金川超大型铜镍矿床钴的赋存状态与富集过程研究

王亚磊, 李文渊, 林艳海, 王永才, 张照伟, 李德贤. 2023. 金川超大型铜镍矿床钴的赋存状态与富集过程研究. 西北地质, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
引用本文: 王亚磊, 李文渊, 林艳海, 王永才, 张照伟, 李德贤. 2023. 金川超大型铜镍矿床钴的赋存状态与富集过程研究. 西北地质, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
WANG Yalei, LI Wenyuan, LIN Yanhai, WANG Yongcai, ZHANG Zhaowei, LI Dexian. 2023. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit. Northwestern Geology, 56(2): 133-150. doi: 10.12401/j.nwg.2023023
Citation: WANG Yalei, LI Wenyuan, LIN Yanhai, WANG Yongcai, ZHANG Zhaowei, LI Dexian. 2023. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit. Northwestern Geology, 56(2): 133-150. doi: 10.12401/j.nwg.2023023

金川超大型铜镍矿床钴的赋存状态与富集过程研究

  • 基金项目: 中国地质调查局项目“西北地区昆仑–秦岭等成矿区带重点调查区锂镍等战略性矿产调查评价”(DD20230048)、“全国海陆矿产资源图件编制更新”(DD20221696),国家自然科学基金面上项目“东昆仑夏日哈木铜镍矿床硫化物不混溶作用研究”(41873053),第二次青藏科考项目课题“东昆仑成矿带西段及柴北缘成矿带西段铜镍(钴)成矿潜力研究”(2019QZKK0801)联合资助
详细信息
    作者简介: 王亚磊(1986−),男,副研究员,博士研究生,主要从事铜镍矿成矿规律与找矿勘查工作。E–mail:wangyalei1986@126.com
    通讯作者: 林艳海(1986−),男,工程师,硕士,主要从事地质矿产与找矿研究工作。E–mail:85785187@qq.com
  • 中图分类号: P588.1;P597

Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit

More Information
  • 金川矿床位于龙首山隆起带东段,是中国最大的岩浆镍钴(铂族元素)矿床。该矿床中最重要的金属硫化物组合是磁黄铁矿、镍黄铁矿和黄铜矿,仅局部含有微量的辉钴矿等独立钴矿物。全岩成矿元素分析显示:矿石中Co与S、Ni之间呈良好的正相关性,与As相关性较差,Co/Ni随硫化物含量的增加而降低。电子探针分析结果表明:镍黄铁矿中Co含量较高,其含量为0.32%~1.93%,平均为0.81%;磁黄铁矿和黄铜矿(方黄铜矿)中Co的含量较低,变化范围分别为0.02%~0.11%和0.01%~0.08%。元素面扫描结果表明:Co含量较高的部位与镍黄铁矿范围完全一致,说明Co主要赋存于镍黄铁矿中。金川矿床整体Co/Ni平均值为0.042,与全球典型橄榄岩相地幔Co/Ni值(0.055)相似,表明其岩浆源区主要为橄榄岩相。高程度的部分熔融可能是导致其母岩浆中Co绝对含量较高,但Co/Ni值相对较低的原因之一。硫化物熔离时,Co更倾向于进入硫化物;但相对于Ni,进入硫化物的Co较少,导致不同矿石类型之间S含量与Co/Ni值之间呈明显的负相关性。硫化物分离结晶作用进一步促使Co向镍黄铁矿中富集。

  • 加载中
  • 图 1  金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据Duan et al.,2016修改)

    Figure 1. 

    图 2  金川矿床矿区地质简图(a)、矿床纵投影图(b)及典型勘探线剖面图(c)

    Figure 2. 

    图 3  金川矿床磁黄铁矿与镍黄铁矿产状特征

    Figure 3. 

    图 4  S、Ni、Cu及As元素与Co和Co/Ni的相关性图解

    Figure 4. 

