阿尔金卡尔恰尔超大型萤石矿带成因:来自年代学、稀土元素和Sr–Nd同位素的约束

赵辛敏, 高永宝, 燕洲泉, 张江伟, 王博, 金谋顺. 2023. 阿尔金卡尔恰尔超大型萤石矿带成因:来自年代学、稀土元素和Sr–Nd同位素的约束. 西北地质, 56(1): 31-47. doi: 10.12401/j.nwg.2022035
引用本文: 赵辛敏, 高永宝, 燕洲泉, 张江伟, 王博, 金谋顺. 2023. 阿尔金卡尔恰尔超大型萤石矿带成因:来自年代学、稀土元素和Sr–Nd同位素的约束. 西北地质, 56(1): 31-47. doi: 10.12401/j.nwg.2022035
ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, ZHANG Jiangwei, WANG Bo, JIN Moushun. 2023. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr–Nd Isotopes Constraints. Northwestern Geology, 56(1): 31-47. doi: 10.12401/j.nwg.2022035
Citation: ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, ZHANG Jiangwei, WANG Bo, JIN Moushun. 2023. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr–Nd Isotopes Constraints. Northwestern Geology, 56(1): 31-47. doi: 10.12401/j.nwg.2022035

阿尔金卡尔恰尔超大型萤石矿带成因:来自年代学、稀土元素和Sr–Nd同位素的约束

  • 基金项目: 陕西省自然科学基础研究计划项目“阿尔金西段吐格曼伟晶岩型稀有金属矿床成矿机制研究”(2022JQ-268),国家重点研发计划课题“西部锂、铍等战略性金属矿产资源成矿规律与预测评价”(2019YFC0605201),中国地质调查局项目“西北地区铜镍稀有金属等矿产地质调查”(DD20221691)联合资助。
详细信息
    作者简介: 赵辛敏(1988−),男,工程师,从事矿床学与区域成矿规律研究。E-mail:835177076@qq.com
  • 中图分类号: P595;P611

Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr–Nd Isotopes Constraints

  • 阿尔金卡尔恰尔一带近年来萤石找矿取得重大突破,新发现卡尔恰尔、小白河沟、库木塔什、拉依旦北、盖吉克等多处萤石矿,形成超大型萤石矿带。矿带内萤石矿与肉红色碱长花岗岩关系密切,矿化主要赋存于岩体内外接触带附近,赋矿围岩主要为阿尔金岩群中的黑云斜长片麻岩、碳酸盐岩等富钙质岩系,矿体明显受北东向断裂构造控制,矿石类型主要有脉状、角砾状、块状、条带状矿石,矿物组成主要是萤石、方解石,矿床成因类型属于热液充填型。LA–ICP–MS锆石U–Pb测试结果表明,卡尔恰尔超大型萤石矿区与成矿有关的碱长花岗岩成岩年龄为(455.8±2)Ma,结合区域成岩成矿年代学研究,认为该萤石矿带形成于加里东期中—晚奥陶世,为挤压造山转变成伸展构造背景下岩浆活动的产物。矿区片麻状钾长花岗岩锆石U–Pb年龄为(914.5±4.1)Ma,形成于新元古代早期,与 Rodinia 超大陆汇聚事件有关。稀土元素特征显示,卡尔恰尔、小白河沟、库木塔什3个矿床的萤石、方解石稀土元素配分模式均为右倾的LREE富集型,具有明显的负Eu异常,与成矿岩体、围岩地层十分相似,表明萤石、方解石的稀土可能继承了岩体、地层的稀土配分模式。各矿床萤石均为热液成因,表现出同源同期成矿流体的特征,成矿环境为还原条件下的中低温环境。各矿区萤石Sr–Nd同位素组成显示成矿物质来源于地壳,结合成矿特征初步认为Ca可能主要来源于岩浆热液对地层的淋滤萃取,而F可能主要来源于成矿岩体碱长花岗岩。

  • 加载中
  • 图 1  阿尔金造山带卡尔恰尔一带地质矿产图

    Figure 1. 

    图 2  卡尔恰尔超大型萤石矿床矿化特征

    Figure 2. 

    图 3  库木塔什萤石矿床矿化特征

    Figure 3. 

    图 4  小白河沟萤石矿床矿化特征

    Figure 4. 

    图 5  卡尔恰尔萤石矿区碱长花岗岩的锆石CL图(a)和U–Pb年龄图(b)

    Figure 5. 

    图 6  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石CL图(a)和U−Pb年龄图(b)

    Figure 6. 

    图 7  卡尔恰尔一带萤石矿床的稀土元素配分模式图

    Figure 7. 

    图 8  卡尔恰尔一带萤石Tb/Ca−Tb/La图与La/Ho−Y/Ho图(底图据Moller et al.,1976; Bau et al.,1995

    Figure 8. 

    图 9  卡尔恰尔一带萤石的La/Yb−ΣREE与(Y+La)−Y/La图解(底图据Allegre et al.,1978

    Figure 9. 

