Hydrothermal Alteration Characteristics and Migration Rules of Trace Elements in the North Sanshandao Sea Gold Deposit, Shandong, China
-
摘要:
胶东地区是中国最重要的金矿矿集区,区内众多大型–超大型金矿集中产出,已探明金矿资源量占全国30%以上。构造蚀变岩型金矿是胶东区内重要的类型之一,三山岛北部海域金矿是该类型的典型代表。胶东三山岛北部海域金矿是近年来新发现的超大型金矿,对该矿床的蚀变岩石进行研究具有重要意义。通过详实地岩心编录与室内研究,查明了该矿床的主要蚀变类型及矿物组合特征,系统采集了典型蚀变岩石样品并进行了微量元素地球化学分析,运用质量平衡技术方法总结了热液蚀变过程中的元素迁移规律,同时探讨了黄铁绢英岩中微量元素特征。结果表明,在标高−1200~−1400 m 范围内蚀变强烈。蚀变类型有钾化、绢英岩化和黄铁绢英岩化等,其中与成矿关系最为密切的是绢英岩化和黄铁绢英岩化;从原岩到黄铁绢英岩的整个蚀变过程中,流体向围岩提供了大量(迁移量>2)的As、Sb、Te等低温元素,中量(迁移量为1~2)的Pb、Zn、Cu等中温元素,少量(迁移量<1)的Co、Ni、Cr等高温元素,表明在标高−1200~−1400 m处,流体以中低温元素组合为主,预测−1200~−1400 m处矿体仍处于中上部,深部还有很好的找矿潜力。
Abstract:Jiaodong area, the most important gold province in China, is an area with concentration occurrence of large and super large gold deposits, the proved reserves in Jiaodong Peninsula account for more than 30% of the country. The fracture zone altered type gold deposit is one of the important types in the area; The Sanshandao North Sea gold deposit is a typical representative of this type. This gold deposit is a super-large gold deposit newly discovered in recent years, it is important to study the eroded rock of this deposit. Based on the detailed rock core compilation and interior study, the main corrosion type and mineral combination characteristics were identified. Samples of typical eroded rock were collected and underwent trace element geochemical analysis, the element migration rules in the hydrothermal erosion are summarized by mass balance technique, and the characteristics of trace elements in beresite are also discussed. The results show that, in the elevation range-1200 to-1400 m, corrosion types are kalification, sericitization and beresitization. Among them, the most closely related to mineralization are sericitization and beresitization. From the original rock to the beresite, the fluid provides a large number of low temperature elements (migration value > 2) such as As, Sb, Te, moderate medium temperature elements (migration values are 1~2) such as Pb, Zn, Cu, and a small number of high temperature elements (migration value <1) such as Co, Ni, and Cr. It is shown that at-20 −1200 to −1400 m, it is predicted that the ore body at −1200 to −1400 meters is still in the upper middle part, and there is still good prospecting potential in the depth.
-
Key words:
- hydrothermal alteration /
- mass balance /
- gold deposit /
- Jiaodong
-
图 1 胶西北区域地质略图(据宋明春,2015修改)
Figure 1.
图 2 三山岛北部海域金矿地质图(据王建等,2020修改)
Figure 2.
图 7 黄铁绢英岩化阶段主要微量元素成分特征图解(据于洪军等,2011编修)
Figure 7.
