Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt
-
摘要:
巴什尔希花岗杂岩体侵位于东昆仑北部与南阿尔金造山带的结合部位。角闪二长花岗岩和灰色二长花岗岩均采自巴什尔希岩体中细粒状似斑状二长花岗岩单元。锆石LA–ICP–MS年代学研究显示其成岩年龄分别为(452.8±3.1) Ma和(454.2±4.8) Ma,后者还获得了一组残留核年龄为(758 ± 15) Ma。样品具有高SiO2含量(71.97%~73.49%和73.28%~74.12%)和高K2O含量(4.80% ~ 5.61%和5.57%~5.79%)的特点,Na2O含量分别为3.01%~3.13%和2.83%~2.91%, CaO含量低,A/CNK 均为1.02~1.07,属于弱过铝质系列花岗岩。稀土配分模式呈 “海鸥型”分布,LREE/HREE值分别为17.80~26.06和9.09~11.79,轻重稀土分馏程度较高,δEu值为 0.31~0.44,中等负Eu异常;富集大离子亲石元素Rb、K、U、Pb,亏损高场强元素 Zr、Hf、Nb、Ta、P、Ti。样品均具有高Si、富碱、相对贫Na、高K、低Ca的岩石地球化学特征。锆石的εHf(t)值为0.86~−8.65,绝大多数为负值,tDM2值为1280~1734 Ma,指示源岩物质源于古中元古代地壳物质。岩浆起源温度均为~800 ℃,熔融压力为0.8~1.0 GPa,表明可能形成于碰撞造山后的初始伸展阶段。通过与南阿尔金以及东昆仑北缘祁漫塔格地区早古生代地质演化历史对比,认为该杂岩体的形成时代、岩浆序列和构造背景与南阿尔金构造域更具亲缘性。
Abstract:The Bashenerxi granitic complex intruded at the junction of East Kunlun and South Altyn orogenic belt. In this paper, the hornblende monzogranite and the gray monzonitic granite are both derived from the porphyritic monzogranite unit in the Bashenerxi intrusion. Zircon LA–ICP–MS geochronology shows that the diagenetic ages are (452.8±3.1) Ma and (454.2±4.8) Ma, respectively. A group of age (758±15) Ma is concentrated in the core of zircon. The content of SiO2 is between 71.97% and 74.12%, A/CNK =1.02~1.07, K2O = 4.80%~5.79%, and Na2O =2.83%~3.13%, which belongs to high–silica, high–potassium and peraluminous granites. The distribution pattern of rare earth elements is characterized by “gull type” distribution with strong negative europium anomaly (δEu=0. 31~0.44), enrichment of large ion lithophile elements Rb, K, U, Pb and high field strength elements Zr, Hf, Nb, Ta, and loss of Sr, P, Ti. Zirconium saturation thermometer show that the magma origin temperature was about 800 ℃, and the melting pressure was about 0.8~1.0 GPa. The samples are characterized by peraluminous, alkali rich, relatively poor in sodium, high in potassium and low in calcium. and they are strongly depleted in Ba, Sr, Ti, P and Eu, according this characterized, rock was judged to be S–type granite. The epsilon εHf(t)value of the rocks is 0.86~−8.65. The age of the two–stage Hf model (tDM2) = 1280~1784 Ma, mainly derived from the Paleo–Mesoproterozoic accretive crust. Based on the regional tectonic evolution and tectonic discrimination, it is considered that the rocks were formed after the Altyn deep subduction continental crust plate was broken off, and the regional tectonic background changed from compression to extension.
-
Key words:
- Bashenerxi /
- monzogranite /
- petrogenesis /
- tectonic setting
-
-
图 1 东昆仑巴什尔希区域地质图(据黎敦朋,2010修编)
Figure 1.
图 4 角闪二长花岗岩和灰色二长花岗岩稀土模式图(a)和微量元素蛛网图(b)(原始地幔值据Sun et al.,1989)
Figure 4.
