西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义

孔会磊, 任广利, 李文渊, 李侃, 赵晓健, 张江伟, 李伟. 2023. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义. 西北地质, 56(2): 61-79. doi: 10.12401/j.nwg.2023004
引用本文: 孔会磊, 任广利, 李文渊, 李侃, 赵晓健, 张江伟, 李伟. 2023. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义. 西北地质, 56(2): 61-79. doi: 10.12401/j.nwg.2023004
KONG Huilei, REN Guangli, LI Wenyuan, LI Kan, ZHAO Xiaojian, ZHANG Jiangwei, LI Wei. 2023. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China. Northwestern Geology, 56(2): 61-79. doi: 10.12401/j.nwg.2023004
Citation: KONG Huilei, REN Guangli, LI Wenyuan, LI Kan, ZHAO Xiaojian, ZHANG Jiangwei, LI Wei. 2023. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China. Northwestern Geology, 56(2): 61-79. doi: 10.12401/j.nwg.2023004

西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义

  • 基金项目: 国家自然科学基金重大研究计划集成项目“西昆仑–松潘甘孜伟晶岩型锂等大型稀有金属成矿带成矿规律与找矿潜力研究”(92262302),第二次青藏高原综合科学考察研究专题“昆仑–阿尔金–柴北缘成矿带战略储备综合评估”(2019QZKK0806),国家重点研发计划课题“西部锂、铍等战略性金属矿产资源成矿规律与预测评价”(2019YFC0605201)和中国地质调查局项目“西昆仑–阿尔金成矿带铁锰稀有金属矿产地质调查”(DD20230285)联合资助。
详细信息
    作者简介: 孔会磊(1985−),男,博士生,高级工程师,从事区域成矿及成矿规律研究。E−mail:konghuilei2008@126.com
    通讯作者: 李文渊(1962−),男,博士,研究员,从事岩浆作用矿床及区域成矿研究。E−mail: xalwenyuan@126.com
  • 中图分类号: P618.71;P612

Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China

More Information
  • 西昆仑地区是中国重要的伟晶岩型锂铍成矿带,近年来在大红柳滩一带取得重大找矿突破,已形成大型矿产资源基地。笔者对西昆仑大红柳滩东锂辉石花岗伟晶岩进行了详细的岩相学、年代学和地球化学研究,能够为本区伟晶岩型锂矿成矿作用研究提供新的依据。利用LA−ICP−MS锆石U−Pb定年,获得大红柳滩东含锂辉石钠长花岗伟晶岩及含锂辉石电气石花岗伟晶岩年龄分别为(205.2±1.4)Ma和(205.0±2.6)Ma,形成时代为晚三叠世。岩石地球化学研究表明,大红柳滩东含锂辉石花岗伟晶岩以高Si、富Al、富Na、钙碱质,高分异,低K、Fe、Mg、Ca和Ti为特征,属强过铝质花岗伟晶岩。岩石明显富集Rb、U、Nb、Ta、Pb、P、Hf等元素,亏损Ba、Th、La、Ce、Pr、Sr、Nd、Sm、Ti等元素;稀土总量较低,∑REE值为0.56×10−6~3.34×10−6,具有弱−中等的负铕异常,δEu值为0.30~0.89。大红柳滩东伟晶岩均具有低且负的εHf(t)值(–4.6~0)和古老的二阶段Hf模式年龄TDM2(1497~1208 Ma),反映其源岩为古老地壳物质的部分熔融。结合西昆仑地区已有年代学资料和区域地质构造演化特征,认为大红柳滩一带伟晶岩矿床形成于南昆仑地体与甜水海地体后碰撞背景下。

  • 加载中
  • 图 1  西昆仑造山带地质简图及锂铍矿床分布图(据王核等,2021Yan et al.,2022

    Figure 1. 

    图 2  大红柳滩一带锂矿床分布图(据李侃等,2019修改)

    Figure 2. 

    图 3  大红柳滩东锂矿区地质简图

    Figure 3. 

    图 4  大红柳滩东锂矿典型野外及显微镜下照片

    Figure 4. 

    图 5  大红柳滩东锂辉石花岗伟晶岩锆石阴极发光照片

    Figure 5. 

    图 6  大红柳滩东锂辉石花岗伟晶岩锆石U−Pb 年龄谐和图(a、c)和加权平均年龄(b、d)

    Figure 6. 

    图 7  大红柳滩东锂辉石花岗伟晶岩的(K2O+Na2O)−SiO2(a)(据Middlemost,1994)及A/CNK−A/NK图解(b)(Mania et al.,1989

    Figure 7. 

    图 8  大红柳滩东锂辉石花岗伟晶岩的微量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分曲线图(b)(标准化数值据Sun et al.,1989

    Figure 8. 