    图 5  金川矿床不同矿石类型及产状磁黄铁矿Fe原子比与Ni、Co含量图解

    Figure 5. 

    图 6  金川矿床镍黄铁矿中各元素含量及元素比值相关性图解

    Figure 6. 

    图 7  黄铜矿、方黄铜矿Cu–Ni(a)和Cu–Co(b)的相关性图解

    Figure 7. 

    图 8  金川矿床硫化物电子探针元素面扫描

    Figure 8. 

    图 9  硫化物分离结晶过程中Co、Ni等亲铜元素的富集过程示意图(据Chen et al.,2015Helmy et al.,2021修改)

    Figure 9. 

    表 1  金川矿床全岩Ni、Co、Cu、S等元素含量(%)

    Table 1.  The Ni, Co, Cu, and S contents (%) of the ores in the Jinchuan deposit

    样品编号矿石类型矿体编号SCoCuNiAs
    ZK-4-5-1浸染状矿化24号矿体2.380.020.160.531.57
    ZK-4-5-2稠密浸染状矿化10.520.052.152.981.90
    ZK-4-5-5稠密浸染状矿化9.120.025.450.941.75
    ZK-4-5-7稠密浸染状矿化11.710.061.062.741.22
    ZK-4-5-9稠密浸染状矿化7.840.034.361.434.11
    ZK-4-5-12稠密浸染状矿化3.890.021.691.184.06
    ZK-4-5-15稠密浸染状矿化9.360.061.763.161.90
    ZK-4-5-17稠密浸染状矿化9.100.061.843.071.25
    ZK-4-5-19稠密浸染状矿化4.080.030.271.352.53
    ZK-4-5-21浸染状矿化1.520.020.250.372.30
    ZK-4-5-22星点状矿化0.220.010.040.101.18
    ZK-4-5-23星点状矿化0.960.010.160.252.05
    ZK-4-5-24星点状矿化0.260.010.020.111.52
    ZK12-5-1岩石1号矿体0.010.000.000.000.42
    ZK12-5-5岩石0.100.010.010.091.20
    ZK12-5-6岩石0.240.010.060.122.15
    ZK12-5-7星点状矿化0.850.010.080.241.41
    ZK12-5-8浸染状2.060.020.130.521.87
    ZK12-5-9浸染状1.920.020.540.431.69
    ZK12-5-10浸染状5.660.041.421.331.85
    ZK12-5-11浸染状1.210.010.090.341.17
    ZK12-5-12浸染状3.530.020.170.831.56
    ZK12-5-15稠密浸染状矿化5.850.040.491.333.10
    ZK12-5-16稠密浸染状矿化7.330.040.471.561.99
    ZK12-5-21稠密浸染状矿化9.310.051.911.750.29
    ZK12-5-23稠密浸染状矿化8.220.050.521.973.34
    ZK12-5-26稠密浸染状矿化8.930.051.072.001.31
    ZK12-5-30稠密浸染状矿化8.610.040.301.510.22
    ZK12-5-34稠密浸染状矿化8.390.041.522.012.84
    ZK12-5-35星点状矿化0.930.010.130.211.55
    ZK12-5-36浸染状3.420.010.560.521.99
    ZK16-2-4岩石2号矿体0.090.010.000.120.85
    ZK16-2-6岩石0.070.010.000.100.44
    ZK16-2-8岩石0.040.010.010.090.57
    ZK16-2-9星点状矿化0.220.010.040.130.44
    ZK16-2-10星点状矿化0.280.010.030.200.80
    ZK16-2-12星点状矿化0.300.010.030.190.72
    ZK16-2-14浸染状1.200.010.110.422.58
    ZK16-2-15浸染状2.810.020.170.540.41
    ZK16-2-19星点状矿化0.620.010.120.190.34
    ZK16-2-23星点状矿化0.620.010.040.180.67
    ZK16-2-30浸染状2.300.020.710.390.69
    ZK16-2-32浸染状2.010.020.160.460.62
    ZK16-2-34浸染状2.560.020.160.580.83
    ZK16-2-39浸染状2.440.020.520.470.52
    ZK16-2-40浸染状2.820.020.170.585.31
    下载: 导出CSV

