松辽盆地东部地区花岗岩地球化学特征及其地质意义

刘昊, 崔军平, 金玮, 成科璋, 刘静静. 2024. 松辽盆地东部地区花岗岩地球化学特征及其地质意义. 西北地质, 57(2): 46-58. doi: 10.12401/j.nwg.2023037
引用本文: 刘昊, 崔军平, 金玮, 成科璋, 刘静静. 2024. 松辽盆地东部地区花岗岩地球化学特征及其地质意义. 西北地质, 57(2): 46-58. doi: 10.12401/j.nwg.2023037
LIU Hao, CUI Junping, JIN Wei, CHENG Kezhang, LIU Jingjing. 2024. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin. Northwestern Geology, 57(2): 46-58. doi: 10.12401/j.nwg.2023037
Citation: LIU Hao, CUI Junping, JIN Wei, CHENG Kezhang, LIU Jingjing. 2024. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin. Northwestern Geology, 57(2): 46-58. doi: 10.12401/j.nwg.2023037

松辽盆地东部地区花岗岩地球化学特征及其地质意义

  • 基金项目: 国家自然科学基金面上项目“热年代学约束下的松辽盆地石炭-二叠系构造热演化史恢复”(41772121)资助。
详细信息
    作者简介: 刘昊(1999−),男,硕士,主要从事地球化学分析与油气成藏相关研究。E–mail:1808826487@qq.com
    通讯作者: 崔军平(1978−),男,副教授,博士,主要从事盆地热演化史与油气成藏相关教学与科研工作。E–mail:cuijp@nwu.edu.cn。
  • 中图分类号: P619.22;P584

Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin

More Information
  • 笔者对松辽盆地东部与张广才岭西部含黑云母花岗岩进行LA–ICP–MS 测年和微量稀土元素地球化学分析,探究其成岩时代与成岩环境。样品锆石振荡生长环带明显,Th/U值较大,揭示其属于岩浆成因。锆石U–Pb测年测得年龄分别为(179.3±1.5) Ma和(177.5±1.4) Ma,属于早侏罗世末期。轻稀土元素分馏明显,重稀土元素无明显分馏,Eu、Ce元素具有正异常。样品形成于板块俯冲聚敛环境。该地区花岗岩在形成过程中主要受控于部分熔融作用,岩脉有地壳和地幔双重性,可能有地幔混染现象。通过统计大兴安岭、松辽盆地与张广才岭花岗岩年龄,发现张广才岭处花岗岩形成时期早于松辽盆地花岗岩形成时期,进一步验证前人推测古太平洋板块和蒙古–鄂霍茨克洋板块发生双俯冲+拆沉作用。

  • 加载中
  • 图 1  中国东北部构造简图(a)、松辽盆地东部–张广才岭中生代岩浆岩分布图(b)(据任永健,2019修)

    Figure 1. 

    图 2  绥化村花岗岩(S-SH-1)手标本照片(a)和含黑云母中细粒花岗岩镜下特征(b)

    Figure 2. 

    图 3  阿城区花岗岩(H-D-3)含黑云母花岗岩镜下特征

    Figure 3. 

    图 4  绥化村花岗岩(S-SH-1)样品锆石CL图

    Figure 4. 

    图 5  阿城区花岗岩(H-D-3)样品锆石CL图

    Figure 5. 

    图 6  绥化村花岗岩(S-SH-1)锆石U-Pb年龄谐和图(a)和加权平均年龄图(b)

    Figure 6. 

    图 7  阿城区花岗岩(H-D-3)锆石U-Pb年龄谐和图(a)和加权平均年龄图(b)

    Figure 7. 

    图 8  绥化村花岗岩(S-SH-1)与阿城区花岗岩(H-D-3)花岗岩稀土元素球粒陨石标准化配分图

    Figure 8. 

    图 9  Nb–Y构造环境判别图(据Pearce et al.,1984

    Figure 9. 

    图 10  La/Sm–La相关性图解

    Figure 10. 