    表 1  大红柳滩东锂辉石花岗伟晶岩LA−ICP−MS锆石U−Pb测年结果

    Table 1.  LA−ICP−MS zircon U−Pb data for Dahongliutandong spodumene pegmatites

    样品编号含量(10−6Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    Pb*ThU比值比值比值年龄(Ma)年龄(Ma)年龄(Ma)
    HXUPb01(含锂辉石钠长花岗伟晶岩)
    12390.92755.968709.30.0400.04930.00060.22180.00220.03270.0003164.226.8203.41.8207.11.7
    298.9126.82900.40.0440.05190.00110.22750.00460.03190.0003279.948.9208.13.8202.12.0
    3586.151.016707.80.0030.05270.00060.23860.00210.03290.0003317.024.2217.21.7208.41.7
    5192.26.25682.30.0010.05210.00060.22770.00210.03170.0003289.925.2208.31.7201.51.6
    72655.5192.576296.60.0030.04890.00060.22080.00220.03280.0003144.027.4202.51.8207.91.7
    1070.7166.51983.70.0840.05270.00090.24000.00370.03310.0003314.838.4218.43.1209.91.9
    1157.34.21705.40.0020.05170.00070.22490.00250.03160.0003272.528.8206.02.0200.51.7
    1277.17.92201.70.0040.05100.00060.23110.00240.03290.0003240.927.7211.12.0208.81.7
    15103.57.42998.20.0020.05440.00090.23920.00370.03200.0003386.237.4217.83.0202.81.8
    1645.813.41318.20.0100.05130.00070.22980.00270.03250.0003254.630.9210.12.3206.41.7
    17629.660.618112.30.0030.05010.00060.22530.00240.03260.0003200.928.3206.32.0207.01.7
    18263.326.97326.30.0040.05430.00060.24940.00240.03340.0003382.825.3226.11.9211.61.7
    194399.21254.7127321.80.0100.05060.00050.22550.00200.03240.0003223.024.3206.51.6205.31.7
    20115.321.73340.80.0060.05520.00070.24320.00240.03200.0003419.725.9221.02.0203.01.7
    21120.055.93460.90.0160.05170.00090.23050.00380.03240.0003271.041.1210.63.2205.51.9
    22464.491.613671.90.0070.05120.00060.22450.00220.03180.0003249.626.1205.61.8202.11.7
    24128.08.03732.40.0020.05390.00070.23690.00240.03190.0003365.927.0215.92.0202.61.7
    251440.0291.942465.60.0070.05280.00060.23050.00200.03170.0003321.323.9210.61.7201.11.6
    26168.216.64838.90.0030.05220.00060.23420.00220.03260.0003291.825.4213.61.8206.91.7
    27164.418.74741.40.0040.05200.00110.23150.00440.03240.0003283.946.7211.53.7205.32.0
    28272.216.57818.80.0020.05450.00060.24300.00220.03240.0003392.424.1220.91.8205.31.7
    3071.911.62101.60.0050.05130.00070.22700.00260.03210.0003254.229.7207.82.1203.91.7
    HXUPb02(含锂辉石电气石花岗伟晶岩)
    2180.027.35228.30.0050.05440.00060.24030.00240.03200.0003387.525.5218.61.9203.21.7
    3244.63.27122.30.0000.05180.00060.22980.00230.03220.0003276.226.8210.01.9204.11.7
    4103.93.23129.50.0010.05250.00060.22470.00220.03110.0003305.725.6205.81.8197.21.6
    5358.752.710329.30.0050.05370.00090.23690.00350.03200.0003356.236.6215.82.9203.11.8
    81544.6125.644470.60.0030.04820.00050.21740.00200.03270.0003108.425.6199.71.7207.51.7
    10130.132.63805.50.0090.04950.00060.21900.00220.03210.0003173.327.3201.11.9203.51.7
    11367.457.610581.20.0050.05360.00060.23800.00220.03220.0003353.724.9216.71.8204.31.7
    1274.93.52115.00.0020.05340.00070.24290.00280.03300.0003347.129.1220.82.3209.11.8
    1383.14.42339.30.0020.05380.00070.24480.00280.03300.0003363.529.5222.32.3209.11.8
    14126.01191.03668.30.3250.05460.00140.23410.00550.03110.0003394.154.8213.64.5197.52.1
    18138.2295.63892.20.0760.04800.00120.21690.00490.03280.000398.656.7199.34.1207.82.2
    1961.55.21697.10.0030.05040.00060.23620.00260.03400.0003214.728.6215.32.1215.31.8
    20199.326.05839.10.0040.05500.00070.23890.00250.03150.0003413.326.7217.52.1199.81.7
    211250.6128.434010.70.0040.05560.00060.25870.00230.03380.0003434.823.4233.61.8214.11.7
    22173.614.55015.00.0030.05560.00070.24510.00270.03190.0003437.927.9222.62.2202.71.7
    23222.88.96163.00.0010.05510.00080.25220.00330.03320.0003416.132.0228.42.7210.51.8
    24176.322.95071.30.0050.05010.00130.22220.00520.03210.0004201.356.7203.74.3203.92.2
    29221.113.26537.80.0020.05260.00060.22740.00210.03130.0003312.124.6208.01.7198.91.6
    下载: 导出CSV