    表 2  磁黄铁矿电子探针分析结果(%)

    Table 2.  The EPMA result (%) of pyrrhotite in the Jinchuan deposit

    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk4-524号矿体星点状六方Po≈Pn60.920.020.0538.4099.4547.58
    六方Po≈Pn60.490.0638.7299.3247.21
    六方Po≈Pn60.770.0738.5999.4647.41
    六方Po≈Pn62.450.0636.8099.3249.28
    六方Po≈Pn60.810.040.0538.8399.7547.26
    海绵陨铁状单斜Po≈Pn59.970.140.0539.2499.4246.62
    单斜Po≈Pn59.410.070.0739.4999.0946.24
    单斜Po≈Pn59.750.190.0639.6699.6846.24
    单斜Po≈Pn59.770.050.0839.5399.4846.37
    六方Po≈Pn60.610.0638.8199.5247.20
    单斜Po<Pn59.490.200.0438.9998.7846.56
    单斜Po<Pn59.180.180.0739.1898.6746.31
    单斜Po<Pn59.950.160.0839.5599.8546.39
    zk12-51号矿体星点状陨硫铁Po>Pn62.750.0836.2399.0749.78
    陨硫铁Po>Pn63.450.0836.3699.9749.96
    六方Po61.490.0436.6199.4548.59
    六方Po62.980.0836.89100.2549.34
    陨硫铁Po≈Pn63.620.0636.45100.2949.97
    陨硫铁Po≈Pn63.690.030.0836.36100.1950.05
    陨硫铁Po≈Pn62.740.0736.1599.0149.83
    陨硫铁Po≈Pn63.320.0536.3699.8349.93
    陨硫铁Po≈Pn63.210.020.0536.4599.8449.81
    六方Po≈Pn62.890.020.0836.4399.4649.69
    浸染状六方Po>Pn62.900.010.0636.4799.5449.67
    六方Po>Pn62.760.1136.5499.4549.55
    陨硫铁Po>Pn63.280.030.0736.4699.9249.82
    陨硫铁Po>Pn63.300.0936.57100.0349.76
    陨硫铁Po>Pn63.180.020.0636.2499.5149.94
    海绵陨铁状陨硫铁Po≈Pn62.980.020.0836.1699.3049.90
    陨硫铁Po≈Pn63.290.0936.3999.9149.88
    陨硫铁Po≈Pn62.870.0636.2599.2249.82
    陨硫铁Po≈Pn63.180.1136.5099.9149.75
    陨硫铁Po≈Pn63.300.0936.4299.8349.86
    陨硫铁Po≈Pn63.110.0536.4499.6849.79
    六方Po≈Pn63.090.030.1136.85100.1249.47
    六方Po≈Pn62.910.0736.4899.5349.67
    六方Po≈Pn62.720.0636.3499.1349.70
    六方Po≈Pn62.750.0736.5199.3749.59