表 1 三山岛北部海域金矿岩石微量元素含量表(10−6)
Table 1. Compositions of trace elements of rocks in the super lager Sanshandao North Sea gold deposit (10−6)
岩性 二长花岗岩 绢英岩 黄铁绢英岩 样号 H1169 H1172 均值 H1200 H1358 H1366 H1425 均值 H1186 H1388 H1392 H1417 均值 Ag 0.071 0.035 0.053 0.510 0.820 1.660 0.870 0.965 10.300 20.900 8.310 12.300 12.953 As 3.400 0.470 1.935 34.900 33.700 98.600 25.800 48.250 2241.000 935.000 203.000 122.000 875.250 Pb 34.000 35.000 34.500 52.400 113.000 174.000 58.600 99.500 226.000 107.000 268.000 596.000 299.250 Zn 82.800 36.000 59.400 16.400 380.000 112.000 31.500 134.975 97.200 39.400 23.600 8.550 42.188 Cu 25.300 3.000 14.150 20.900 42.400 38.600 60.600 40.625 107.000 483.000 23.100 61.700 168.700 W 1.430 0.170 0.800 0.810 2.440 3.590 3.900 2.685 1.390 1.890 5.140 3.150 2.893 Mo 0.420 0.950 0.685 0.540 0.520 0.290 1.030 0.595 0.590 0.950 0.460 0.760 0.690 Co 2.940 0.960 1.950 4.850 2.330 1.990 5.040 3.553 3.370 3.950 6.100 5.120 4.635 Ni 27.600 1.840 14.720 22.900 23.300 18.400 42.100 26.675 29.500 35.000 12.600 30.900 27.000 Cr 200.000 120.000 160.000 197.000 245.000 185.000 469.000 274.000 310.000 308.000 89.100 220.000 231.775 Sb 0.051 0.280 0.166 0.330 0.740 1.120 0.29 0 0.620 8.600 1.760 0.930 0.260 2.888 Bi 0.020 0.580 0.300 0.380 0.780 1.270 2.010 1.110 3.470 7.370 18.900 24.100 13.460 Hg 0.007 0.008 0.0075 0.008 0.0140 0.008 0.005 0.009 0.011 0.014 0.007 0.004 0.009 Ti 738.000 624.000 681.000 751.000 590.000 1045.000 521.000 726.750 749.000 336.000 908.000 496.000 622.250 Sn 1.850 2.000 1.925 2.300 2.910 2.430 5.180 3.205 2.270 2.010 1.720 3.400 2.350 Te 0.003 0.008 0.006 0.071 0.004 0.003 0.082 0.040 0.011 0.062 0.051 0.053 0.044 表 2 三山岛北部海域金矿构造蚀变带微量元素化学成分迁移表
Table 2. Trace elements migration of alteration zone in the Shanshandao North Sea gold deposit
成分 Xgp(原岩-绢英岩化) Xgp(绢英岩化-黄铁绢英岩化) Ag 16.91 14.66 As 23.51 20.17 Pb 1.84 2.51 Zn 1.23 −0.65 Cu 1.82 3.85 W 2.30 0.26 Mo −0.15 0.35 Co 0.79 0.52 Ni 0.78 0.18 Cr 0.68 −0.01 Sb 2.67 4.44 Bi 2.64 13.15 Hg 0.18 0.17 Sn 0.64 −0.14 Te 5.55 0.28 -
陈衍景, Pirajno F, 赖勇, 等. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 2004, 20(4): 907‒922.
CHEN YanJing, Pirajno F, LAI Yong, et al. Timing and tectonic setting of large-scale mineralization in the Jiaodong Ore Set [J]. Journal of Petrology, 2004, 20(4): 907-922.
邓军, 徐守礼, 方云, 等. 胶东西北部构造体系及金成矿动力学[M]. 北京: 地质出版社, 1996: 1−98
DENG Jun, XU Shouli, FANG Yun, et al. Tectonic system and gold mineralization dynamics in northwestern Jiaodong [M]. Beijing: Geological Press, 1996: 1−98.