表 1 角闪二长花岗岩和灰色二长花岗岩地球化学组成(主量元素:%;微量元素:10−6)
Table 1. Element compositions of granite (Major element: %; Trace element: 10−6)
元素 13A-18(a) 13A-18(b) 13A-18(c) 13A-18(d) 13A-18(e) 13A-18(g) 13A-19(a) 13A-19(b) 13A-19(c) 13A-19(d) 13A-19(e) 13A-19(f) SiO2 72.09 73.49 73.22 71.97 72.67 72.31 73.67 74.12 73.49 73.84 73.28 73.83 TiO2 0.26 0.29 0.24 0.32 0.31 0.33 0.19 0.20 0.20 0.20 0.19 0.18 Al2O3 13.98 13.09 13.51 13.76 13.55 13.48 13.61 13.53 13.64 13.61 13.65 13.48 Fe2O3t 2.01 2.14 1.74 2.36 2.45 2.21 1.57 1.54 1.53 1.56 1.55 1.51 MnO 0.04 0.05 0.03 0.04 0.05 0.04 0.02 0.03 0.03 0.03 0.03 0.03 MgO 0.34 0.36 0.29 0.42 0.38 0.38 0.30 0.31 0.28 0.30 0.31 0.28 CaO 1.18 1.17 0.92 1.21 1.24 1.21 0.99 1.11 1.17 1.17 1.08 1.06 Na2O 3.13 3.10 3.01 3.04 3.06 3.08 2.91 2.90 2.86 2.90 2.89 2.83 K2O 5.51 4.80 5.61 5.19 5.38 5.45 5.75 5.57 5.64 5.60 5.60 5.79 P2O5 0.08 0.08 0.08 0.10 0.10 0.10 0.07 0.07 0.06 0.07 0.07 0.07 LOI 1.07 1.19 0.92 1.10 0.87 1.02 0.88 0.94 0.82 0.93 0.91 0.94 TOTAL 99.69 99.76 99.57 99.51 100.1 99.61 99.96 100.3 99.72 100.2 99.56 100.0 Li 31.2 28.6 26.3 33.1 37.6 24.6 41.8 47.6 45.6 42.2 44.4 43.9 Be 4.53 4.84 4.10 4.69 4.23 4.89 2.99 4.10 3.38 3.95 3.63 3.45 Sc 3.38 3.67 2.69 3.54 5.54 3.42 3.14 3.21 2.89 2.93 3.20 2.84 V 12.9 13.3 9.65 16.0 14.1 13.7 8.46 8.09 8.22 8.08 8.15 7.71 Cr 6.52 5.63 6.82 4.12 4.33 4.55 5.64 7.20 7.00 3.49 5.00 3.19 Co 19.2 32.2 33.2 20.2 24.5 35.9 32.3 36.2 33.4 34.8 35.9 26.4 Ni 2.33 3.69 4.05 2.38 2.59 2.88 4.93 4.32 4.11 2.39 3.29 2.06 Cu 1.56 2.21 1.54 2.53 4.10 1.81 1.41 1.10 1.16 1.03 1.00 1.01 Zn 32.7 38.4 29.6 38.0 43.5 37.8 29.3 33.4 31.3 35.7 31.9 29.8 Ga 20.8 20.0 19.4 21.5 21.1 20.3 18.6 19.4 18.8 19.0 18.7 18.2 Ge 1.57 1.36 1.48 1.52 1.54 1.44 1.53 1.62 1.60 1.61 1.53 1.57 Rb 203 183 187 178 206 208 235 214 224 198 223 240 Sr 80.7 73.9 75.9 83.9 79.6 79.5 86.1 77.5 78.6 79.5 80.2 76.0 Y 27.6 31.3 20.2 25.1 26.8 23.9 36.0 38.3 33.0 34.1 29.7 33.0 Zr 231 230 190 284 239 252 171 172 171 169 171 164 Nb 27.6 30.0 23.9 34.6 33.2 38.1 27.2 30.5 29.4 31.3 29.5 30.4 Cs 2.75 2.46 1.72 2.57 3.48 1.54 4.83 4.09 6.47 3.61 5.17 3.57 Ba 478 313 393 412 385 424 393 361 384 373 402 370 La 56.4 65.7 51.2 65.0 65.1 64.6 50.4 50.7 54.1 56.8 60.4 50.7 Ce 110 129 101 126 128 122 96.9 98.2 104 106 114 98.4 Pr 12.4 14.6 11.4 14.5 14.8 14.2 11.1 11.2 11.8 12.1 13.0 11.0 Nd 42.1 51.2 38.4 50.1 51.2 48.6 37.9 38.5 40.8 42.2 45.9 38.7 Sm 7.30 8.70 6.54 8.94 9.39 8.27 7.60 7.86 8.15 8.24 8.77 7.69 Eu 0.95 0.88 0.88 1.00 0.94 0.97 0.77 0.77 0.81 0.80 0.83 0.76 Gd 6.00 7.01 5.25 7.13 7.48 6.83 6.75 6.98 7.02 7.22 7.34 6.78 续表1 元素 13A-18(a) 13A-18(b) 13A-18(c) 13A-18(d) 13A-18(e) 13A-18(g) 13A-19(a) 13A-19(b) 13A-19(c) 13A-19(d) 13A-19(e) 13A-19(f) Tb 0.83 1.00 0.68 0.91 0.98 0.91 1.03 1.07 1.01 1.02 1.03 0.97 Dy 4.67 5.53 3.62 4.72 5.13 4.67 5.89 6.17 5.60 5.67 5.47 5.43 Ho 0.85 1.04 0.64 0.82 0.88 0.79 1.12 1.16 1.03 1.05 0.98 1.02 Er 2.49 2.97 1.82 2.25 2.37 2.14 3.14 3.33 2.82 2.92 2.65 2.88 Tm 0.37 0.42 0.25 0.30 0.32 0.30 0.46 0.49 0.42 0.42 0.38 0.42 Yb 2.27 2.52 1.54 1.79 