    表 2  大红柳滩东锂辉石花岗伟晶岩主量元素(%)、稀土和微量元素(10–6)分析结果

    Table 2.  Results of major elements (%), REE and trace elements (10–6) of Dahongliutandong spodumene pegmatites

    样品号HX-H3HX-H4HX-H5HX-H8HX-H10HX-H13HX-H14HX-H15HX-H16HX-H17
    岩性含锂辉石钠长花岗伟晶岩含锂辉石电气石花岗伟晶岩
    SiO272.6072.3276.0077.5877.2975.2578.2676.9779.6874.75
    TiO20.010.020.010.010.010.010.010.010.010.01
    Al2O318.2418.1016.2615.2115.4517.0414.6415.0113.3417.33
    Fe2O30.050.100.070.240.290.070.010.010.100.01
    FeO0.150.120.100.150.100.100.200.100.100.20
    MnO0.050.060.050.120.120.070.070.050.100.06
    MgO0.060.070.050.030.030.030.020.020.040.02
    CaO0.150.160.140.280.260.280.250.230.300.22
    Na2O5.515.464.762.452.704.624.374.604.104.78
    K2O0.941.831.130.730.960.270.291.750.320.47
    P2O50.200.120.140.350.370.230.220.240.270.23
    LOI0.771.160.730.680.760.390.310.470.440.20
    Total98.7499.5299.4297.8298.3498.3598.6499.4598.7898.27
    A/CNK1.761.611.752.852.602.031.841.521.751.98
    Sc4.924.153.142.562.144.373.692.483.124.40
    Ga28.2030.7026.0023.6025.1022.0018.7016.8017.6020.70
    W0.580.500.440.640.670.510.390.580.380.51
    Bi0.400.360.300.561.620.120.320.550.150.15
    V2.042.351.310.690.340.450.230.130.280.75
    Li6520.003280.004780.0010700.009600.009650.007500.004570.006420.009080.00
    Be126.0040.1034.60136.00126.00234.00225.00238.00265.0024.00
    B11.3014.4012.2012.0012.007.727.4211.108.339.19
    Rb403.00843.00476.00216.00305.0080.3068.50399.0081.10107.00
    Cs31.9032.7022.4013.3013.3010.2010.5018.3018.604.10
    Ba12.4015.908.787.583.295.723.815.924.332.82
    Th0.320.650.670.290.250.140.100.100.190.09
    U11.4012.9011.804.328.567.623.904.558.422.74
    Ta113.0097.7074.7043.0029.7037.2020.6021.0032.0018.20
    Nb99.2064.7058.4093.2059.9082.2056.8085.0085.8046.60
    Pb7.087.566.216.976.679.019.0616.9011.408.42
    Sr19.3016.7018.0031.8026.8029.0032.0042.3041.1019.40
    Zr29.7025.2028.2021.206.979.365.863.2228.904.33
    Hf4.283.593.832.330.960.950.550.323.010.80
    Cu10.7012.408.061.591.371.771.521.421.251.85
    Zn23.4025.8027.8074.1069.9025.3040.2080.2072.0087.10
    Sn>200>200108.00193.00160.00178.0034.5038.50>20041.00
    Y0.760.620.690.600.270.320.300.320.460.12
    下载: 导出CSV
    续表2
    样品号HX-H3HX-H4HX-H5HX-H8HX-H10HX-H13HX-H14HX-H15HX-H16HX-H17
    岩性含锂辉石钠长花岗伟晶岩含锂辉石电气石花岗伟晶岩
    La0.540.700.500.280.200.190.160.220.120.14
    Ce0.991.320.890.530.350.330.280.370.190.20
    Pr0.130.140.100.060.040.040.030.050.020.02
    Nd0.480.520.360.200.120.140.120.150.080.07
    Sm0.130.170.170.070.050.060.040.050.060.03
    Eu0.030.030.020.010.010.010.010.020.010.01
    Gd0.170.160.180.090.060.070.050.060.070.03
    Tb0.030.030.030.020.010.010.010.010.010.00
    Dy0.150.140.150.090.060.070.060.060.080.03
    Ho0.030.020.020.020.010.010.010.010.010.01
    Er0.070.050.060.040.030.030.030.030.030.01
    Tm0.010.010.010.010.000.000.000.000.000.00
    Yb0.050.040.040.040.020.020.030.030.020.01
    Lu0.0080.0070.0080.0060.0040.0040.0040.0040.0040.002
    ΣREE2.813.342.541.450.960.980.841.060.710.56
    LREE/HREE4.496.254.063.914.013.533.224.172.005.35
    LaN/YbN7.3111.418.155.745.985.684.416.313.748.37
    δEu0.530.500.300.470.450.560.660.780.400.89
    δCe0.921.030.981.010.980.960.960.910.870.88
    LaN/SmN2.682.661.902.582.392.232.522.631.383.01
    GdN/YbN2.653.013.382.031.902.271.692.122.451.72
    下载: 导出CSV