    图 10  卡尔恰尔一带萤石的87Sr/86Sr −143Nd/144Nd图解

    Figure 10. 

    表 1  卡尔恰尔萤石矿区碱长花岗岩的锆石LA–ICP–MS U–Pb分析结果表

    Table 1.  LA–ICP–MS zircon U–Pb isotopic data of alkali feldspar granite in Kaerqiaer fluorite deposit

    测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    (×10-6比值比值比值MaMaMa
    KJ011003430.290.05640.00210.57340.02100.07370.0009469.082.6460.213.5457.55.1
    KJ021372710.510.05690.00230.57600.02210.07340.0009487.386.2461.914.3456.95.3
    KJ032234570.490.05530.00140.55800.01360.07330.0007422.155.8450.28.9456.04.2
    KJ041052330.450.05670.00200.57210.01890.07320.0008479.075.0459.412.2455.64.9
    KJ0536410950.330.05880.00130.58960.01220.07270.0007561.047.4470.67.8452.54.0
    KJ061513330.450.05410.00190.55150.01840.07390.0008376.376.1446.012.1455.84.9
    KJ071372820.490.05920.00240.59750.02290.07330.0009572.984.2475.614.6456.05.3
    KJ082063690.560.05470.00210.55130.02050.07310.0009400.183.6445.813.4455.05.1
    KJ091432560.560.05520.00250.56390.02460.07410.0010420.097.5454.016.0451.05.7
    KJ101524300.350.05510.00190.56460.01820.07440.0008416.572.8454.511.8452.34.9
    KJ111272770.460.05740.00190.57960.01840.07320.0008508.171.3464.211.8455.64.8
    KJ121493250.460.05690.00200.57740.01920.07360.0008488.175.2462.812.4457.94.9
    KJ131643980.410.05690.00160.57710.01580.07360.0008487.162.6462.610.2457.84.5
    KJ141993700.540.05590.00160.56740.01580.07360.0008449.163.3456.310.2458.04.5
    KJ152586780.380.05500.00150.55500.01440.07320.0007412.158.9448.39.4455.64.4
    KJ161015090.200.05770.00160.58780.01510.07390.0007519.058.1469.49.6456.64.4
    KJ171684880.340.05700.00160.57990.01510.07390.0007489.059.9464.49.7453.64.5
    KJ182334320.540.05610.00160.56970.01560.07370.0008455.662.3457.810.1455.54.5
    KJ194627970.580.05650.00140.57290.01360.07360.0007470.254.9459.98.8458.04.3
    KJ202934720.620.05700.00170.57670.01600.07350.0008488.863.4462.310.3457.24.6
    KJ211704950.340.05530.00160.56300.01550.07380.0008425.962.3453.410.0454.24.5
    KJ221884150.450.05750.00170.58460.01640.07380.0008510.863.5467.410.5457.94.6
    下载: 导出CSV

    表 2  卡尔恰尔萤石矿区片麻状钾长花岗岩的锆石LA–ICP–MS U–Pb分析结果表

    Table 2.  LA–ICP–MS zircon U–Pb isotopic data of gneissic feldspar granite in Kaerqiaer fluorite deposit

    测试点ThUTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    (×10-6比值比值比值MaMaMa
    KC011584400.360.06850.00171.30240.02980.13800.0014883.449.1846.813.1853.57.8
    KC02243050.080.07050.00171.52060.03480.15660.0016941.948.7938.714.0938.08.8
    KC031004070.250.06890.00151.48170.03050.15610.0015895.444.4922.912.5935.28.4
    KC042294430.520.06980.00141.47710.02690.15380.0015920.939.3921.011.0922.08.1
    KC051404010.350.06850.00141.43640.02800.15230.0015882.942.1904.211.7913.88.2
    KC06642600.250.06860.00161.47250.03350.15590.0016886.648.6919.213.8933.78.8
    KC07972910.330.07370.00161.62550.03400.16010.00161033.744.1980.113.1957.18.8
    KC0828900.320.07600.00302.02980.07600.19390.00261094.575.81125.625.51142.614.1
    KC091374350.310.07050.00141.47880.02790.15220.0014943.440.7921.711.4913.58.1
    KC10274850.050.06980.00141.42770.02690.14850.0014922.440.7900.611.3892.57.9
    KC11793600.220.07000.00161.48200.03130.15360.0015929.045.2923.012.8921.38.5
    KC121757650.230.06860.00131.38800.02480.14690.0014886.939.0883.810.5883.37.7
    KC132706770.400.07030.00131.49730.02500.15460.0014938.136.4929.310.2926.48.0
    KC14842970.280.06940.00161.49650.03360.15660.0016909.947.9928.913.7937.88.8
    KC151034890.210.07100.00141.43750.02590.14690.0014958.638.9904.710.8883.57.8
    KC161352120.640.11060.00194.74300.07520.31140.00301808.631.01774.913.31747.614.7
    KC171037470.140.07100.00121.53220.02470.15660.0014958.035.1943.49.9938.08.0
    KC18513670.140.08770.00162.48950.04150.20610.00201375.534.01269.012.11208.210.5
    KC19804680.170.06880.00141.42770.02650.15060.0014893.240.2900.611.1904.58.0
    KC201025330.190.07010.00131.49330.02580.15460.0014932.537.4927.710.5926.58.1
    下载: 导出CSV