1.97 1.88 2.96 3.15 2.66 2.72 2.42 2.72 Lu 0.31 0.34 0.23 0.26 0.27 0.28 0.42 0.45 0.39 0.39 0.35 0.38 Hf 5.54 5.79 4.81 6.76 5.72 6.12 4.61 4.63 4.73 4.56 4.81 4.45 Ta 2.32 2.23 1.43 1.84 1.87 2.37 1.87 2.52 2.23 2.79 2.24 2.61 Pb 22.7 18.9 17.6 19.0 19.4 18.1 27.1 27.6 29.2 30.2 32.6 29.8 Th 23.3 29.6 24.8 27.3 26.3 26.8 29.6 34.1 33.7 34.7 34.9 33.3 U 1.67 2.09 1.43 1.34 1.86 1.51 2.14 2.90 2.26 2.41 7.96 2.22 ΣREE 230 270 209 266 270 258 226 230 241 247 264 228 LREE 17.80 20.83 14.03 18.17 19.42 17.80 204.6 207.3 219.7 225.9 243.1 207.2 HREE 12.90 12.98 14.90 14.62 13.90 14.52 21.78 22.80 20.95 21.41 20.63 20.61 LREE/HREE 17.80 18.69 23.86 26.06 23.66 24.69 9.40 9.09 10.49 10.55 11.79 10.05 LaN/YbN 0.44 0.35 0.46 0.38 0.34 0.40 12.19 11.56 14.57 14.96 17.89 13.37 δEu 0.43 0.33 0.44 0.37 0.33 0.39 0.32 0.31 0.32 0.31 0.31 0.32 δCe 0.98 0.98 0.98 0.97 0.97 0.94 0.96 0.97 0.97 0.94 0.95 0.97 δ 2.57 2.05 2.46 2.34 2.40 2.48 2.45 2.31 2.37 2.34 2.38 2.41 Al2O3/TiO2 53.77 45.14 56.29 43.00 43.71 40.85 71.63 67.65 68.20 68.05 71.84 74.89 CaO/Na2O 0.38 0.38 0.31 0.40 0.41 0.39 0.34 0.38 0.41 0.40 0.37 0.37 K2O/Na2O 1.76 1.55 1.86 1.71 1.76 1.77 1.98 1.92 1.97 1.93 1.94 2.05 Rb/Ba 0.42 0.58 0.48 0.43 0.53 0.49 0.60 0.59 0.58 0.53 0.56 0.65 Sr/Ba 0.17 0.24 0.19 0.20 0.21 0.19 0.22 0.21 0.20 0.21 0.20 0.21 A/CNK 1.05 1.05 1.06 1.07 1.03 1.02 1.06 1.06 1.05 1.05 1.07 1.05 注: A/CNK = Al2O3 / (CaO + K2O + Na2O); δ =(K2O+Na2O)2 / (SiO2 -43); δEu = EuN / (SmN+GdN)1/2, δCe = CeN / (LaN + PrN)1/2;原始地幔值据Sun et al.,1989。 表 2 角闪二长花岗岩和灰色二长花岗岩的锆石LA–ICP–MS定年分析表
Table 2. Table of dating analysis of granite zircon LA–ICP–MS
样品编号 含量( 10−6) Th / U 同位素比值 年龄值(Ma) 232Th 238U 207Pb / 206Pb 1σ 207Pb / 235U 1σ 206Pb /238U 1σ 207Pb /206Pb 1σ 207Pb /235U 1σ 206Pb /238U 1σ 13A-18-01 215 361 0.5973 0.0579 0.0027 0.5759 0.0269 0.0720 0.0012 528 104 462 17 448 7 13A-18-02 556 454 1.2254 0.0589 0.0025 0.5842 0.0236 0.0719 0.0009 565 91 467 15 448 6 13A-18-03 293 369 0.7941 0.0578 0.0032 0.5848 0.0300 0.0737 0.0010 520 120 468 19 458 6 13A-18-04 455 526 0.8648 0.0555 0.0036 0.5630 0.0366 0.0732 0.0011 435 143 453 24 455 6 13A-18-05 333 382 0.8713 0.0568 0.0028 0.5706 0.0275 0.0730 0.0011 483 109 458 18 454 6 13A-18-06 260 510 0.5091 0.0554 0.0025 0.5624 0.0245 0.0735 0.0010 428 98 453 16 457 6 13A-18-07 355 387 0.9165 0.0561 0.0031 0.5640 0.0305 0.0727 0.0012 457 120 454 20 452 7 13A-18-08 193 317 0.6106 0.0553 0.0040 0.5590 0.0418 0.0731 0.0017 433 161 451 27 455 10 13A-18-09 386 470 0.8217 0.0548 0.0043 0.5522 0.0462 0.0723 0.0011 406 178 446 30 450 6 13A-18-10 169 309 0.5458 0.0567 0.0042 0.5650 0.0415 0.0723 0.0016 480 161 455 27 450 10 13A-18-11 536 585 0.9177 0.0571 0.0032 0.5716 0.0330 0.0720 0.0012 494 124 459 21 448 7 13A-18-12 431 491 0.8788 0.0547 0.0029 0.5580 0.0293 0.0735 0.0010 398 120 450 19 457 6 13A-18-13 427 473 0.9029 0.0567 0.0051 0.5677 0.0482 0.0726 0.0010 480 166 457 31 452 6 13A-19-01 35 174 0.1997 0.0659 0.0048 1.1562 0.0793 0.1283 0.0019 1200 152 780 37 778 18 13A-19-02 89 193 0.4628 0.0652 0.0046 1.1382 0.0793 