    表 3  大红柳滩东锂辉石花岗伟晶岩锆石Lu−Hf同位素组成

    Table 3.  Zircon Lu−Hf isotopic compositions of Dahongliutandong spodumene pegmatites

    测点号t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf176Hf/177Hf)iεHftTDM1(Ma)TDM2(Ma)fLu/Hf
    HXUPb01(含锂辉石钠长花岗伟晶岩)
    1207.10.0016320.0000320.2826260.0000100.282626−0.60.48201247−1.00
    2202.10.0040440.0000800.2826290.0000120.282629−0.60.48161243−1.00
    3208.40.0019640.0000390.2826200.0000100.282620−0.80.38281260−1.00
    7207.90.0039160.0000640.2825480.0000120.282548−3.40.49241422−1.00
    10209.90.0028920.0000600.2826130.0000080.282613−1.00.38381275−1.00
    11200.50.0000920.0000030.2825980.0000060.282598−1.80.28561314−1.00
    12208.80.0030620.0000610.2826090.0000100.282609−1.20.38431284−1.00
    15202.80.0011880.0000250.2826260.0000090.282626−0.70.38201250−1.00
    16206.40.0020450.0000430.2826070.0000100.282607−1.30.48451290−1.00
    17207.00.0004840.0000100.2826430.0000130.2826430.00.57961208−1.00
    18211.60.0020140.0000400.2826320.0000130.282632−0.30.48121230−1.00
    19205.30.0012060.0000210.2826270.0000120.282627−0.60.48191247−1.00
    20203.00.0087710.0001850.2826200.0000140.282619−1.00.58311266−0.99
    21205.50.0063520.0001240.2825860.0000140.282586−2.10.58751339−1.00
    24202.60.0004810.0000090.2825670.0000100.282567−2.80.38971382−1.00
    25201.10.0129670.0002370.2826180.0000180.282618−1.00.68341270−0.99
    26206.90.0017700.0000340.2826340.0000100.282634−0.30.48091229−1.00
    27205.30.0013620.0000240.2826220.0000090.282622−0.80.38241256−1.00
    28205.30.0007820.0000130.2826320.0000120.282632−0.40.48111235−1.00
    HXUPb02(含锂辉石电气石花岗伟晶岩)
    2203.20.0009540.0000220.2826310.0000100.282631−0.50.48121237−1.00
    3204.10.0018930.0000190.2825160.0000130.282516−4.60.59661496−1.00
    4197.20.0244720.0008190.2826320.0000130.282629−0.70.58281247−0.98
    5203.10.0045870.0000890.2825890.0000110.282589−2.00.48701333−1.00
    8207.50.0005700.0000250.2826290.0000170.282629−0.50.68151239−1.00
    10203.50.0047610.0001380.2825630.0000120.282563−2.90.49051391−1.00
    12209.10.0033490.0000960.2825840.0000140.282584−2.10.58771340−1.00
    13209.10.0073750.0001950.2825840.0000140.282584−2.10.58791340−0.99
    14197.50.0368800.0008020.2825620.0000190.282559−3.20.79221403−0.98
    20199.80.0052630.0000610.2825170.0000150.282517−4.60.59651497−1.00
    21214.10.0097150.0002440.2826170.0000210.282616−0.80.78361265−0.99
    22202.70.0097100.0002930.2826190.0000140.282618−1.00.58341268−0.99

      注:1. εHft) = 10000 × {[(176Hf/177Hf)S – (176Lu/177Hf)S × (eλt – 1)] / [(176Hf/177Hf)CHUR,0– (176Lu/177Hf) CHUR × (eλt – 1)] – 1};

