走滑断裂带三维地震特征增强处理与描述研究

龚伟, 吕海涛, 林新, 李弘艳, 张荣. 2024. 走滑断裂带三维地震特征增强处理与描述研究. 西北地质, 57(2): 59-66. doi: 10.12401/j.nwg.2023016
引用本文: 龚伟, 吕海涛, 林新, 李弘艳, 张荣. 2024. 走滑断裂带三维地震特征增强处理与描述研究. 西北地质, 57(2): 59-66. doi: 10.12401/j.nwg.2023016
GONG Wei, LÜ Haitao, LIN Xin, LI Hongyan, ZHANG Rong. 2024. Research on 3D Seismic Feature Enhancement Processing and Description of Strike Slip Fault Zone. Northwestern Geology, 57(2): 59-66. doi: 10.12401/j.nwg.2023016
Citation: GONG Wei, LÜ Haitao, LIN Xin, LI Hongyan, ZHANG Rong. 2024. Research on 3D Seismic Feature Enhancement Processing and Description of Strike Slip Fault Zone. Northwestern Geology, 57(2): 59-66. doi: 10.12401/j.nwg.2023016

走滑断裂带三维地震特征增强处理与描述研究

  • 基金项目: 中石化西北油田分公司项目“顺北4号断裂带规模储集体预测与井轨迹优化设计研究”(KJ202005)资助。
详细信息
    作者简介: 龚伟(1985−),男,副研究员,主要从事油气资源勘查工作。E-mail:gongwei625@126.com
    通讯作者: 林新(1986−),女,副研究员,主要从事油气资源勘查工作。E-mail:342880968@qq.com
  • 中图分类号: P65

Research on 3D Seismic Feature Enhancement Processing and Description of Strike Slip Fault Zone

More Information
  • 走滑断裂带由于纵向断距小,超深层地震信号弱,常规叠前深度偏移地震资料难以满足超深层断裂带精细描述需求。为提高断裂带成像精度,指导走滑断裂带解释描述和评价部署,以顺北地区走滑断裂带发育区三维地震资料为例,建立了一套以提高地震资料品质的保真保幅优化处理、频谱恢复提高分辨率处理、频谱分解处理、频率域多尺度断裂检测等技术为主的走滑断裂带地震特征增强处理与描述技术,该技术组合有效拓宽了地震数据频带,提高了地震数据分辨率,使超深走滑断裂带成像精度更高,为超深走滑断裂带的精细解释、描述评价、三维雕刻提供了高品质资料基础。结合顺北地区前人研究成果,综合利用频谱恢复提高分辨率处理、频谱分解处理、频率域断裂检测数据,不同尺度断裂带特征及断储关系预测效果更好,为进一步评价断裂带和部署井位提供了技术支撑。

  • 加载中
  • 图 1  边缘保持构造滤波处理前后及残差剖面

    Figure 1. 

    图 2  频谱恢复提高分辨率处理原理图

    Figure 2. 

    图 3  实际地震道不同频谱分解结果对比图

    Figure 3. 

    图 4  相干体(a)与频率域断裂检测(b)效果对比图

    Figure 4. 

    图 5  频谱恢复高分辨率处理前后剖面对比图

    Figure 5. 

    图 6  频谱恢复高分辨率处理前后频谱曲线对比图

    Figure 6. 

    图 7  T74地震反射波界面之下50 ms单频体均方根振幅属性平面(a)与剖面图(b)

    Figure 7. 

    图 8  频谱恢复高分辨率地震断裂检测效果图

    Figure 8. 

    图 9  走滑断裂带RGB融合显示图

    Figure 9. 

  • [1]

    蔡涵鹏, 贺振华, 高刚, 等. 基于混合优化算法的地震数据匹配追踪分解[J], 中南大学学报(自然科学版), 2013, 44(2): 687-694

    CAI Hanpeng, HE Zhenhua, GAO Gang, et al. Seismic data matching pursuit using hybrid optimization algorithm and its application [J]. Journal of Central South University (Science and Technology), 2013, 44(2): 687-694.

    [2]

    陈珂磷, 井翠, 杨扬, 等. 频率域多尺度断裂检测技术在长宁页岩气勘探中的应用[J], 断块油气田, 2022, 29(3): 289-294

    CHEN Kelin, JING Cui, YANG Yang, et al. Application of frequency domain multi-scale fault detection technique in shale gas exploration in Changning region [J]. Fault-Block Oil & Gas Field, 2022, 29(3): 289-294.

    [3]

    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216 doi: 10.11743/ogg20180201

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. doi: 10.11743/ogg20180201

    [4]

    李宗杰, 杨子川, 李海英, 等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探, 2020, (2): 283-294

    LI Zongjie, YANG Zichuan, LI Haiying, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area [J]. Geophysical Prospecting for Petroleum, 2020, (2): 283-294.

    [5]

    刘霞, 陈晨, 赵玉婷, 等. 基于粒子群快速优化MP算法的多子波分解与重构[J], 吉林大学学报(地球科学版), 2015, 45(6): 1855-1861

    LIU Xia, CHEN Chen, ZHAO Yuting, et al. Multi-Wavelet Decomposition and Reconstruction Based on Matching Pursuit Algorithm Fast Optimized by Particle Swarm [J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6): 1855-1861.

    [6]

    刘汉卿, 张繁昌, 王纳申, 等. 井资料约束的地震资料高频恢复[J], 石油地球物理勘探, 2015, 50(5): 890-895

    LIU Hanqing, ZHANG Fanchang, WANG Nashen, et al. Seismic high frequency information recovery constrained by well data [J]. Oil Geophysical Prospecting, 2015, 50(5): 890-895.

    [7]

    鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J], 石油与天然气地质, 2015, 36(3): 347-355

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.

    [8]

    漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(01): 102-111

    QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(01): 102-111.

    [9]

    席桂梅, 何书耕, 闵也, 等. 用相干体属性开展断层识别[J], 西北地质, 2019, 52(1): 244-249

    XI Guimei, HE Shugeng, MIN Ye, et al. Fault identiticaltion by the coherency attributes [J]. Northwestern Geology, 2019, 52(1): 244-249.

    [10]

    奚先, 姚姚. 弹性随机介质模型的特征频率[J], 地球物理学进展, 2005, 20(3): 681-687

    XI Xian, YAO Yao. The characteristic frequency of the elastic random medium models [J]. Progress in Geophysicss, 2005, 20(3): 681-687.

    [11]

    张金伟, 丁仁伟, 林年添, 等. 裂缝性多孔介质纵波频变特性研究[J], 石油地球物理勘探, 2022, 57(5): 1097-1104

    ZHANG Jinwei, DING Renwei, LIN Niantian, et al. Frequency-dependent characteristics of P-wave in fractured porous media [J]. Oil Geophysical Prospecting, 2022, 57(5): 1097-1104.

    [12]

    Abbas A , Nadeem M , Shafiq A . Detection of isotropic regions and enhancement of fault attributes in seismic volumes[C]. SEG Technical Program Expanded Abstracts, 2014: 1420−1423 .

    [13]

    QI J , Castagna J . Application of a PCA fault-attribute and spectral decomposition in Barnett Shale fault detection [C]. SEG Technical Program Expanded Abstracts, 2013: 1421−1425.

  • 加载中

(9)

计量
  • 文章访问数:  589
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2022-07-05
修回日期:  2022-10-17
刊出日期:  2024-04-20

目录