0.1263 0.0032 781 147 772 38 767 12 13A-19-03 168 481 0.3496 0.0662 0.0037 1.1736 0.0653 0.1283 0.0021 813 114 788 31 778 13 13A-19-04 700 268 2.6131 0.0626 0.0038 1.0943 0.0659 0.1265 0.0023 694 127 751 32 768 10 13A-19-05 308 668 0.4609 0.0637 0.0041 1.0351 0.0662 0.1172 0.0017 731 137 721 33 715 10 13A-19-06 114 127 0.8976 0.0571 0.0055 0.5708 0.0527 0.0727 0.0012 494 181 459 34 453 11 13A-19-07 152 632 0.2400 0.0562 0.0035 0.5656 0.0321 0.0734 0.0023 457 137 455 21 456 7 13A-19-08 683 1474 0.4637 0.0676 0.0041 1.1581 0.0759 0.1230 0.0026 857 124 781 36 748 13 13A-19-09 101 92 1.1082 0.0636 0.0051 1.1402 0.0891 0.1309 0.0014 728 169 773 42 793 15 13A-19-10 383 349 1.0975 0.0664 0.0034 1.1432 0.0617 0.1241 0.0022 820 107 774 29 754 13 13A-19-11 21 125 0.1646 0.0632 0.0066 1.0419 0.1128 0.1196 0.0039 722 222 725 56 728 23 13A-19-12 529 582 0.9077 0.0565 0.0030 0.5617 0.0303 0.0719 0.0011 472 117 453 20 448 7 13A-19-13 669 1139 0.5871 0.0549 0.0037 0.5610 0.0383 0.0739 0.0012 406 150 452 25 459 7 13A-19-14 266 453 0.5873 0.0627 0.0028 1.0607 0.0482 0.1228 0.0019 698 96 734 24 746 11 13A-19-15 44 76 0.5809 0.0684 0.0051 1.1881 0.0818 0.1289 0.0027 880 156 795 38 782 16 13A-19-16 86 185 0.4655 0.0631 0.0051 1.1077 0.0853 0.1279 0.0023 722 172 757 41 776 13 13A-19-17 288 2028 0.1420 0.0598 0.0023 0.5961 0.0229 0.0725 0.0011 594 83 475 15 451 7 13A-19-18 338 3209 0.1054 0.0569 0.0026 0.5741 0.0250 0.0733 0.0010 487 102 461 16 456 6 13A-19-19 466 561 0.8304 0.0561 0.0033 0.5712 0.0360 0.0737 0.0015 457 131 459 23 458 9 13A-19-20 229 497 0.4607 0.0555 0.0032 0.5577 0.0313 0.0733 0.0011 435 132 450 20 456 7 表 3 角闪二长花岗岩和灰色二长花岗岩中锆石的Hf同位素分析结果
Table 3. Hf isotope analysis of zircons in granite
样品
编号176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(t) 2s tDM Hf (Ma) tDM2(Ma) 13A-18-01 0.05 0.001762 0.282483 −0.88 1.62 1132 1514 13A-18-02 0.05 0.001583 0.282457 −1.75 1.43 1161 1566 13A-18-03 0.05 0.001294 0.282421 −2.72 1.4 1200 1630 13A-18-04 0.06 0.001625 0.282473 −1.06 1.48 1142 1529 13A-18-05 0.06 0.001609 0.282407 −3.41 1.33 1235 1676 13A-18-06 0.04 0.001360 0.282447 −1.87 2.12 1167 1576 13A-18-07 0.04 0.001188 0.282443 −2.03 1.24 1164 1580 13A-18-08 0.05 0.001620 0.282454 −1.72 1.9 1167 1570 13A-18-09 0.05 0.001547 0.282414 −3.23 2.02 1222 1661 13A-18-10 0.06 0.001812 0.282399 −3.85 2.2 1255 1704 13A-18-11 0.06 0.001901 0.282344 −5.86 1.93 1338 1831 13A-18-12 0.06 0.001871 0.282342 −5.72 2.05 1340 1829 13A-18-13 0.04 0.001299 0.282444 −2.07 1.53 1169 1584 13A-19-01 0.02 0.000607 0.282319 0.86 1.50 1303 1459 13A-19-02 0.03 0.000694 0.282338 1.22 1.37 1280 1431 13A-19-03 0.08 0.002255 0.282307 −0.44 1.98 1380 1525 13A-19-04 0.03 0.000928 0.282337 1.11 1.31 1289 1438 13A-19-05 0.07 0.002191 0.282206 −5.29 1.69 1522 1718 13A-19-06 0.05 0.001340 0.282424 −2.68 1.28 1181 1378 13A-19-07 0.14 0.003492 0.282289 −2.33 1.84 1455 1596 13A-19-08 0.01 0.000278 0.282382 3.57 1.20 1206 1333 13A-19-09 0.07 0.002219 0.282266 −8.65 3.70 1437 1676 13A-19-10 0.06 0.001977 0.282373 −4.46 3.04 1274 1477 13A-19-11 0.05 