        2. TDM1 = 1/λ × ln{1 + [(176Hf/177Hf)S – (176Hf/177Hf) DM]/ [(176Lu/177Hf)S – (176Lu/177Hf)DM]};

        3. TDM2 = TDM – (TDMt) × [(fccfs)/(fccfDM)]. fLu/Hf = (176Lu/177Hf)S /(176Lu/177Hf) CHUR – 1;

        4. λ = 1.867 × 10−11/a;(176Lu/177Hf)S 和(176Hf/177Hf)S 为样品测量值;(176Lu/177Hf) CHUR = 0.0332; (176Hf/177Hf)CHUR,0 = 0.282772; (176Lu/177Hf)DM = 0.0384;(176Hf/177Hf) DM = 0.28325;(176Lu/177Hf)平均地壳 = 0.015; fcc = [(176Lu/177Hf)平均地壳/(176Lu/177Hf) CHUR] – 1; fs = fLu/Hf; fDM = [(176Lu/177Hf)DM /(176Lu/177Hf) CHUR] – 1; t 为锆石结晶年龄。

    下载: 导出CSV
  • 白洪阳, 王核, 闫庆贺, 等. 新疆西昆仑雪凤岭锂矿床铌钽铁矿、锡石年龄及其地质意义[J]. 岩石学报, 2022, 38(7): 2139-2152 doi: 10.18654/1000-0569/2022.07.19

    BAI Hongyang, WANG He, YAN Qinghe, et al. Columbite-tantalite and cassiterite ages of Xuefengling lithium deposit in West Kunlun, Xinjiang and their geological significance[J]. Acta Petrologica Sinica, 2022, 38(7): 2139-2152. doi: 10.18654/1000-0569/2022.07.19

    陈海云, 孙妍, 包平, 等. 西昆仑上其木干岩体岩石成因及地质意义——地球化学及U-Pb年代学证据[J]. 岩石矿物学杂志, 2014, 33(4): 657-670 doi: 10.3969/j.issn.1000-6524.2014.04.005

    CHEN Haiyun, SUN Yan, BAO Ping, et al. Petrogenesis and geological significance of Shangqimugan plutons in Western Kunlun: Evidence from geochemistry and U-Pb chronology[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 657-670. doi: 10.3969/j.issn.1000-6524.2014.04.005

    陈衍景, 薛莅治, 王孝磊, 等. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 2021, 95(10): 2971-2995 doi: 10.3969/j.issn.0001-5717.2021.10.004

    CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-type lithium deposits in the world[J]. Acta Geologica Sinica, 2021, 95(10): 2971-2995. doi: 10.3969/j.issn.0001-5717.2021.10.004

    丁坤, 梁婷, 周义, 等. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据[J]. 西北地质, 2020, 53(1): 24-34

    DING Kun, LIANG Ting, ZHOU Yi, et al. Petrogenesis of the Dahongliutan biotite monzogranite in western Kunlun orogen: Evidence from zircon U-Pb age and Li-Hf isotope[J]. Northwestern Geology, 2020, 53(1): 24-34.

    蒋少涌, 王春龙, 张璐, 等. 伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展[J]. 地质学报, 2021, 95(10): 3017-3038 doi: 10.3969/j.issn.0001-5717.2021.10.006

    JIANG Shaoyong, WANG Chunlong, ZHANG Lu, et al. In situ trace element tracing and isotopic dating of pegmatite type lithium deposits: an overview[J]. Acta Geologica Sinica, 2021, 95(10): 3017-3038. doi: 10.3969/j.issn.0001-5717.2021.10.006

    康磊, 校培喜, 高晓峰, 等. 西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年: 对古特提斯碰撞时限的制约[J]. 地质论评, 2012, 58(4): 763-774 doi: 10.3969/j.issn.0371-5736.2012.04.017

    KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. LA-ICP-MS U-Pb dating of the zircon from Muztagata pluton in Western Kunlun Orogenic Belt: Constraints on the time of Paleotethys’ collision[J]. Geological Review, 2012, 58(4): 763-774. doi: 10.3969/j.issn.0371-5736.2012.04.017

    李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究—以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869-2892 doi: 10.18654/1000-0569/2020.09.16

    LI Hang, HONG Tao, YANG Zhiquan, et al. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 2020, 36(9): 2869-2892. doi: 10.18654/1000-0569/2020.09.16

    李建康, 李鹏, 严清高, 等. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 2021, 95(10): 2996-3016 doi: 10.3969/j.issn.0001-5717.2021.10.005

    LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10): 2996-3016. doi: 10.3969/j.issn.0001-5717.2021.10.005

    李建康, 王登红, 张德会, 等. 川西典型伟晶岩型矿床的形成机制及大陆动力学背景[M]. 北京: 原子能出版社, 2007, 72 – 122

    LI Jiankang, WANG Denghong, ZHANG Dehui, et al. Mineralization Mechanism and Continental Geodynamic of Pegmatite Type Deposits in Western Sichuan, China[M]. Beijing: Atomic Energy Press, 2007, 72 – 122.