高建伟, 滕超, 赵国春, 等. 山东金翅岭金矿蚀变特征与元素迁移规律[J]. 现代地质, 2019, 33(5): 1036-1045 doi: 10.19657/j.geoscience.1000-8527.2019.05.10
GAO Jianwei, TENG Chao, ZHAO Guochun, et al. The Alteration Characteristics and Element Migration Law of the Jinchiling Gold Deposit, Shandong Province [J]. Geoscience, 2019, 33(5): 1036-1045. doi: 10.19657/j.geoscience.1000-8527.2019.05.10
高建伟, 申俊峰, 李国武, 等. 胶东三山岛北部海域金矿黄铁矿晶胞参数与热电性特征[J]. 矿物岩石地球化学通报, 2020, 39(6): 1205-1214 doi: 10.19658/j.issn.1007-2802.2020.39.090
GAO Jianwei, SHEN Junfeng, LI Guowu, et al. Characteristics of Cell Parameters and Thermoelectricity of the Pyrite in the Sanshandao North Offshore Gold Deposit, Shandong Province, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1205-1214. doi: 10.19658/j.issn.1007-2802.2020.39.090
郭彬, 刘帅, 陈自辉. 山东莱州三仓成矿带地质特征与构造岩相研究[J]. 矿产与地质, 2010, 24(5): 395‒398.
GUO Bin, LIU Shuai, CHEN Zihui. Research on geological characteristics and structural lithofacies of Sancang metallogenic belt in Laizhou, Shandong[J]. Minerals and Geology, 2010, 24(5): 395-398.
姜晓辉, 范宏瑞, 胡芳芳, 等. 胶东三山岛金矿中深部成矿流体对比及矿床成因[J]. 岩石学报, 2011, 27(5): 1327‒1340.
JIANG Xiaohui, FAN Hongrui, HU Fangfang, et al. Comparative studies on fluid inclusion in different depths and ore genesis of the Sanshandao gold deposit, Jiaodong Peninsula[J]. Acta Petrologica Sinica, 2011, 27(5): 1327-1340.
林祖苇, 赵新福, 熊乐, 等. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399‒413.
LIN Zuwei, ZHAO Xinfu, XIONG Le, et al. In-situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis[J]. Advances in Earth Science, 2019, 34(4): 399-413.
刘日富, 周鑫, 吕雨璐, 等. 胶东三山岛‒仓上断裂带控矿规律与找矿勘查实践[J]. 地质与勘探, 2019, 55(2): 528‒541.
LIU Rifu, ZHOU Xin, LV Yulu, et al. Ore-Controlling Regularity and Prospecting Practice in the Sanshandao-Cangshang Fault Zone, Jiaodong Area[J]. Geology and Exploration, 2019, 55(2): 528-541.
刘洋, 张海东, 王金雅. 胶东地区夏甸金矿床构造蚀变带元素质量迁移与Au沉淀关系研究[J]. 西北地质, 2017, 50(04): 176-185 doi: 10.3969/j.issn.1009-6248.2017.04.019
LIU Yang, ZHANG Haidong, WANG Jinya. Elements Migration in Tectonic-alteration Zones of the Xiadian Gold Deposit, Eastern Shandong Province and Its Relationship with Au Precipitation[J]. Northwestern Geology, 2017, 50(04): 176-185. doi: 10.3969/j.issn.1009-6248.2017.04.019
吕古贤, 郭涛, 舒斌, 等. 胶东金矿集中区构造控岩控矿地质特征研究[J]. 地球学报, 2006, 27(5): 471‒478.
LV Guxian, GUO Tao, SHU Bin, et al. Geological Characteristics of Rock-controlling and Ore-controlling Structures in the Jiaodong Gold Ore Concentration Area [J]. Journal of Earth Sciences, 2006, 27(5): 471-478.
吕古贤. 胶东玲珑—焦家式金矿床矿源岩系(序)列研究[J]. 地质地球化学, 2001, 29(3): 140‒143.
LV Guxian. Research on ore source series of the linglong-jiaojia-type gold deposits [J]. Geological Geochemistry, 2001, 29(3): 140-143.
宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 地质学报, 2015, 89(2): 365‒383.
SONG Mingchun. , ZHANG Jjunjin. , ZHANG Pijian. , et al. Discovery and Tectonic-Magmatic Background of Superlarge Gold Deposit in Offshore of Northern Sanshandao, Shandong Peninsula, China[J]. Acta Geologica Sinica, 2015, 89(2): 365-383.