0.001691 0.282178 −5.22 1.75 1542 1747 13A-19-12 0.02 0.000536 0.282231 −3.31 1.33 1422 1630 13A-19-13 0.05 0.001591 0.282407 −3.53 1.38 1213 1415 13A-19-14 0.03 0.000822 0.282374 −4.04 1.59 1234 1457 13A-19-15 0.06 0.001558 0.282331 −5.95 1.21 1319 1547 13A-19-16 0.08 0.002047 0.282367 1.12 1.90 1286 1420 13A-19-17 0.04 0.001104 0.282280 −0.72 1.65 1375 1542 13A-19-18 0.05 0.001422 0.282150 −5.61 2.14 1570 1784 13A-19-19 0.05 0.001526 0.282291 −7.53 1.35 1375 1620 13A-19-20 0.06 0.001655 0.282383 −4.23 1.25 1249 1457 13A-19-21 0.05 0.001465 0.282440 −2.16 0.92 1162 1352 13A-19-22 0.07 0.001984 0.282297 −7.32 1.70 1384 1615 13A-19-23 0.04 0.001186 0.282341 −5.56 1.15 1292 1524 表 4 角闪二长花岗岩和灰色二长花岗的温度计计算结果
Table 4. Values for admellite by zircon saturation thermometer
样品编号 锆饱和温度计 M(×10-6) Dzr TZr(℃) 13A-18a 1.74 2147.16 793 13A-18b 1.71 2159.33 794 13A-18c 1.74 2605.78 776 13A-18d 1.69 1744.33 816 13A-18e 1.74 2077.57 796 13A-18f 1.76 1969.10 799 13A-19a 1.34 2893.36 796 13A-19b 1.35 2877.50 796 13A-19c 1.36 2897.50 795 13A-19d 1.36 2928.57 794 13A-19e 1.34 2899.91 796 13A-19f 1.36 3030.87 791 注:TZr(℃) = 12900 / (InDZr + 0.85M + 2.95)-273.15,DZr近似为496000/全岩锆含量,M=(2Ca+K+Na)/(Si×Al),令Si+Al+Fe+ Mg+Ca+Na+K+P=1,均为原子数分数(Watson et al.,1983)。 表 5 巴什尔希花岗岩类锆石年龄统计表
Table 5. Isotopic ages statistics of the granitoids in the Bashierxi magmatic series
位置 岩性 年龄(Ma) 构造背景 测试方法 资料来源 东昆仑巴什
尔希地区似斑状二长
花岗岩458±9.0 局部拉张构造背景 Zircon U−Pb LA−MC−ICP−MS 高晓峰等,2010 角闪二长花岗岩 452.9±3.6 碰撞造山后的初始
伸展构造背景Zircon U−Pb LA−ICP−MS 本文 灰色二 长花岗岩 454.2±4.8 本文 南阿尔金构
造带西段二长花岗岩 462±2.0 碰撞造山后的抬升初期 Zircon U−Pb LA−ICP−MS 曹玉亭等,2010 钾长花岗岩 452.8±3.1 俯冲陆壳断离后的
伸展背景杨文强等,2012 黑云母花岗岩 454.0±1.8 后碰撞初始伸展 Zircon U−Pb
LA−MC−ICP MS康磊,2014 钾长花岗岩 453.4±2.5 二长花岗岩 453.1±2.1 石英闪长岩 458.3±6.2 深俯冲陆壳折返抬升 康磊等,2016b 东昆仑巴什
尔希地区粗粒碱长花岗岩 432.3±0.8 造山花岗岩(板内和陆缘
造山带)后造山构造环境包亚范等,2008
黎敦朋等,2010碱长花岗岩 430.5±1.2 造山后局部拉张环境 Zircon U−Pb LA−MC−ICP−MS 高永宝等,2011 碱长花岗岩 422.0±3.0 后碰撞伸展阶段 Zircon U−Pb SIMS 李国臣等,2012 正长花岗岩 428.2±4.2 Zircon U−Pb LA−ICP−MS 王增振等,2014 正长花岗岩 422.5±2.3 正长花岗岩 413.6±2.4 Zircon U−Pb LA−ICP−MS 周建厚等,2014 南阿尔金构
造带东段似斑状钾长
花岗岩424 造山后伸展阶段 Zircon U−Pb LA−ICP−MS 王超等,2008 花岗细晶岩 406 碱性花岗岩 385.2±8.1 造山后的拉张环境 Zircon U−Pb LA−ICP−MS 吴锁平等, 2007 -
包亚范, 刘延军, 王鑫春. 东昆仑西段巴什尔希花岗岩与白干湖钨锡矿床的关系[J]. 吉林地质, 2008(03): 56-59+67.
BAO Yafan, LIU Yanjun, WANG Xinchun. Relationship between Bashierxi granite west Dongkunlun and Baiganhu tungsten-tin deposit[J]. Jilin Geology, 2008. 107(03): 56–59, 67.
曹世泰, 刘晓康, 马永胜, 等. 祁漫塔格地区早志留世侵入岩的发现及其地质意义[J]. 青海科技, 2011, 18(05): 26-30 doi: 10.3969/j.issn.1005-9393.2011.05.010
CAO Shitai, LIU Xiaokang, MA Yongsheng, et al. Discovery and geological significance of early Silurian intrusive rocks in Qimantage area[J]. Qinghai Science and Technology, 2011, 18(05): 26–30. doi: 10.3969/j.issn.1005-9393.2011.05.010
曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271
CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical, zircon U–Pb dating and Hf isotopic compositions studies for Tatelekebulake granite in South Altyn Tagh[J]. Acta Petrologica Sinica, 2010, 26(11): 3259–3271.