    李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206-221 doi: 10.3969/j.issn.1009-6248.2019.04.016

    LI Kan, GAO Yongbao, TENG Jiaxin, et al. Metallogenic geological characteristics, mineralization age and resource potential of the granite-pegmatite-type rare metal deposits in Dahongliutan area, Hetian County, Xinjiang[J]. Northwestern Geology, 2019, 52(4): 206-221. doi: 10.3969/j.issn.1009-6248.2019.04.016

    李善平, 潘彤, 王秉璋, 等. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 2021, 45(3): 608-619 doi: 10.16539/j.ddgzyckx.2021.03.009

    LI Shanping, PAN Tong, WANG Bingzhang, et al. Characteristics and tectonic significance of beryl-bearing pegmatites in Qiemoge Mountain, northern margin of Qaidam Basin[J]. Geotectonica et Metallogenia, 2021, 45(3): 608-619. doi: 10.16539/j.ddgzyckx.2021.03.009

    李文渊, 张照伟, 高永宝, 等. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, 2022, 49(5): 1385-1407 doi: 10.12029/gc20220503

    LI Wenyuan, ZHANG Zhaowei, GAO Yongbao, et al. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. Geology in China, 2022, 49(5): 1385-1407. doi: 10.12029/gc20220503

    李永, 王威, 杜晓飞, 等. 西昆仑509道班西锂铍稀有金属矿白云母40Ar/39Ar定年及对区域成矿的限定[J]. 中国地质, 2022, 49(6): 2031-2033

    LI Yong, WANG Wei, DU Xiaofei, et al. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the West Kunlun orogenic belt and its limitation to regional mineralization[J]. Geology in China, 2022, 49(6): 2031-2033.

    梁婷, 滕家欣, 王登红, 等. 新疆大红柳滩锂铍稀有金属矿床[M]. 北京: 地质出版社, 2021, 1 – 262

    LIANG Ting, TENG Jiaxin, WANG Denghong, et al. Li-Be Rare Metal Deposit in Dahongliutan, Xinjiang[M]. Beijing: Geological Publishing House, 2021, 1 – 262.

    鲁浩, 刘欢, 胡峰, 等. 西昆仑造山带东段中生代碰撞造山事件的记录: 来自新疆温泉-胜利达坂一带三叠纪侵入岩年代学、地球化学的证据[J/OL]. 现代地质. https://doi.org/10.19657/j.geoscience.1000-8527.2022. 022

    LU Hao, LIU Huan, HU Feng, et al. Records of Mesozoic collision orogenic events on the eastern part of the West Kunlun Orogenic Belt: Evidence from the chronology and geochemistry of Triassic intrusive rocks in Wenquan-Shenglidaban area, Xinjiang [J/OL]. Geoscience. https://doi.org/10.19657/j.geoscience.1000-8527.2022. 022

    乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180-1194 doi: 10.3969/j.issn.0001-5717.2015.07.003

    QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan monzogranite in Western Kunlun: constraints from SHRIMP zircon U-Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica, 2015, 89(7): 1180-1194. doi: 10.3969/j.issn.0001-5717.2015.07.003

    秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11): 3277-3286 doi: 10.18654/1000-0569/2021.11.02

    QIN Kezhang, ZHAO Junxing, HE Changtong, et al. Discovery of the Qiongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11): 3277-3286. doi: 10.18654/1000-0569/2021.11.02

    唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3): 655-675 doi: 10.18654/1000-0569/2022.03.05

    TANG Junlin, KE Qiang, XU Xingwang, et al. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica, 2022, 38(3): 655-675. doi: 10.18654/1000-0569/2022.03.05

    滕家欣, 高永宝, 贺永康, 等. 西昆仑锰锂铅锌铁区域成矿规律与资源潜力[M]. 北京: 地质出版社, 2021, 1 – 420

    TENG Jiaxin, GAO Yongbao, HE Yongkang, et al. Metallogenic Regularity and Resource Potential of Manganese, Lithium, Lead, Zinc and Iron in West Kunlun[M]. Beijing: Geological Publishing House, 2021, 1 – 420.