    六方Po≈Pn62.780.0936.6399.5549.51
    六方Po≈Pn63.020.0836.7299.9049.55
    六方Po≈Pn63.050.010.0836.6899.8549.58
    六方Po≈Pn63.200.0236.5899.8449.73
    下载: 导出CSV
    续表2
    钻孔编号矿体编号矿石类型种属矿物特征FeNiCoSTotalFe(原子比)
    zk12-51号矿体海绵陨铁状六方Po≈Pn62.720.0436.4299.2249.64
    六方Po≈Pn62.460.0736.5499.1249.45
    六方Po≈Pn62.870.0636.4999.5449.65
    陨硫铁Po<Pn63.410.0736.58100.1549.80
    陨硫铁Po<Pn63.880.010.0636.48100.5250.05
    陨硫铁Po<Pn63.260.0836.4299.7849.85
    陨硫铁Po>Pn63.440.010.0936.52100.0949.84
    陨硫铁Po>Pn63.880.010.1036.33100.3950.14
    六方Po<Pn63.460.010.0536.72100.2649.74
    六方Po>Pn61.140.090.0838.5899.9547.52
    六方Po>Pn62.010.070.0737.95100.1148.30
    六方Po>Pn60.710.090.0738.3299.2547.52
    六方Po>Pn60.990.120.0738.4199.6447.57
    六方Po>Pn61.820.090.0637.94100.0448.23
    单斜Po60.190.250.1038.8599.4146.90
    单斜Po60.040.260.0938.8499.2446.85
    单斜Po60.420.310.0639.28100.1746.71
    单斜Po60.130.140.0939.3699.7546.59
    单斜Po>Pn59.950.120.0939.1999.4746.63
    单斜Po>Pn59.910.120.0739.6499.8046.33
    单斜Po>Pn60.110.130.0939.6199.9846.43
    单斜Po>Pn59.800.160.0439.2499.2746.54
    zk16-22号矿体浸染状六方Po>Pn63.130.0436.77100.1049.57
    六方Po>Pn62.870.0937.18100.2149.17
    单斜Po≈Pn60.190.030.0739.63100.0546.48
    单斜Po≈Pn60.160.310.0739.58100.1846.42
    单斜Po≈Pn59.750.060.0839.5899.4946.34
    六方Po≈Pn61.080.0638.7599.8947.43
    六方Po≈Pn60.830.0738.9499.8847.21
    六方Po≈Pn61.280.010.0539.17100.5347.25
    单斜Po≈Pn59.800.120.0739.3899.4246.46
    单斜Po>Pn59.910.280.0839.6399.9946.27
    陨硫铁Po>Pn63.220.020.1036.4199.7649.82
    六方Po>Pn61.620.020.0838.65100.4447.70
    六方Po>Pn61.100.0738.4499.6347.64
     注:“–”表示低于检测线0.01%。
    下载: 导出CSV

