuan deposit
    钻孔编号矿体编号矿石类型矿物种属FeCuNiCoSTotal
    zk4-524号矿体星点状Cb41.0123.820.010.0635.0499.99
    Cb41.1623.500.0435.0999.83
    Ccp30.3534.700.0234.2999.37
    海绵陨铁状Cb41.7622.460.010.0635.2899.64
    Cb41.0723.390.090.0335.38100.01
    Cb44.0118.300.800.0835.0998.31
    zk12-51号矿体星点状矿石Ccp30.8134.850.0734.88100.65
    浸染状矿石Ccp30.6535.100.0334.72100.57
    Ccp30.5035.030.0434.77100.34
    海绵陨铁状Ccp30.2633.970.350.0535.1599.82
    Ccp30.1734.520.150.0434.9899.90
    Ccp30.0434.750.010.0434.4599.39
    Ccp30.6035.160.0234.87100.65
    Ccp30.1634.550.0335.20100.01
    Ccp30.6233.950.010.0133.8998.54
    Ccp30.7034.530.0134.75100.06
    Ccp31.1334.400.020.0334.71100.30
    zk16-22号矿体星点状矿化Cb42.8620.620.230.0534.6198.40
    浸染状矿石Cb41.0323.640.070.0634.8899.70
     注:“–”表示低于检测限。
     | Show Table
    DownLoad: CSV