    涂其军, 韩琼, 李平, 等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862-2873 doi: 10.3969/j.issn.0001-5717.2019.11.011

    TU Qijun, HAN Qiong, LI Ping, et al. Basic characteristics and exploitation progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica, 2019, 93(11): 2862-2873. doi: 10.3969/j.issn.0001-5717.2019.11.011

    王秉璋, 韩杰, 谢祥镭, 等. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J]. 大地构造与成矿学, 2020, 44(1): 69-79 doi: 10.16539/j.ddgzyckx.2019.02.016

    WANG Bingzhang, HAN Jie, XIE Xianglei, et al. Discovery of the indosinian (Beryl-bearing) spodumene pegmatitic dike swarm in the Chakabeishan area in the northeastern margin of the Tibetan plateau: implications for Li-Be mineralization[J]. Geotectonica et Metallogenia, 2020, 44(1): 69-79. doi: 10.16539/j.ddgzyckx.2019.02.016

    王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053-1062 doi: 10.16539/j.ddgzyckx.2017.06.005

    WANG He, LI Pei, MA Huadong, et al. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication[J]. Geotectonica et Metallogenia, 2017, 41(6): 1053-1062. doi: 10.16539/j.ddgzyckx.2017.06.005

    王核, 徐义刚, 闫庆贺, 等. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 2021, 95(10): 3085-3098 doi: 10.3969/j.issn.0001-5717.2021.10.010

    WANG He, XU Yigang, YAN Qinghe, et al. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica, 2021, 95(10): 3085-3098. doi: 10.3969/j.issn.0001-5717.2021.10.010

    王威, 杜晓飞, 刘伟, 等. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 2022, 38(7): 1967-1980 doi: 10.18654/1000-0569/2022.07.10

    WANG Wei, DU Xiaofei, LIU Wei, et al. Geological characteristic and discussion on metallogenic age of the West 509-Daoban Li-Be rare metal deposit in the West Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 2022, 38(7): 1967-1980. doi: 10.18654/1000-0569/2022.07.10

    魏小鹏, 王核, 胡军, 等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学, 2017, 46(1): 66-80 doi: 10.3969/j.issn.0379-1726.2017.01.006

    WEI Xiaopeng, WANG He, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications[J]. Geochimica, 2017, 46(1): 66-80. doi: 10.3969/j.issn.0379-1726.2017.01.006

    吴福元, 李献华, 郑永飞, 等. Lu−Hf 同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220 doi: 10.3969/j.issn.1000-0569.2007.02.001

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    吴福元, 王汝成, 刘小驰, 等. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 2021, 37(11): 3261-3276 doi: 10.18654/1000-0569/2021.11.01

    WU Fuyuan, WANG Rucheng, LIU Xiaochi, et al. New breakthroughs in the studies of Himalayan rare-metal mineralization[J]. Acta Petrologica Sinica, 2021, 37(11): 3261-3276. doi: 10.18654/1000-0569/2021.11.01

    徐兴旺, 李杭, 石福品, 等. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测[J]. 岩石学报, 2019, 35(11): 3303-3316 doi: 10.18654/1000-0569/2019.11.03

    XU Xingwang, LI Hang, SHI Fupin, et al. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh[J]. Acta Petrologica Sinica, 2019, 35(11): 3303-3316. doi: 10.18654/1000-0569/2019.11.03

    许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106 doi: 10.3969/j.issn.0001-5717.2018.06.001

    XU Zhiqin, WANG Rucheng, ZHAO Zhongbao, et al. On the Structural Backgrounds of the Large-scale "Hard-rock Type" Lithium Ore Belts in China[J]. Acta Geologica Sinica, 2018, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001

    许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10): 2937-2954 doi: 10.3969/j.issn.0001-5717.2021.10.002

    XU Zhiqin, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy for lithium resource and the continental dynamics research—celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10): 2937-2954. doi: 10.3969/j.issn.0001-5717.2021.10.002

    张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10): 2955-2970 doi: 10.3969/j.issn.0001-5717.2021.10.003

    ZHANG Hui, LV Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 2021, 95(10): 2955-2970. doi: 10.3969/j.issn.0001-5717.2021.10.003

    张宇, 唐名鹰, 何玉良, 等. 新疆西昆仑独尖山地区二云母二长花岗岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J/OL]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1317.002.html

    ZHANG Yu, TANG Mingying, HE Yuliang, et al. Geochemistry, zircon U-Pb age and Hf isotopic characteristics of two-mica monzonites in Dujianshan area of Western Kunlun, Xinjiang[J/OL]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1317.002.html

    赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11): 3325-3347 doi: 10.18654/1000-0569/2021.11.06

    ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of the fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11): 3325-3347. doi: 10.18654/1000-0569/2021.11.06

    赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997, 113 – 138

    ZHAO Zhenhua. Principle of Trace Element Geochemistry[M]. Beijing: Science Press, 1997, 113 – 138.

    邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006, 1 – 284

    ZOU Tianren, LI Qingchang. Rare and Rare Earth Metallic Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006, 1 – 284.

    Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1−2): 243 – 258.