    表 3  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石、方解石稀土元素组成表( 10−6

    Table 3.  Rare earth element data of fluorites and calcites from the Kaerqiaer, Xiaobaihegou and Kumutashi deposit

    矿物样号LaCePrNdSmEuGdTbDyHoErTmYbLuYΣREELREEHREELREE/HREE(La/Yb)NδEuδCe

    KE-16.0412.91.858.612.280.322.400.392.320.461.210.191.110.1631.540.2432.008.243.883.900.420.94
    KE-26.4012.21.868.312.290.322.340.382.280.461.180.181.040.1632.039.4031.388.023.914.410.420.86
    KE-38.6418.02.7211.93.180.463.630.583.380.701.850.271.650.2347.657.1944.9012.293.653.760.410.90
    KE-45.7612.91.929.402.780.372.960.512.890.581.580.231.390.2147.343.4833.1310.353.202.970.390.95
    XB-16.4014.12.129.382.620.402.880.472.710.551.440.201.280.1838.344.7335.029.713.613.590.440.93
    XB-27.8118.82.9815.04.260.574.800.784.560.932.420.362.200.3268.665.7949.4216.373.022.550.380.96
    XB-36.6314.72.3911.53.570.453.660.613.630.782.020.301.850.2659.552.3539.2413.112.992.570.380.90
    KM-116.532.74.2111.72.890.512.710.442.370.461.190.161.020.1531.181.0172.518.508.5311.60.550.94
    KM-210.215.41.806.671.640.261.800.301.640.300.780.100.540.0731.541.5035.975.536.5013.550.460.81


    KE-169.916518.466.611.81.418.891.488.021.614.750.855.440.8740.5365.02333.1131.9110.449.220.401.10
    KE-277.718020.774.613.71.6210.31.778.531.785.130.855.760.9846.6403.42368.3235.1010.499.680.401.08
    KE-383.521325.196.818.12.1513.92.5213.52.677.741.348.641.4473.7490.40438.6551.758.486.930.401.13
    XB-110324528.598.818.52.2615.82.6013.22.808.311.489.741.5870.5551.57496.0655.518.947.590.391.09
    XB-215837843.314426.52.9420.03.4117.23.479.911.7211.51.9591.7821.90752.7469.1610.889.860.371.10
    XB-380.120222.883.315.41.8212.32.2110.82.266.971.268.421.3964.4451.03405.4245.618.896.820.391.14
    KM-168.516218.366.813.01.469.771.629.121.735.070.855.700.9245.8364.84330.0634.789.498.620.381.10
    KM-274.716018.964.312.61.288.871.597.701.514.210.724.720.7237.2361.82331.7830.0411.0411.350.351.02
    KM-369.515817.862.212.01.339.011.658.761.704.830.835.660.9443.0354.21320.8333.389.618.810.381.07
    KM-475.116319.965.212.41.319.171.567.651.544.290.744.880.7640.8367.50336.9130.5911.0111.040.361.01
    下载: 导出CSV

    表 4  卡尔恰尔(KE)、小白河沟(XB)、库木塔什(KM)矿床的萤石Sr−Nd同位素组成表

    Table 4.  Sr−Nd isotopic composition of fluorites from Kaerqiaer, Xiaobaihegou and Kumutashi deposit

    样号Rb/10-6Sr/10-687Rb/86Sr87Sr/86SrSm/10-6Nd/10-6147Sm/144Nd143Nd/144Nd
    KE-10.053430.000390.710051.776.550.16330.511987
    KE-20.033400.000290.710051.836.820.16260.511917
    KE-30.043420.000360.710071.796.480.16720.511932
    KE-40.053420.000410.710081.836.710.16550.511975
    KE-50.063420.000460.710091.786.400.16820.512040
    KE-60.053430.000460.710041.806.490.16780.512036
    XB-10.262640.002870.710252.629.360.16960.511930
    XB-20.132930.001310.710152.609.450.16640.511919
    XB-30.183680.001450.710253.2611.880.16590.512039
    XB-40.163990.001180.710232.9810.680.16880.512062
    XB-50.213750.001610.710363.9414.150.16840.512061
    KM-11.301990.018780.709501.323.900.20440.512071
    KM-20.022610.000250.709521.293.880.20020.512061
    KM-30.022080.000290.709551.323.940.20240.512044
    下载: 导出CSV
  • 曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石 U-Pb 定年及Hf 同位素组成[J]. 岩石学报, 2010, 26(11): 3259-3271

    CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical, Zircon U-Pb Dating and Hf Isotope Compositions Studies for Tatelekebulake Granite in South Altyn Tagh[J]. Acta Petrologica Sinica, 2010, 26(11): 3259-3271.

