Research on 3D Seismic Feature Enhancement Processing and Description of Strike Slip Fault Zone
-
摘要:
走滑断裂带由于纵向断距小,超深层地震信号弱,常规叠前深度偏移地震资料难以满足超深层断裂带精细描述需求。为提高断裂带成像精度,指导走滑断裂带解释描述和评价部署,以顺北地区走滑断裂带发育区三维地震资料为例,建立了一套以提高地震资料品质的保真保幅优化处理、频谱恢复提高分辨率处理、频谱分解处理、频率域多尺度断裂检测等技术为主的走滑断裂带地震特征增强处理与描述技术,该技术组合有效拓宽了地震数据频带,提高了地震数据分辨率,使超深走滑断裂带成像精度更高,为超深走滑断裂带的精细解释、描述评价、三维雕刻提供了高品质资料基础。结合顺北地区前人研究成果,综合利用频谱恢复提高分辨率处理、频谱分解处理、频率域断裂检测数据,不同尺度断裂带特征及断储关系预测效果更好,为进一步评价断裂带和部署井位提供了技术支撑。
-
关键词:
- 超深走滑断裂带 /
- 保真保幅优化处理 /
- 频谱恢复提高分辨率处理 /
- 频谱分解处理 /
- 断裂带检测
Abstract:Due to the small longitudinal fault displacement and weak ultra-deep seismic signal of strike slip fault zone, the conventional pre-stack depth migration seismic data cannot meet the requirements of fine description of ultra-deep fault zone. In order to improve the imaging accuracy of the fault zone and guide the interpretation, description, evaluation and deployment of the strike slip fault zone, taking the three-dimensional seismic data of the development area of the strike slip fault zone in Shunbei area as an example, a set of seismic feature enhancement processing and description technology of the strike slip fault zone is established, which is mainly based on the fidelity and amplitude preserving optimization processing, spectrum restoration and resolution improvement processing, spectrum decomposition processing, and frequency domain multi-scale fault detection processing technology, This technology combination effectively widens the frequency band of seismic data, improves the resolution of seismic data, improves the imaging accuracy of ultra-deep strike slip fault zone, and provides a high-quality data foundation for the fine interpretation, description and evaluation, and three-dimensional carving of ultra-deep strike slip fault zone. Combined with the previous research results in Shunbei area, the comprehensive use of spectrum recovery to improve the resolution processing, spectrum decomposition processing, frequency domain fault detection data, the prediction effect of fault zone characteristics and fault reservoir relationship at different scales is better, which provides technical support for further evaluation of fault zones and deployment of well locations.
-
-
[1] 蔡涵鹏, 贺振华, 高刚, 等. 基于混合优化算法的地震数据匹配追踪分解[J], 中南大学学报(自然科学版), 2013, 44(2): 687-694
CAI Hanpeng, HE Zhenhua, GAO Gang, et al. Seismic data matching pursuit using hybrid optimization algorithm and its application [J]. Journal of Central South University (Science and Technology), 2013, 44(2): 687-694.
[2] 陈珂磷, 井翠, 杨扬, 等. 频率域多尺度断裂检测技术在长宁页岩气勘探中的应用[J], 断块油气田, 2022, 29(3): 289-294
CHEN Kelin, JING Cui, YANG Yang, et al. Application of frequency domain multi-scale fault detection technique in shale gas exploration in Changning region [J]. Fault-Block Oil & Gas Field, 2022, 29(3): 289-294.
[3] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216 doi: 10.11743/ogg20180201
JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. doi: 10.11743/ogg20180201
[4] 李宗杰, 杨子川, 李海英, 等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探, 2020, (2): 283-294
LI Zongjie, YANG Zichuan, LI Haiying, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area [J]. Geophysical Prospecting for Petroleum, 2020, (2): 283-294.
[5] 刘霞, 陈晨, 赵玉婷, 等. 基于粒子群快速优化MP算法的多子波分解与重构[J], 吉林大学学报(地球科学版), 2015, 45(6): 1855-1861
LIU Xia, CHEN Chen, ZHAO Yuting, et al. Multi-Wavelet Decomposition and Reconstruction Based on Matching Pursuit Algorithm Fast Optimized by Particle Swarm [J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6): 1855-1861.
[6] 刘汉卿, 张繁昌, 王纳申, 等. 井资料约束的地震资料高频恢复[J], 石油地球物理勘探, 2015, 50(5): 890-895
LIU Hanqing, ZHANG Fanchang, WANG Nashen, et al. Seismic high frequency information recovery constrained by well data [J]. Oil Geophysical Prospecting, 2015, 50(5): 890-895.
[7] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J], 石油与天然气地质, 2015, 36(3): 347-355
LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[8] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(01): 102-111
QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(01): 102-111.
[9] 席桂梅, 何书耕, 闵也, 等. 用相干体属性开展断层识别[J], 西北地质, 2019, 52(1): 244-249
XI Guimei, HE Shugeng, MIN Ye, et al. Fault identiticaltion by the coherency attributes [J]. Northwestern Geology, 2019, 52(1): 244-249.
[10] 奚先, 姚姚. 弹性随机介质模型的特征频率[J], 地球物理学进展, 2005, 20(3): 681-687
XI Xian, YAO Yao. The characteristic frequency of the elastic random medium models [J]. Progress in Geophysicss, 2005, 20(3): 681-687.
[11] 张金伟, 丁仁伟, 林年添, 等. 裂缝性多孔介质纵波频变特性研究[J], 石油地球物理勘探, 2022, 57(5): 1097-1104
ZHANG Jinwei, DING Renwei, LIN Niantian, et al. Frequency-dependent characteristics of P-wave in fractured porous media [J]. Oil Geophysical Prospecting, 2022, 57(5): 1097-1104.
[12] Abbas A , Nadeem M , Shafiq A . Detection of isotropic regions and enhancement of fault attributes in seismic volumes[C]. SEG Technical Program Expanded Abstracts, 2014: 1420−1423 .
[13] QI J , Castagna J . Application of a PCA fault-attribute and spectral decomposition in Barnett Shale fault detection [C]. SEG Technical Program Expanded Abstracts, 2013: 1421−1425.
-