    表 3  镍黄铁矿电子探针分析结果(%)

    Table 3.  The EPMA results (%) of pentlandite in the Jinchuan deposit

    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk4-524号矿体星点状Po≈Pn31.2833.740.880.030.8132.9599.75
    Po≈Pn31.2234.110.980.010.7833.20100.32
    Po≈Pn32.9231.290.870.770.7033.3799.93
    Po<Pn33.1032.211.050.020.6532.4799.52
    Po<Pn31.9733.601.030.030.3033.11100.14
    海绵陨铁状Po≈Pn31.2132.600.471.150.6933.5499.66
    Po≈Pn35.3329.040.320.180.2634.0799.21
    Po≈Pn30.2936.000.470.050.3333.22100.40
    Po≈Pn31.2332.980.521.810.7233.65100.96
    Po≈Pn31.3234.650.490.160.2833.08100.01
    Po≈Pn30.1935.280.570.210.8333.19100.33
    Po<Pn32.2233.610.400.160.2833.41100.14
    Po<Pn31.3634.370.500.040.3033.79100.35
    Po<Pn31.4434.090.380.080.2933.2399.54
    Pn38.9226.990.330.5831.9898.81
    Pn41.2723.560.440.310.2433.0498.95
    Pn41.1922.440.410.730.5433.9999.32
    下载: 导出CSV
    续表3
    钻孔编号矿体矿石类型矿物特征FeNiCoCuTeSTotal
    zk12-51号矿体星点状Po≈Pn32.9732.580.880.000.7532.80100.02
    Po≈Pn33.0532.530.850.030.7033.17100.38
    Po≈Pn32.9732.980.880.060.7933.18100.88
    Po≈Pn33.8532.080.830.040.6632.98100.46
    Po≈Pn33.1732.650.920.010.2732.93100.00
    Po≈Pn33.3932.360.860.020.7833.31100.79
    Po>Pn35.0629.831.320.040.2933.2899.87
    Po>Pn34.8429.761.910.030.7233.35100.69
    Po>Pn35.6329.481.870.020.7532.98100.78
    Po>Pn35.1029.751.420.020.2433.3799.92
    浸染状Po>Pn34.4131.300.860.010.2532.9599.79
    Po>Pn34.9030.930.850.020.3033.25100.31
    海绵陨铁状Po<Pn33.0732.660.740.010.3033.0799.89
    Po<Pn33.5132.780.780.020.7633.14101.02
    Pn32.9833.230.770.010.3033.09100.38
    Pn35.7230.850.770.070.7133.56101.73
    Pn33.4732.970.780.100.2733.13100.77
    Pn33.4732.150.740.030.2633.41100.09
    Po>Pn32.9431.240.650.030.2632.9498.16
    Po>Pn33.2431.980.620.060.7633.0199.68
    Po>Pn33.2632.260.700.020.6833.18100.14
    Po>Pn33.1232.880.620.7233.09100.50
    Po>Pn33.3832.700.660.010.6832.97100.43
    Po>Pn32.8232.350.670.010.2933.88100.07
    Po>Pn33.0132.260.680.010.2632.8599.08
    Po>Pn32.8232.600.670.020.7833.44100.39
    Po>Pn33.0232.440.680.040.2632.9899.43
    Po>Pn32.4832.180.680.010.7733.3399.52
    Po>Pn32.5832.530.740.3133.3699.56
    Po>Pn32.6332.610.720.030.7533.30100.06
    Po>Pn32.4332.540.710.6733.1499.51
    Po>Pn33.9332.140.640.060.7433.34100.86
    Po>Pn34.0331.610.630.040.7033.33100.41
    Po>Pn33.6431.800.600.050.6733.1599.91
    Po>Pn33.4631.820.650.030.2633.3299.55
    Po>Pn33.9832.230.680.020.7733.34101.05
    Po>Pn32.1933.410.870.030.2933.0099.84
    Po>Pn31.7532.980.830.010.2732.8398.81
    Po>Pn31.9033.570.850.040.8433.65100.91
    Po>Pn30.9734.370.820.030.8233.07100.11
    Po>Pn31.3634.210.810.020.7633.15100.34
    Po>Pn33.6032.830.730.010.7933.47101.52
    Po>Pn33.4032.630.900.100.2633.49100.82
    zk16-22号矿体浸染状Po≈Pn30.5734.120.710.070.7733.4299.68
    Po≈Pn31.9333.721.260.180.8233.06100.98
    Po≈Pn34.4431.291.750.310.2633.45101.57
    Po≈Pn29.0436.470.970.140.3033.27100.27
    Po≈Pn29.9935.841.090.160.3233.11100.54
    Po>Pn28.8438.020.410.030.3233.21100.86
    Po>Pn30.0435.480.990.050.3233.35100.26
    Po>Pn30.5435.630.800.050.2933.22100.60
    Po>Pn28.8636.311.930.050.3133.00100.49
    Po>Pn28.0838.170.650.220.3133.45100.90
     注:“–”表示低于检测限。
    下载: 导出CSV

    表 4  黄铜矿和方黄铜矿矿电子探针分析结果(%)

    Table 4.  The EPMA result (%) of chalcopyrite and cubanite in the Jinchuan deposit