    陈军元, 刘艳飞, 颜玲亚, 等. 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 42(2): 287-296 doi: 10.3975/cagsb.2020.102606

    CHEN Junyuan, LIU Yanfei, YAN Lingya, et al. Research on Development Trend of Strategic Nonmetallic Minerals such as Graphite and Fluorite[J]. Acta Geoscientica Sinica, 2021, 42(2): 287-296. doi: 10.3975/cagsb.2020.102606

    董洪凯, 郭金城, 陈海燕, 等. 新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J]. 西北地质, 2014, 47(4): 73-87 doi: 10.3969/j.issn.1009-6248.2014.04.008

    DONG Hongkai, GUO Jincheng, CHEN Haiyan, et al. Evolution Characteristics of Ordovician Intrusive Rock in Changshagou of Altyn Region[J]. Northwestern Geology, 2014, 47(4): 73-87. doi: 10.3969/j.issn.1009-6248.2014.04.008

    高永宝, 赵辛敏, 王博, 等. 阿尔金西段卡尔恰尔-库木塔什超大型萤石矿带矿床地质、控矿花岗岩特征及找矿远景[J/OL]. 中国地质, 2021.

    GAO Yongbao, ZHAO Xinmin, WANG Bo, et al. Ore deposit geology, Geochemical characteristics of ore controlling granite and Prospecting Potential of Superlarge Fluorite Ore Belt in the Kaerqiaer-KumutashiArea, West Altyn-Tagh[J/OL]. Geology in China, 2021.

    郭金城, 徐旭明, 陈海燕, 等. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义[J]. 西北地质, 2014, 47(4): 170-177 doi: 10.3969/j.issn.1009-6248.2014.04.018

    GUO Jincheng, XU Xuming, CHEN Haiyan, et al. Zircon U-Pb Age and Geological Implications of Ultramafic Rocks in Changshagou, Altun Area, Xinjiang Province[J]. Northwestern Geology, 2014, 47(4): 170-177. doi: 10.3969/j.issn.1009-6248.2014.04.018

    过磊, 李建星, 郭琳, 等. 南阿尔金茫崖碱长花岗岩锆石U-Pb定年及岩石成因研究[J]. 西北地质, 2019, 52(1): 1-13

    GUO Lei, LI Jianxing, GUO Lin, et al. Zircon U-Pb Dating and Petrogenesis of Alkali-feldspar Granite in Mangnai Area, South Altun, NW China [J]. North Western Geology, 2019, 52(1): 1-13.

    康磊, 校培喜, 高晓峰, 等. 阿尔金南缘早古生代岩浆作用及碰撞造山过程[J]. 地质学报, 2016, 90(10): 2527-2550 doi: 10.3969/j.issn.0001-5717.2016.10.001

    KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Early Paleozoic Magmatism and Collision Orogenic Process of the South Altyn[J]. Acta Geologica Sinica, 2016, 90(10): 2527-2550. doi: 10.3969/j.issn.0001-5717.2016.10.001

    李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究—以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869-2892 doi: 10.18654/1000-0569/2020.09.16

    LI Hang, HONG Tao, YANG Zhiquan, et al. Comparative Studying on Zircon, Cassiterite and Coltan U-Pb Dating and 40Ar/39Ar Dating of Muscovite Rare-Metal Granitic Pegmatites: A Case Study of the Northern Tugeman Lithium-Beryllium Deposit in the Middle of Altyn Tagh[J]. Acta Petrologica Sinica, 2020, 36(9): 2869-2892. doi: 10.18654/1000-0569/2020.09.16

    李琦, 曾忠诚, 陈宁, 等. 阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 642-654

    LI Qi, ZENG Zhongcheng, CHEN Ning, et al. Zircon U-Pb ages, geochemical characteristics and geo-logical significance of Yaganbuyang gneiss in Qingbaikou period along the Altun orogenic belt[J]. Geologyical Bulletin of China, 2018, 37(4): 642-654.

    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418 doi: 10.3969/j.issn.0001-5717.2015.12.015

    LI Yanguang, WANG Shuangshuang, LIU Minwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    刘良, 张安达, 陈丹玲, 等. 阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J]. 地学前缘, 2007, 14(1): 98 -107.

    LIU Liang, ZHANG Anda, CHEN Danling, et al. Implication based on LA-ICP-MS ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh[J]. Earth Science Frontiers, 2007, 14 (1): 98-107.