王建, 朱立新, 马生明, 等. 胶东三山岛北部海域金矿床热液蚀变作用研究[J]. 地质通报, 2020, (39)11: 1807-1826
WANG Jian, ZHU Lixin, MA Shengming, et al. Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province. Geological Bulletin of China, 2020, 39(11): 1807-1826.
王中亮, 龚庆杰, 杨立强, 等. 胶东望儿山金矿床构造-热事件时序: 野外地质证据[J]. 地质与勘探, 2011, 47(6): 1067‒1076.
WANG Zhongliang, GONG Qingjie, YANG Liqiang, et al. Timing of Structural-thermal Events in the Wang’ershan Gold Deposit, Eastern Shandong: Evidence from Field Investigations[J]. Geology and Exploration, 2011, 47(6): 1067-1076.
吴晋超, 申俊峰, 申玉科, 等. 胶东黑岚沟金矿田黄铁矿热电性研究及深部成矿预测[J]. 西北地质, 2021, 54(02): 111-125 doi: 10.19751/j.cnki.61-1149/p.2021.02.009
WU Jinchao, SHEN Junfeng, SHEN Yuke, et al. The Rmoelectricity Property and Deep Metallogenic Forecast of Pyrite in Heilangou Gold Field of Jiaodong, Shandong Province[J]. Northwestern Geology, 2021, 54(02): 111-125. doi: 10.19751/j.cnki.61-1149/p.2021.02.009
杨奎锋, 朱继托, 程胜红, 等. 胶东三山岛金矿构造控矿规律研究[J]. 大地构造与成矿学, 2017, 41(2): 272‒282.
YANG Kuifeng, ZHU Jito, CHENG Sheng Hong, et al. Structural Controls of the Sanshandao Gold Deposit in the Northwestern Jiaodong District, China [J]. Geotectonica et Metallogenia, 2017, 41(2): 272-282.
于洪军, 申俊峰, 王磊, 等. 玲珑金矿黄铁矿热电性与微量元素标型及深部金矿化评价[J]. 地质与勘探, 2011, (47)4: 615-623
YU Hongjun, SHEN Junfeng, WANG Lei, et al. Thermoelectricity and Trace Elements Typomorphism of Pyrite and Evaluation of Deep Gold Mineralization in the Linglong Gold Deposit[J]. Geology and Exploration, 2011, (47)4: 615-623.
张可清, 杨勇. 蚀变岩质量平衡计算方法介绍[J]. 地质科技情报, 2002, 21(3): 104-107
ZHANG Keqing, YANG Yong. Introduction of the method for mass balance calculation in altered rocks[J]. Geological Science and Technology Information, 2002, 21(3): 104-107.
Deng Jun, Wang Qingfei. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework [J]. Gondwana Research, 2016, 36: 219‒274. doi: 10.1016/j.gr.2015.10.003
Gong Qingjie, Deng Jun, Yang Liqiang, et al. Behavior of major and trace elements during weathering of sericite-quartz schist [J]. Journal of Asian Earth Sciences, 2011, 42: 1-13. doi: 10.1016/j.jseaes.2011.03.003
Grant J A. The isocon diagram-a simple solution to Gresens equation for metasomatic alteration [J]. Economic Geology, 1986, 81(8): 1976-1982. doi: 10.2113/gsecongeo.81.8.1976
Gresens R L. Composition-volume relationships of metasomatism [J]. Chemical Geology, 1967, (2): 47-65.
Yang Kuifeng, Fan Hongrui, Santosh M, et al. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 2012, 146‒147: 112‒127.
Zhai Mingguo, Santosh M. The early Precambrian odyssey of the North China Craton: A synoptic overview [J]. Gondwana Research, 2011, 20(1): 6‒25. doi: 10.1016/j.gr.2011.02.005