    Černý P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43: 2005-2026. doi: 10.2113/gscanmin.43.6.2005

    Černý P, London D, Novak M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8: 257-261. doi: 10.2113/gselements.8.4.257

    Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied Geochemistry, 1992, 7: 393-416. doi: 10.1016/0883-2927(92)90002-K

    Chu N C, Taylor R N, Chavagnac V. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17, 1567-1574. doi: 10.1039/b206707b

    DeBievre P, Taylor P D P. Table of the isotopic compositions of the elements[J]. International Journal of Mass Spectrometry Ion Processes, 1993, 123, 149-166. doi: 10.1016/0168-1176(93)87009-H

    Ding K, Liang T, Yang X Q, et al. Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China[J]. Journal of Central South University, 2019, 26: 3420-3435. doi: 10.1007/s11771-019-4264-7

    Dittrich T, Seifert T, Schulz B, et al. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations[M]. Switzerland: Springer, 2019, 1-125.

    Fei G C, Menuge J F, Chen C S, et al. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze Fold Belt, southwestern Sichuan province, China[J]. Ore Geology Reviews, 2021, 139: 104441. doi: 10.1016/j.oregeorev.2021.104441

    Fei G C, Menuge J F, Li Y Q, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 364-365: 105555. doi: 10.1016/j.lithos.2020.105555

    Gao Y B, Bagas L, Li K, et al. Newly discovered Triassic lithium deposits in the Dahongliutan area, Northwest China: A case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science, 2020, 8: 591966. doi: 10.3389/feart.2020.591966

    Gao Y B, Zhao X M, Bagas L, et al. Newly discovered Ordovician Li-Be deposits at Tugeman in the Altyn-Tagh Orogen, NW China[J]. Ore Geology Reviews, 2021, 139: 104515. doi: 10.1016/j.oregeorev.2021.104515

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica Et Cosmochimica Acta, 2000, 64: 133-147. doi: 10.1016/S0016-7037(99)00343-9

    Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

    Jiang Y H, Jia R Y, Liu Z, et al. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys[J]. Lithos, 2013, 156-159: 13-30. doi: 10.1016/j.lithos.2012.10.004

    Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006

    Linnen R L, Lichtervelde M V, Cerny P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275

    London D, Evensen J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1): 445-486. doi: 10.2138/rmg.2002.50.11

    London D. Granitic pegmatites: an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80: 281-303. doi: 10.1016/j.lithos.2004.02.009

    London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349-383. doi: 10.1016/j.oregeorev.2018.04.020

    London D. The magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase equilibrium experiments[J]. American Mineralogist, 1986, 71: 376-395.

    Ludwig K R. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 25-32.

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    Pan T, Ding Q F, Zhou X, et al. Columbite-tantalite group mineral U-Pb geochronology of Chaqiabeishan Li-rich granitic pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Frontiers in Earth Science, 2021, 8: 606951. doi: 10.3389/feart.2020.606951

    Simmons W B, Webber K L. Pegmatite genesis: State of the art[J]. European Journal of Mineralogy, 2008, 20(4): 421-438. doi: 10.1127/0935-1221/2008/0020-1833

    Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3

    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[C]//Saunders A D, Norry M J(eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42: 313-345.

    Wang H, Gao H, Zhang X Y, et al. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360-361: 105449. doi: 10.1016/j.lithos.2020.105449

    Xu Z Q, Fu X F, Wang R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354-355: 105281. doi: 10.1016/j.lithos.2019.105281

    Yan Q G, Li J K, Li X J, et al. Source of the Zhawulong granitic pegmatite-type lithium deposit in the Songpan-Ganzê orogenic belt, Western Sichuan, China: Constrants from Sr-Nd-Hf isotopes and petrochemistry[J]. Lithos, 2020, 378-379: 105828. doi: 10.1016/j.lithos.2020.105828

    Yan Q H, Qiu Z W, Wang H, et al. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 2018, 100: 561-573. doi: 10.1016/j.oregeorev.2016.11.010

    Yan Q H, Wang H, Chi G X, et al. Recognition of a 600-km-long Late Triassic rare-metal (Li–Rb–Be–Nb–Ta) pegmatite belt in the Western Kunlun orogenic belt[J]. Economic Geology, 2022, 117(1): 213-236. doi: 10.5382/econgeo.4858

    Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247, 100-118. doi: 10.1016/j.chemgeo.2007.10.003

    Zhang Q C, Liu Y, Wu Z H, et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys[J]. International Geology Review, 2019, 61(2): 175-194. doi: 10.1080/00206814.2017.1419444

    Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021, 584: 120484. doi: 10.1016/j.chemgeo.2021.120484

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1231
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2022-10-26
修回日期:  2023-02-07
录用日期:  2023-02-09
刊出日期:  2023-04-20

目录