    马拓, 刘良, 盖永升, 等. 南阿尔金尤努斯萨依花岗质高压麻粒岩的发现及其地质意义[J]. 岩石学报, 2018, 34(12): 3643-3657

    MA Tuo, LIU Liang, GAI YongSheng, et al. Discovery of the high pressure granitic granulite in South Altyn and it's geological significance[J]. Acta Petrologica Sinica, 2018, 34(12): 3643-3657.

    马中平, 李向民, 徐学义, 等. 南阿尔金山清水泉镁铁超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J]. 中国地质, 2011, 38(4): 1071-1078 doi: 10.3969/j.issn.1000-3657.2011.04.025

    MA Zhongping, LI Xiangmin, XU Xueyi, et al. Zircon LA-ICP-MS U-Pb isotopic dating for Qingshuiquan layered mafic-ulmafic intrusion southern Altun orogen, in northwestern China and its implication[J]. Geology in China, 2011, 38(4): 1071-1078. doi: 10.3969/j.issn.1000-3657.2011.04.025

    彭强, 江小均, 李超, 等. 云南个旧西凹蚀变花岗岩型铜-锡多金属矿床萤石地球化学特征及其地质意义[J]. 矿床地质, 2021, 40(6): 1182-1198

    PENG Qiang, JIANG Xiaojun, LI Chao, et al. Geochemical characteristics of fluorites from the Xi'ao altered granite type Cu-Sn polymetallic deposit in Gejiu, Yunnan Province and their geological significance[J]. Mineral Deposits, 2021, 40(6): 1182-1198.

    PAK Sang Wan, 马拓, 盖永升, 等. 南阿尔金尤努斯萨依高压花岗质片麻岩原岩的形成时代与地球化学特征: 对南阿尔金陆壳深俯冲板片属性的进一步限定[J]. 西北地质, 2019, 52(4): 76-97 doi: 10.3969/j.issn.1009-6248.2019.04.006

    PAK Sang Wan, 马拓, 盖永升, 等. 南阿尔金尤努斯萨依高压花岗质片麻岩原岩的形成时代与地球化学特征: 对南阿尔金陆壳深俯冲板片属性的进一步限定[J]. 西北地质, 2019, 52(4): 76-97. PAK Sang Wan, MA Tuo, GAI Yongsheng, et al. Geochronology and Geochemical Characteristics of the Protolith Rock of Younusisayi High Pressure Granitic Gneiss: a Further Study on the Properties of Continental Crust Subduction Plate in South Altyn Tagh [J]. Northwestern Geology, 2019, 52(4): 76-97. doi: 10.3969/j.issn.1009-6248.2019.04.006

    孙海瑞, 黄智龙, 周家喜, 等. 热液矿床中萤石的稀土元素地球化学及其指示意义[J]. 岩石矿物学杂志, 2014, 33(1): 185-193 doi: 10.3969/j.issn.1000-6524.2014.01.014

    SUN Hairui, HUANG Zhilong, ZHOU Jiaxi, et al. Rare earth elements geochemistry of fluorite in hydrothermal deposits and its geological significance[J]. Acta Petrologica Et Mineralogica, 2014, 33(1): 185-193. doi: 10.3969/j.issn.1000-6524.2014.01.014

    孙吉明, 马中平, 唐卓, 等. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义[J]. 地质学报, 2012, 86(2): 247-257 doi: 10.3969/j.issn.0001-5717.2012.02.004

    SUN Jiming, MA Zhongping, TANG Zhuo, et al. The LA-ICP-MS Zircon Dating and Tectonic Significance of the Yumuquan Magma Mixing Granite, Southern Altyn Tagh[J]. Acta Geologica Sinica, 2012, 86(2): 247-257. doi: 10.3969/j.issn.0001-5717.2012.02.004

    王超, 刘良, 车自成, 等. 阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨[J]. 高校地质学报, 2006, 12(1): 74-82 doi: 10.3969/j.issn.1006-7493.2006.01.008

    WANG Chao, LIU Liang, CHE Zicheng, et al. U-Pb geochronology and tectonic setting of the granitic gneiss in Jianggaleisayi eclogite belt, the Southern edge of Altyn Tagh[J]. Geological Journal of China Universities, 2006, 12(1): 74-82. doi: 10.3969/j.issn.1006-7493.2006.01.008

    王吉平, 商朋强, 熊先孝, 等. 中国萤石矿床成矿规律[J]. 中国地质, 2015, 42(1): 18-32 doi: 10.3969/j.issn.1000-3657.2015.01.003

    WANG Jiping, SHANG Pengqiang, XIONG Xianxiao, et al. Metallogenic regularities of fluorite deposits in China[J]. Geology in China, 2015, 42(1): 18-32. doi: 10.3969/j.issn.1000-3657.2015.01.003

    王立社, 杨鹏飞, 段星星, 等. 阿尔金南缘中段清水泉斜长花岗岩同位素年龄及成因研究[J]. 岩石学报, 2016, 32(123): 759-774

    WANG Lishe, YANG Pengfei, DUAN Xingxing, et al. Isotopic age and genesis of plagiogranite from Qingshuiquan area in the middle of South Altyn Tagh. [J]. Acta Petrologica Sinica, 2016, 32(123): 759-774.