车自成, 刘良, 刘洪福, 等. 阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征[J]. 中国区域地质, 1998(04): 42-49
CHE Zicheng, LIU Liang, LIU Hongfu, et al. Composition of Altun fault system and genetic characteristics of related Meso Cenozoic petroliferous basins[J]. Regional Geology of China, 1998. (4): 42-49
陈能松, 何蕾, 王国灿, 等. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定[J]. 科学通报, 2002(08): 628-631 doi: 10.3321/j.issn:0023-074X.2002.08.016
Chen Nengsong, He Lei, Wang Guocan, et al. Precise dating of early Paleozoic metamorphic peak and thrust tectonic deformation in east Kunlun orogenic belt[J]. Chinese Science Bulletin, 2002. (08): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016
陈有炘, 裴先治, 李瑞保, 等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质, 2011, 25(03): 510-521 doi: 10.3969/j.issn.1000-8527.2011.03.013
CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U–Pb age of the Xiaomiao formation of Proterozoic in the in the eastern section of the East Kunlun orogenic belt[J]. Geoscience, 2011, 25(03): 510–521. doi: 10.3969/j.issn.1000-8527.2011.03.013
谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRI MP年龄及其地质意义[J]. 岩石矿物学杂志, 2006(01): 25-32 doi: 10.3969/j.issn.1000-6524.2006.01.003
CHEN Hongwei, LUO Zhaohua, MO Xuanxue, et al. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica Mineral, 2006, 25(01): 25–32. doi: 10.3969/j.issn.1000-6524.2006.01.003
崔美慧. 新疆祁漫塔格鸭子泉中基性火成岩及硅质岩成因[D]. 北京: 中国地质科学院, 2012
CUI Meihui. Petrogenesis of intermediate–basic igneous rocks from Yaziquan, Xinjiang Qimantag Mountain[D]. Beijing: Chinese Academy of Geological Sciences, 2012.
第五春荣, 孙勇, 袁洪林, 等. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J]. 科学通报, 2008(16): 1923-1934 doi: 10.3321/j.issn:0023-074X.2008.16.009
DIWU Chunrong, SUN Yong, YUAN Honglin, et al. U-Pb chronology, Hf isotope composition and geological significance of detrital zircons from quartzite in Songshan mountain, Dengfeng, Henan province[J]. Chinese Science Bulletin, 2008. (16): 1923-1934. doi: 10.3321/j.issn:0023-074X.2008.16.009
高晓峰, 校培喜, 谢从瑞, 等. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(7): 1001-1008 doi: 10.3969/j.issn.1671-2552.2010.07.005
GAO Xiaofeng, XIAO Peixi, XIE Congrui, et al. Zircon LA-ICP-MS U-Pb dating and geological significance of Bashierxi granite in the eastern Kunlun area, China[J]. Geological Bulletin of China, 2010, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
高永宝, 李文渊. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J]. 地球化学, 2011, 40(4): 324−336.
GAO Yongbao, LI Wenyuan. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantage, NW China: Constraints from petrology, chronology and geochemistry[J]. Geochimica, 2011, 40(4): 324−336.
郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(08): 1203-1211 doi: 10.3969/j.issn.1671-2552.2011.08.004
GUO Tongzhen, LIU Rong, CHEN Fabin, et al. LA-MC-ICPMS zircon U-Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantag Mountain of Qinghai and its geological significance[J]. Geological Bulletin of China, 2011.30(08): 1203-1211. doi: 10.3969/j.issn.1671-2552.2011.08.004
郝杰, 刘小汉, 桑海清. 新疆东昆仑阿牙克岩体地球化学与~(40)Ar/~(39)Ar年代学研究及其大地构造意义[J]. 岩石学报, 2003(03): 517-522 doi: 10.3969/j.issn.1000-0569.2003.03.017
HAO Jie, LIU Xiaohan, SANG Haiqing. Geochemical characeristics and 40Ar/39Ar age of the Ayake adamellite and its tectonic significance in the east Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 2003.19(03): 517–522. doi: 10.3969/j.issn.1000-0569.2003.03.017
康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(09): 3039-3048
KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, zircon U–Pb dating and its geological significance of gneissic granite from the eastern segment of the Takelekebulake composite granite in the south Altyn Tagh[J]. Acta Petrologica Sinica, 2013, 29(09): 3039–3048.
康磊. 南阿尔金高压—超高压变质带早古生代多期花岗质岩浆作用及其地质意义[D]. 西安: 西北大学, 2014.
KANG Lei. Early Paleozoic Multi-stage Granitic Magmatism and the GeologicalSignificance in the South Altyn Tagh HP-UHP Metamorphic Belt[D]. Xi’an: Northwest Unversity, 2014.
康磊, 校培喜, 高晓峰, 等. 阿尔金南缘早古生代岩浆作用及碰撞造山过程[J]. 地质学报, 2016a, 90(10): 2527-2550 doi: 10.3969/j.issn.0001-5717.2016.10.001
KANG Lei, XIAO Peixi, GAO Xiaofeng et al. Early Paleozoic Magmatism and Collision Orogenic Process of the South Altyn[J]. Acta Geologica Sinica, 2016a, 90(10): 2527-2550. doi: 10.3969/j.issn.0001-5717.2016.10.001
康磊, 校培喜, 高晓峰, 等. 茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因: 对阿尔金南缘早古生代构造-岩浆演化的启示[J]. 岩石学报, 2016b, 32(06): 1731-1748
KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Chronology, geochemistry and petrogenesis of monzonitic granite and quartz diorite in Mangai area: Its inspiration to Early Paleozoic tectonic-magmatic evolution of the southern Altyn Tagh[J]. Acta Petrologica Sinica, 2016b, 32(06): 1731-1748.
黎敦朋, 肖爱芳. 祁漫塔格西段白干湖钨锡矿区巴什尔希花岗岩序列及构造环境[J]. 西北地质, 2010, 43(004): 53-61 doi: 10.3969/j.issn.1009-6248.2010.04.007
LI Dunpeng, XIAO Aifang. Magmatic sequence and tectonic setting of Bashierxi granite in W-Sn deposit of Baiganhu area, the Western sector of Qimantage Mountains[J]. Northwestern Geology, 2010, 43(04): 53–61. doi: 10.3969/j.issn.1009-6248.2010.04.007
李国臣, 丰成友, 王瑞江, 等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012, 33(02): 216-226
LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 33(02): 216–226.