    钻孔编号矿体编号矿石类型矿物种属FeCuNiCoSTotal
    zk4-524号矿体星点状Cb41.0123.820.010.0635.0499.99
    Cb41.1623.500.0435.0999.83
    Ccp30.3534.700.0234.2999.37
    海绵陨铁状Cb41.7622.460.010.0635.2899.64
    Cb41.0723.390.090.0335.38100.01
    Cb44.0118.300.800.0835.0998.31
    zk12-51号矿体星点状矿石Ccp30.8134.850.0734.88100.65
    浸染状矿石Ccp30.6535.100.0334.72100.57
    Ccp30.5035.030.0434.77100.34
    海绵陨铁状Ccp30.2633.970.350.0535.1599.82
    Ccp30.1734.520.150.0434.9899.90
    Ccp30.0434.750.010.0434.4599.39
    Ccp30.6035.160.0234.87100.65
    Ccp30.1634.550.0335.20100.01
    Ccp30.6233.950.010.0133.8998.54
    Ccp30.7034.530.0134.75100.06
    Ccp31.1334.400.020.0334.71100.30
    zk16-22号矿体星点状矿化Cb42.8620.620.230.0534.6198.40
    浸染状矿石Cb41.0323.640.070.0634.8899.70
     注:“–”表示低于检测限。
    下载: 导出CSV
  • 丁瑞颖. 甘肃金川镍铜铂岩浆硫化物矿床Ⅱ矿区矿物特征研究[M]. 西安:长安大学, 2012: 1−96

    DING Ruiying. Study on mineral characteristics of Segment Ⅱ, Jinchuan Ni-Cu(PGE) sulfide deposits, Gansu Province[M]. Xi’an: Chang’an University, 2012: 1−96.

    丰成友, 张德全, 党兴彦. 中国钴资源及其开发利用概况[J]. 矿床地质, 2004, 23(1): 93-100

    FENG Chengyou, ZHANG Dequan, DANG Xingyan. Cobalt resources of China and their exploration and utilization[J]. Mineral Deposit, 2004, 23(1): 93-100.

    甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984: 1−229.

    SGU(the sixth geological unit of the geological survey of Gansu Province). Geology of the Baijiazuizi Cu-Ni sulfide deposit[M]. Beijing: Geological Publishing House, 1984: 1−225.

    李仔栓. 甘肃金川铜镍矿矿相学、成矿与成矿关系研究[M]. 北京: 中国地质大学(北京), 2018: 1−47

    LI Zishuan. Study on the mineragraphy, relationship between diagenesis and mineralization on Jinchuan Copper-Nickel deposit in Gansu[M]. China University of Geosciences(Beijing), 2018: 1−47.

    刘超, 王亚磊, 张照伟, 等. 东昆仑夏日哈木矿床镍黄铁矿、磁黄铁矿成因认识及钴赋存特征[J]. 西北地质, 2020, 53(2): 183-199

    LIU Chao, WANG Yalei, ZHANG Zhaowei, et al. The Genetic significance of Pentlandite and Pyrrhotite and the characteristics of cobalt occurrence in Xiarihamu cobalt-nickel deposit of Eastern Kunlun[J]. Northwestern Geology, 2020, 53(2): 183-199.

    卢宜冠, 涂家润, 孙凯, 等. 中非赞比亚成矿带谦比希通钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 2021, 28(3): 338-354

    LU Yiguan, TU Jiarun, SUN Kai, et al. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian Copperbelt, Central Africa[J]. Earth Science Frontiers, 2021, 28(3): 338-354.

    慕纪录. 新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制[J]. 矿物岩石, 1996, 16(1): 58-67

    MO Jilu. On the characteristics and forming mechanism of the rich and shallow-seated ores in the Huangshan Ni-Cu sulfide deposit, Hami, Xinjiang[J]. Mineral Petro, 1996, 16(1): 58-67.