    王立社, 张巍, 段星星, 等. 阿尔金环形山花岗片麻岩同位素年龄及成因研究[J]. 岩石学报, 2015, 31(1): 119-132

    WANG Lishe, ZHANG Wei, DUAN Xingxing, et al. Isotopic age and genesis of the monzogranitic gneiss at the Huanxingshan in middle Altyn Tagh[J]. Acta Petrologica Sinica, 2015, 31(1): 119-132.

    吴益平, 张连昌, 袁波, 等. 新疆阿尔金地区卡尔恰尔超大型萤石矿床地质特征及成因[J]. 地球科学与环境学报, 2021, 43(6): 962-977

    WU Yiping, ZHANG Lianchang, YUAN Bo, et al. Geological Characteristics and Genesis of the Super-large Kalqiar Fluorite Deposit in Altyn Tagh Area of Xinjiang, China[J]. Journal of Earth Sciences and Environment, 2021, 43(6): 962-977.

    吴益平, 张连昌, 周月斌, 等. 阿尔金卡尔恰尔超大型萤石矿床成矿流体特征及形成机制探讨[J]. 地质科学, 2022, 57(2): 495-509 doi: 10.12017/dzkx.2022.029

    WU Yiping, ZHANG Lianchang, ZHOU Yuebin, et al. Study on fluid characteristic and metallogenic mechanism of the super-large Kalqiaer fluorite deposit in Altyn Tagh area[J]. Chinese Journal of Geology, 2022, 57(2): 495-509. doi: 10.12017/dzkx.2022.029

    校培喜, 高晓峰, 胡云绪. 西昆仑—阿尔金成矿带基础地质综合研究[M]. 北京: 地质出版社, 2014

    XIAO Peixi, GAO Xiaofeng, HU Yunxu. Comprehensive Research of Basic Geology for Western Kunlun-Altgn Tagh Metallogenic Zone[M]. Beijing: Geological Publishing House, 2014

    许成, 黄智龙, 漆亮, 等. 四川牦牛坪稀土矿床成矿流体来源与演化初探—萤石稀土地球化学的证据[J]. 地质与勘探, 2001, 5: 24-28

    XU Cheng, HUANG Zhilong, QI Liang, et al. Souce and evolution of ore-forming fluids of Maoniuping rare-earth deposit-Evidence from REE geochemistry of fluorites[J]. Geology and Prospescting, 2001, 5: 24-28.

    许东青, 聂凤军, 钱明平, 等. 苏莫查干敖包超大型萤石矿床的稀土元素地球化学特征及其成因意义[J]. 矿床地质, 2009, 28(1): 29-41 doi: 10.3969/j.issn.0258-7106.2009.01.003

    XU Dongqing, NIE Fengjun, QIAN Mingping, et al. REE geochemistry and genesis of Sumochagan Obo superlarge fluorite deposit[J]. Mineral Deposits, 2009, 28(1): 29-41. doi: 10.3969/j.issn.0258-7106.2009.01.003

    许若潮, 龙训荣, 刘飚等. 湘南界牌岭锡多金属矿床萤石LA-ICP-MS微量元素地球化学特征及意义[J]. 矿床地质, 2022, 41(1): 158-173 doi: 10.16111/j.0258-7106.2022.01.010

    XU Ruochao, LONG Xunrong, LIU Biao, et al. LA-ICP-MS trace element analysis of fluorite and implications in Jiepailing tinpolymetallic deposit from South of Hunan Province[J]. Mineral Deposits, 2022, 41(1): 158-173. doi: 10.16111/j.0258-7106.2022.01.010

    徐兴旺, 李杭, 石福品, 等. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测[J]. 岩石学报, 2019, 35(11): 3303-3316 doi: 10.18654/1000-0569/2019.11.03

    XU Xingwang, LI Hang, SHI Fupin, et al. Metallogenic Characteristics and Prospecting of Granitic Pegmatite -Type Rare Metal Deposits in the Tugeman Area, Middle Part of Altyn Tagh[J]. Acta Petrologica Sinica, 2019, 35(11): 3303-3316. doi: 10.18654/1000-0569/2019.11.03

    徐旭明, 郭金城, 陈海燕, 等. 新疆阿尔金长沙沟一带奥陶纪辉长岩SHRIMP锆石U-Pb年龄及其地球化学特征[J]. 西北地质, 2014, 47(4): 156-162 doi: 10.3969/j.issn.1009-6248.2014.04.016

    XU Xuming, GUO Jincheng, CHEN Haiyan, et al. SHRIMP Zircon U-Pb Age and Geochemical Characteristics of Ordovician Gabbro from Altun, Xinjiang Province [J]. North Western Geology, 2014, 47(4): 156-162. doi: 10.3969/j.issn.1009-6248.2014.04.016

    杨文强, 刘良, 丁海波, 等. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义[J]. 岩石学报, 2012, 128(12): 4139-4150

    YANG Wenqiang, LIU Liang, DING Haibo, et al. Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagn and Its Geological Significance. Acta Petrologica Sinica, 2012, 128 (12): 4139-4150.