刘良, 孙勇, 罗金海, 等. 阿尔金英格利萨依花岗质片麻岩超高压变质[J]. 中国科学(D辑: 地球科学), 2003, (12): 1184-1192
LIU Liang, SUN Yong, LUO Jinhai, et al. Ultra–high pressure metamorphism of granitic gneiss in the Yinggelisayi area, Altyn Mountains, NW China[J]. Science in China (Series D), 2003, (12): 1184–1192.
刘良, 张安达, 陈丹玲, 等. 阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J]. 地学前缘, 2007, 14(01): 98-107 doi: 10.3321/j.issn:1005-2321.2007.01.009
LIU Liang, ZHANG Anda, CHEN Danling, et al. Implications based on LA–ICP–MS zircon U–Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh[J], China. Earth Science Frontiers, 2007, 14(1): 98–107. doi: 10.3321/j.issn:1005-2321.2007.01.009
刘良, 陈丹玲, 王超, 等. 阿尔金、柴北缘与北秦岭高压—超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报(自然科学版), 2009, 39(03): 472-479
LIU Liang, CHEN Danling, WANG Chao, et al. New progress on geochronology of high-pressure/ultrahigh-pressure metamorphic rocks from the South Altyn Tagh, the North Qaidam and the North Qinling orogenic, NW China and their geological significance[J]. Journal of Northwest University (Natural Science Edition), 2009.39(03): 472–479.
马中平, 李向民, 孙吉明, 等. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究[J]. 岩石学报, 2009, 25(04): 793-804
MA Zhongping, LI Xiangmin, SUN Jiming, et al. Discovery of layered mafic–ultramafic instrusion in Changshagou, Altyn Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics[J]. Acta Petrologica Sinica, 2009, 25(04): 793–804.
孟繁聪, 崔美慧, 吴祥珂, 等. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J]. 岩石学报, 2013(6): 2107-2122
MENG Fancong, CUI Meihui, WU Xiangke, et al. Magmatic and metamorphic events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains, Northwest China[J]. Acta Petrologica Sinica, 2013 (6): 2107–2122.
莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007(03): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010
MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East–Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007.13(3): 403–414. doi: 10.3969/j.issn.1006-7493.2007.03.010
谈生祥, 郭通珍, 董进生, 等. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 2011, 29(01): 36-43 doi: 10.3969/j.issn.1006-8996.2011.01.010
TAN Shengxiang, GUO Tongzhen, DONG Jinsheng, et al. Geological characteristics and significance of the peraluminous granite in late Silurian epoch in Wulanrvuzhuer region of Qinghai[J]. Journal of Qinghai University(Nature Science), 2011, 29(01): 36–43. doi: 10.3969/j.issn.1006-8996.2011.01.010
王超, 刘良, 张安达, 等. 阿尔金造山带南缘岩浆混合作用: 玉苏普阿勒克塔格岩体岩石学和地球化学证据[J]. 岩石学报, 2008, 24(12): 2809-2819
WANG Chao, LIU Liang, ZHANG Anda, et al. Geochemistry and Petrography of Early Paleozoic Yusupuleke Tagh rapakivi-taxtured granite complex, South Altyn: An example for magma mixing[J]. Acta Petrologica Sinica, 2008, 24(12): 2809–2819.
王德滋, 刘昌实, 沈渭洲, 等. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, 9(01): 44-54 doi: 10.3321/j.issn:1000-0569.1993.01.005
WANG Dezi, LIU Changshi, SHEN Weizhou, et al. The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J]. Acta Petrologica Sinica, 1993, 9(01): 44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004(04): 481-490 doi: 10.3321/j.issn:1005-2321.2004.04.014
WANG guocan, WANG Qinghai, JIAN Ping, et al. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 2004, 11(4): 481–490. doi: 10.3321/j.issn:1005-2321.2004.04.014
王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007(08): 929-937 doi: 10.3969/j.issn.1671-2552.2007.08.003
WANG guocan, WEI Qirong, JIA Chunxing, et al. Some Ideas of Precambrian Geology in East Kunlun, China[J]. Geology Bulletin of China, 2007, 26(8): 929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003
王增振, 韩宝福, 丰成友, 等. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 2014, 33(04): 597-616 doi: 10.3969/j.issn.1000-6524.2014.04.001
WANG Zengzhen, HAN Baofu, FENG Chengyou, et al. Geochronology, geochemistry and tectonic significance of granites in Baiganhu area, Xinjiang[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 597–616. doi: 10.3969/j.issn.1000-6524.2014.04.001
吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, (06): 1217-1238 doi: 10.3969/j.issn.1000-0569.2007.06.001
WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, (6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
吴锁平, 吴才来, 陈其龙. 阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J]. 地质通报, 2007, 26(10): 1385-1392 doi: 10.3969/j.issn.1671-2552.2007.10.016
WU suoping, WU cailai, CHEN Qilong. Characteristics and tectonic setting of the Tula aluminous A- type granite at the south side of the Altyn Tagh fault, NW China[J]. Geological Bulletin of China, 2007, 26(10): 1385–1392. doi: 10.3969/j.issn.1671-2552.2007.10.016
肖爱芳. 东昆仑祁漫塔格山西段鸭子泉志留纪火山岩特征[J]. 陕西地质, 2005, 23(02): 50-60
XIAO Aifang. Yaziquan Silurian volcanic rocks in western qimantahe mountain of Eastern Kunlun[J]. Geology of Shaanxi, 2005, 23(02): 50–60.