    秦克章, 丁奎首, 许英霞, 等. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 2007, 26(1): 1-14 doi: 10.3969/j.issn.0258-7106.2007.01.001

    QIN Kezhang, DING Kuishou, XU Yingxia, et al. Ore potential of protoliths and modes of Co-Ni occurrence in Tulaergen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 2007, 26(1): 1-14. doi: 10.3969/j.issn.0258-7106.2007.01.001

    芮会超, 焦建刚, 靳树芳. 金川铜镍硫化物矿床磁黄铁矿矿物学特征及成因意义[J]. 矿床地质, 2017, 36(2): 501-514 doi: 10.16111/j.0258-7106.2017.02.015

    RUI Huichao, JIAO Jiangang, JIN Shufang. Typomorphic characteristics and genetic significance of pyrrhotite in Jinchuan Cu-Ni sulfide deposit[J]. Mineral Deposit, 2017, 36(2): 501-514. doi: 10.16111/j.0258-7106.2017.02.015

    孙燕, 帅德权, 慕纪录, 等. 新疆黄山铜镍成矿带中含镍系列矿物成分特征[J]. 成都理工学院学报, 1996, 23(2): 19-20

    SUN Yan, SHUAI Dequan, MU Jilu, et al. Composition characteristics of the nickel ferrous series in the Cu-Ni mineralization zone, Huangshan, Xinjiang[J]. Journal of Chengdu Institute Technology, 1996, 23(2): 19-20.

    汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 1−209

    TANG Zhongli, LI Wenyuan. The metallogenetic model and geological characteristics of the Jinchuan Pt-bearing Ni-Cu sulfide deposit[M]. Beijing: Geological Publishing House, 1995: 1−209.

    王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750.

    WANG Hui, FENG Chengyou, ZHANG Mingyu. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 730-750.

    王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825-3838 doi: 10.1360/TB-2020-0202

    WANG Yan, ZHONG Hong, CAO Yonghua, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825-3838. doi: 10.1360/TB-2020-0202

    乌顿布格, 伯克. 金属矿物显微镜鉴定表[M]. 北京: 地质出版社, 1975

    W. U. E. A. Burke. Tables for Microscopic identification of ore minerals. Beijing: Geological Publishing House, 1975.

    徐昱, 王建平, 吴景荣. 我国钴资源现状及进口分析[J]. 矿业研究与开发, 2014, 34(5): 112-132

    XU Yu, WANG Jianping, WU Jingrong. Analysis on status of cobalt resources with its import and export in China[J]. Mining R&D, 2014, 34(5): 112-132.

    翟明国, 胡波. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1): 1-11.

    ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1): 1-11.

    张宗清, 杜安道, 唐索寒, 等. 金川铜镍矿床年龄和源区同位素地球化学特征[J]. 地质学报, 2004, 78(3): 359-365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    ZHANG Zongqing, DU Andao, TANG Suohan, et al. Age of the Jinchuan copper-nickel deposit and isotopic geochemical feature of its sources[J]. Acta Geological Sinica, 2004, 78(3): 359-365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500 doi: 10.1360/N972019-00134

    ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 2484-2500. doi: 10.1360/N972019-00134

    郑建平, 周新华. 华北岩石圈地幔岩石学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(4): 392-401 doi: 10.3969/j.issn.1007-2802.2013.04.002

    ZHENG Jianping, ZHOU Xinhua. Research progress of petrology of the lithospheric mantle in North China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 392-401. doi: 10.3969/j.issn.1007-2802.2013.04.002

    Arnold R G. Range in composition and structure of 82 natural terrestrial pyrrhotites[J]. Canadian Mineral, 1967, 9: 31-50.

    Aulbach S, Griffin W L, Pearson N J, et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrystal[J]. Chemical Geology, 2004, 208: 61-88. doi: 10.1016/j.chemgeo.2004.04.006

    Barnes S J. Ripley E M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits[J]. Reviews in Mineralogy&Geochemistry, 2016, 81: 725-774.

    Barnes S J. Zientek R A. Platinum-group element, gold, silver, and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia[J]. Contribution to Mineral Petrology, 2006, 152: 187-200. doi: 10.1007/s00410-006-0100-9

    Chen L M, Song X Y, Danyushevsky L V, et al. A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu deposit, NW China[J]. Ore Geology Reviews, 2015, 65: 955-967. doi: 10.1016/j.oregeorev.2014.07.011

    Davies R M, Griffin W L, O’Reilly S Y, et al. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, D018, DD17, and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 2004, 77: 39-55.