    叶锡芳. 浙江萤石矿床成矿规律与成矿模式[J]. 西北地质, 2014, 47(1): 208-220 doi: 10.3969/j.issn.1009-6248.2014.01.019

    YE Xifang. Mineralization and Metallogenic Model of Fluorite Deposits in the Zhejiang Area[J]. North Western Geology, 2014, 47(1): 208-220. doi: 10.3969/j.issn.1009-6248.2014.01.019

    游超, 王春连, 刘殿鹤, 等. 江西宁都坎田萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球学报, 2022, 43(3): 359-370 doi: 10.3975/cagsb.2022.040101

    YOU Chao, WANG Lianchun, LIU Dianhe, et al. REE geochemistry of fluorite from Kantian fluorite deposit and its geological implications in Ningdu Area, Jiangxi Province[J]. Acta Geoscientica Sinica, 2022, 43(3): 359-370. doi: 10.3975/cagsb.2022.040101

    曾忠诚, 洪增林, 刘芳晓, 等. 阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约[J]. 中国地质, 2020, 47(3): 569-589 doi: 10.12029/gc20200302

    ZENG Zhongcheng, HONG Zenglin, LIU Fangxiao, et al. Confirmation of gneissic granite of Qingbaikou period and its constraint on the timing of the Rodinia supercontinent on the Altun orogenic belt[J]. Geology in China, 2020, 47(3): 569-589. doi: 10.12029/gc20200302

    张建新, 孟繁聪, 于胜尧. 两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约[J]. 岩石学报, 2010, 26(7): 1967-1992

    ZHANG Jianxin, MENG Fancong, YU Shengyao. Two contrasting HP/LT and UHP metamorphic belts: Constraint on Early Paleozoic orogeny in Qilian-Altun orogen[J]. Acta Petrologica Sinica, 2010, 26(7): 1967-1992.

    张若愚, 曾忠诚, 陈宁, 等. 阿尔金造山带南缘中-晚奥陶世正长花岗岩的发现及其地质意义[J]. 地质通报, 2018, 37(4): 546-558

    ZHANG Ruoyu, Zeng Zhongcheng, Chen Ning, et al. The discovery of Middle‐Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance[J]. Geological Bulletin of China, 2018, 37(4): 546-558.

    张若愚, 曾忠诚, 朱伟鹏, 等. 阿尔金造山带帕夏拉依档岩体锆石U-Pb年代学、地球化学特征及地质意义[J]. 地质论评, 2016, 62(5): 1283-1299

    ZHANG Ruoyu, Zeng Zhongcheng, ZHU Weipeng, et al. LA-ICP-MS zircon U-Pb dating, geochemical features and their geological implications of Paxialayidang plutons on the southern margin of Altyn Tagh[J]. Geological Review, 2016, 62(5): 1283-1299.

    张苏坤, 王辉, 冯绍平, 等. 河南省栾川县杨山萤石矿成矿作用: 来自氢氧同位素和元素地球化学的约束[J]. 西北地质, 2022, 55(2): 209-216

    ZHANG Sukun, WANG Hui, FENG Shaoping, et al. Mineralization of Yangshan Fluorite Deposit in Luanchuan County, Henan Province: Constraints from H-O Isotopes and Element Geochemistry[J]. Northwestern Geology, 2022, 55(2): 209-216.

    赵省民, 聂凤军, 江思宏, 等. 内蒙古东七一山萤石矿床的稀土元素地球化学特征及成因[J]. 矿床地质, 2002, 21(3): 311-317 doi: 10.3969/j.issn.0258-7106.2002.03.014

    ZHAO Xingmin, NIE Fengjun, JIANG Sihong, et al. REE Geochemistry and Genesis of Dongqiyishan Fluorite Deposit, Inner Mongolia [J]. Mineral Deposits, 2002, 21(3): 311-317. doi: 10.3969/j.issn.0258-7106.2002.03.014

    朱小辉, 曹玉亭, 刘良, 等. 阿尔金淡水泉花岗质高压麻粒岩PT演化及年代学研究[J]. 岩石学报, 2014, 30(12): 3717-3728

    ZHU Xiaohui, CAO Yuting, LIU Liang, et al. P-T path and geochronology of high pressure granitic granulite from Danshuiquan area in Altyn Tagh[J]. Acta Petrologica Sinica, 2014, 30(12): 3717-3728.