熊富浩. 东昆仑造山带东段古特提斯域花岗岩类时空分布, 岩石成因及其地质意义[D]. 武汉: 中国地质大学, 2014
XIONG Fuhao. Spatial-temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoidsin the East Kunlun Orogenic Belt (Eastern Segment) [D]. Wuhan: China University of Geosciences, 2014.
杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 28(12): 4139-4150
YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagn and its geological significance[J]. Acta Petrologica Sinica, 2012, 28(12): 4139–4150.
殷鸿福, 张克信. 中华人民共和国区域地质调查报告: 冬给措纳湖(I47C001002)(1∶250 000)[M]. 武汉: 中国地质大学出版社, 2003
YIN Hongfu, ZHANG Kexin. Report of Regional Geological Survey of the People's Republic of China: Dongjicuona Lake (I47C001002), scale 1: 250000[M]. Wuhan: China University of Geosciences Press, 2003.
袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(02): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012
YUAN Wanming, MO Xuanxue, YU Xuehui, et al. The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J]. Geological Review, 2000, 46(2): 203–211. doi: 10.3321/j.issn:0371-5736.2000.02.012
张斌, 孙新春, 郭兵, 等. 新疆东昆仑地区鸭子泉-鸭子达坂构造混杂岩的地质特征及其意义[J]. 西北地质, 2014, 47(04): 95-104 doi: 10.3969/j.issn.1009-6248.2014.04.010
Zhang Bin, Sun Xinchun, Guo Bing, et al. Geological characteristics and significance of Yaziquan–Yazidaban tectonic melange in East Kunlun area, Xinjiang[J]. Northwestern Geology, 2014, 47(04): 95–104. doi: 10.3969/j.issn.1009-6248.2014.04.010
张建新, 孟繁聪, 万渝生, 等. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据[J]. 地质通报, 2003, 22(6): 397-404 doi: 10.3969/j.issn.1671-2552.2003.06.004
、ZHANG Jianxin, MENG Fancong, WAN Yusheng, et al. Early Paleozoic tectonic thermal events of Jinshui kou Group in the southern margin of Qaidam Basin: Zircon U–Pb SHRIMP age evidence[J]. Geology Bull of China, 2003, 22(6): 397–404. doi: 10.3969/j.issn.1671-2552.2003.06.004
张建新, 许志琴, 杨经绥, 等. 阿尔金西段榴辉岩岩石学、地球化学和同位素年代学研究及其构造意义[J]. 地质学报, 2001, 75(02): 186-197
ZHANG Jianxin, XU Zhiqin, YANG Jingsui, et al. Petrology, geochemistry and isotopic chronology of eclogites in the western Altyn section and their tectonic significance[J]. Acta Geologica Sinica, 2001, 75(02): 186–197.
周建厚, 丰成友, 李大新, 等. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 2015, 31(08): 2277-2293
ZHOU Jianhou, FENG Chengyou, LI Daxin, et al. Petrology, geochronology and geochemistry of metallogenetic granite in Baiganhu W-Sn deposit, East Kunlun[J]. Acta Petrologica Sinica, 2014, 31(08): 2277–2293.
Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1):51-73.
Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1–4).
Castillo P R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 2006, 51(3): 258-268
Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: (1-2). doi: 10.1017/S0263593300007720
Corfu F, Hanchar JM, Hoskin PWO, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003. 53(1): 469–500.
Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1-2): 115–134. doi: 10.1016/0024-4937(90)90043-Z
Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437. doi: 10.1007/s00410-007-0201-0
Harris N B W, Inger S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56. doi: 10.1007/BF00310881
Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Zircon, 2003. 53(1): 27-62.
Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[J]. Minerals and Rocks. 1996.
Liu L, Kang L, Cao YT, et al. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China[J]. Science China (Earth Sciences), 2015, 58(09): 1513-1522. doi: 10.1007/s11430-015-5151-1
Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010. 51(1-2): 537-571. doi: 10.1093/petrology/egp082
Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994. 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
Patiňo D A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218. doi: 10.1007/BF00310707
Pearce J A, Harris N B W, Andrew G T. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 959-983.
Peccerillo A, Taylor SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976. 58(1): 63-81
Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989. 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5
SUN S S, Mcdonough W F. Chemical and isotopic systematic of oceanic basalts: Implication for mantle compostion and processes[J]. Geological Society, London, Special Publications, 1989. 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2), 295–304. doi: 10.1016/0012-821X(83)90211-X
Williamson B J, Shaw A, Downes H, et al. Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France[J]. Chemical Geology, 1996, 127(1-3): 25-42. doi: 10.1016/0009-2541(95)00105-0
Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms[J]. Geochimica Cosmochimica Acta, 1994, 58(19): 4127-4145. doi: 10.1016/0016-7037(94)90269-0
Xiong X L, Adam J, Green TH. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J]. Chemical Geology,2005,218(3-4): 339-359.
Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008. 247: 100-118. doi: 10.1016/j.chemgeo.2007.10.003
Zheng Z, Chen Y J, Deng X H, et al. Fluid evolution of the Qiman Tagh W-Sn ore belt, East Kunlun Orogen, NW China[J]. Ore Geology Reviews, 2018, 95: 280-291. doi: 10.1016/j.oregeorev.2018.03.002
-