    Duan J, Li C, Qian Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Miner Deposita, 2016, 51: 557−574.

    Etschmann B, Pring A, Putnis A, et al. A kinetic study of the exsolution of pentlandite (Ni, Fe) 9S8 from the monosulfide solid solution (Fe, Ni)S[J]. American Mineralogy, 2004, 89(1): 39–50. doi: 10.2138/am-2004-0106

    Gaetani G A, Groove T I. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars[J]. Geochim, Gosmochim, Acta, 1997, 61: 1829-1846. doi: 10.1016/S0016-7037(97)00033-1

    Han Yixiao, Liu Yunhua, Li Wenyuan. Minerals in Xiarihamu nickel-cobalt deposit, East Kunlun Orogen, China[J]. Frontiers in Earth Science, 2021, 8: 597469.

    Helmy H M, Botcharnikov R, Ballhaus C, et al. Evolution of magmatic sulfide liquids: how and when base metal sulfide crystallize?[J]. Contribution to Mineralogy and Petrology, 2021, 176: 107. Doi:https://doi.org/10.1007/s00410-021-01868-4

    Hughes H S R, McDonald L, Faithfull J W, et al. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle[J]. Lithos, 2016, 240-243: 202-227. doi: 10.1016/j.lithos.2015.11.007

    Li C, Ripley E M. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications[J]. Economic Geology, 2009, 104: 405-412. doi: 10.2113/gsecongeo.104.3.405

    Li C, Ripley E M. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis and exploration implications[J]. Economic Geology, 2011, 17: 163-180.

    Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth Planetary Science Letter, 2012, 355–356: 327–340.

    Naldrett A J. Fundamentals of magmatic sulfide deposits. Review Economic Geology, 2011, 17: 1−50.

    Patten C, Barnes S J, Mathez E A, et al. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets[J]. Chemical Geology, 2013, 358: 170-188. doi: 10.1016/j.chemgeo.2013.08.040

    Peach C L, Mathez E A, Keays R R. Sulfide melt silicate melt distribution coefficients for noble-metals and other chalcophile elements as deduced from MORB-implication for partial melting[J]. Geochim. Gosmochim. Acta, 1990, 54: 3379-3389. doi: 10.1016/0016-7037(90)90292-S

    Pearson D G, Canil D, Shirey S B. Mantle samples included in volcanic rocks: xenoliths and diamonds, Treatise on Geochemistry, 2003, 2: 171−275.

    Rajamani V, Naldrett A J. Partitioning of Fe、Co、Ni、and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits[J]. Economic Geology, 1978, 73: 82-93. doi: 10.2113/gsecongeo.73.1.82

    Schulz K J, DeYoung J H, Seal R R, et al. Critical mineral resources of the United States—Economic and environment geology and prospects for future supply. US Geological Survey Professional Paper Series, 2018, 1802: 1−797.

    Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts[J]. Nature, 2006, 434: 590-597.

    Tang Z L, Song X Y, Su S G. Ni-Cu deposits related to high Mg basaltic magma, Jinchuan, western China. In: Li C, Ripley EM (eds) New developments in magmatic Ni-Cu and PGE deposits. Beijing : Geological Publishing House, 2009: 121−140.

    Wang K L, O’Reilly S Y, Honda M, et al. Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: footprints of Proterozoic mantle plumes under the Cathaysia Block[J]. Journal of Asian Earth Sciences, 2010, 37: 229-245. doi: 10.1016/j.jseaes.2009.08.008

  • 加载中

(9)

(6)

计量
  • 文章访问数:  1696
  • PDF下载数:  93
  • 施引文献:  0
出版历程
收稿日期:  2022-10-13
修回日期:  2023-02-20
刊出日期:  2023-04-20

目录