    邹灏, 淡永, 张寿庭. 重庆东南部彭水地区重晶石-萤石矿床的成矿物质来源探讨: 地球化学证据[J]. 大地构造与成矿学, 2016, 4(1): 71-85

    ZOU Hao, DAN Yong, ZHANG Shouting. Geochemical Evidence for Sources of Ore-forming Material of Barite-Fluorite Deposits in Pengshui Area, Southeast Chongqing[J]. Geotectonica et Metallogenia, 2016, 4(1): 71-85.

    邹灏, 方乙, 陈合毛, 等. 浙江天台盆地下陈萤石矿稀土元素地球化学特征及成因[J]. 中国地质, 2014, 41(4): 1375-1386 doi: 10.3969/j.issn.1000-3657.2014.04.027

    ZOU Hao, FANG Yi, CHEN Hemao, et al. REE geochemistry and genesis of the Xiachen fluorite deposit in Tiantai basin, Zhejiang Province[J]. Geology in China, 2014, 41(4): 1375-1386. doi: 10.3969/j.issn.1000-3657.2014.04.027

    Allegre C J, and Minster J F. Quantitative models of trace element behavious in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38: 1-25.

    Bau M and Dulski P. Compartive study of yttrium and rare-earth element behaviors in fluorite-rich hydrothermal fluids[J]. Contributions Mineralogy Petrology, 1995, 119: 213-223. doi: 10.1007/BF00307282

    Bau M and Moller P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology, 1992, 45(3): 231-246.

    DENG X H, CHEN Y J, YAO J M, et al. Fluorite REE-Y (REY) geochemistry of the ca. 850Ma Tumen molybdenite-fluorite deposit, eastern Qinling, China: Constraints on ore genesis[J]. Ore Geology Reviews, 2014, 63: 532-543. doi: 10.1016/j.oregeorev.2014.02.009

    Gao Y B, ZHAO X M, Leon Bagas, et al. Newly Discovered Ordovician Li-Be Deposit at Tugeman in the Altyn-Tagh Orogen, NW China[J]. Ore Geology Reviews, 2021, 139: 1-15.

    Graupner T, Muhlbach C, Schwarz-Schampera U, et al. Mineralogy of high-field-strength elements(Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa[J]. Ore Geology Reviews, 2015, 64: 583-601. doi: 10.1016/j.oregeorev.2014.02.012

    Hoskin P W O, Black L P. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18: 423- 439. doi: 10.1046/j.1525-1314.2000.00266.x

    Liu L, Wang C, Cao Y T, et al. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China[J]. Lithos, 2012, 136-139: 10-26. doi: 10.1016/j.lithos.2011.09.014

    Lottermoser B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7: 25-41. doi: 10.1016/0169-1368(92)90017-F

    Ludwig K R. User’s manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology CenterSpecial Publication, 2003, (4): 1-70.

    Moller P, Morteani G. On the geochemical fractionation of rare-earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. In: Augusthitis SS(ed. ). The Siginificance of Trace Elements in Solving Petrogenetic Probulems and Controversies[J]. Theophrastus, Athens, 1983, 747-791.

    Moller P, Parekh P P, Schneider H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluor-spar genesis[J]. Mineralium Deposita, 1976, 11: 111-116. doi: 10.1007/BF00203098

    Mondillo N, Boni M, Balassone G, et al. Rare earth elements (REE) -Minerals in the Silius fluorite vein system (Sardinia, Italy)[J]. Ore Geology Reviews, 2016, 74: 211-224. doi: 10.1016/j.oregeorev.2015.11.016

    Sasmaz A, Kryuchenko N, Zhovinsky E, et al. Major, trace and rare earth element (REE) geochemistry of different colored fluorites in the Bobrynets region, Ukraine[J]. Ore Geology Reviews, 2018, 102: 338-350. doi: 10.1016/j.oregeorev.2018.09.014

    Schonenberger J, Köhler J, Markl G. REE systematics systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland[J]. Chemical Geology, 2008, 247(1-2): 16-35. doi: 10.1016/j.chemgeo.2007.10.002

    Smith M P, Henderson P, Campbell L S. Fractionation of the REE during hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3141-3160. doi: 10.1016/S0016-7037(00)00416-6

    Van Achterbergh E, Ryan C G, Jackson S E, et al. Data reduction software for LA-ICP-MS. In: Sylvester, P. J. (Ed. ), Laser-Ablation-ICPMS in the Earth Sciences. Principles and Applications[J]. Mineralogical Society of Canada (Short Course Series), 2001, 29: 239-243.

    Veksler I V, Dorfman A M, Kamenetsky M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2847-2860. doi: 10.1016/j.gca.2004.08.007

    Zhang J X, Zhang Z M, Xu Z Q, et al. Petrology and geochronology of eclogites from the Western segment of the Altyn Tagh, northwestern China[J]. Lithos, 2001, 56(2-3): 187-206. doi: 10.1016/S0024-4937(00)00052-9

  • 加载中

(10)

(4)

计量
  • 文章访问数:  1118
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2022-06-17
修回日期:  2022-10-11
刊出日期:  2023-02-20

目录