    图 11  东北地区花岗岩年龄分布直方图(数据来自中国同位素地质年代学数据库)

    Figure 11. 

    图 12  古太平洋板块俯冲和蒙古-鄂霍茨克洋版块俯冲、拆沉作用模式图(据杨雅军等,2022修)

    Figure 12. 

    表 1  绥化村花岗岩(S-SH-1)样品锆石测年结果表

    Table 1.  Zircon dating results of Suihuacun granite (S-SH-1) sample

    点号UThPbTh/U同位素比值年龄(Ma)谐和度
    (10–6207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ
    S-SH-1-001787.25424.8026.990.540.05070.00170.19370.00660.02770.0006229.076.4179.85.6176.13.998%
    S-SH-1-002610.16332.2421.390.540.04960.00150.19400.00600.02830.0006178.369.0180.05.1180.23.9100%
    S-SH-1-003580.54263.1120.330.450.04750.00140.18990.00570.02900.000673.269.3176.54.9184.34.096%
    S-SH-1-004693.84366.3724.100.530.05090.00140.19800.00570.02820.0006235.163.0183.44.8179.43.998%
    S-SH-1-006565.66289.2319.660.510.05260.00150.20420.00610.02810.0006312.764.6188.75.1178.93.995%
    S-SH-1-007773.82869.8630.921.120.04990.00140.19380.00540.02820.0006188.061.8179.94.6179.33.8100%
    S-SH-1-008622.87324.9721.320.520.05130.00160.19560.00600.02770.0006252.567.9181.45.1176.03.897%
    S-SH-1-009774.11380.4327.580.490.04770.00190.19280.00770.02930.000785.692.8179.06.6186.04.196%
    S-SH-1-010853.63384.0328.680.450.04980.00130.19070.00510.02780.0006187.258.7177.24.3176.43.8100%
    S-SH-1-012696.59405.5224.140.580.05180.00160.19690.00610.02760.0006277.068.4182.55.2175.23.896%
    S-SH-1-013778.72385.4527.030.490.05140.00140.20090.00550.02830.0006259.160.3185.94.7180.23.997%
    S-SH-1-014573.68313.0119.270.550.04960.00180.18510.00680.02710.0006177.683.3172.45.9172.03.8100%
    S-SH-1-015689.19347.6423.770.500.04870.00140.18820.00550.02800.0006132.365.9175.14.7178.23.898%
    S-SH-1-016739.51448.7126.930.610.04970.00140.19750.00560.02880.0006182.063.1183.04.7183.13.9100%
    S-SH-1-017755.55375.1225.370.500.05180.00180.19500.00680.02730.0006276.476.7180.95.7173.63.896%
    S-SH-1-018647.84378.0923.370.580.05030.00150.19790.00600.02860.0006207.167.1183.45.1181.53.999%
    S-SH-1-021358.56151.3612.040.420.05370.00220.20430.00820.02760.0006358.888.3188.76.9175.43.993%
    S-SH-1-022420.38229.1114.750.550.05130.00170.19870.00680.02810.0006253.276.1184.15.8178.73.997%
    S-SH-1-023665.75352.9323.820.530.05280.00150.20800.00600.02860.0006321.163.2191.85.1181.53.994%
    S-SH-1-024504.33254.6718.240.500.05060.00160.20410.00640.02930.0006221.470.2188.65.4186.04.099%
    S-SH-1-026760.81399.4626.730.530.04900.00140.19120.00550.02830.0006148.164.3177.74.7179.93.999%
    S-SH-1-027961.29525.0133.850.550.05140.00140.19830.00540.02800.0006260.559.4183.74.6177.83.897%
    S-SH-1-028821.54599.2830.680.730.05030.00140.19860.00560.02870.0006206.562.3184.04.7182.23.999%
    S-SH-1-029657.00262.1722.560.400.05170.00150.20250.00600.02840.0006273.564.7187.35.0180.53.996%
    S-SH-1-030675.37361.0724.490.530.05220.00160.20810.00650.02890.0006293.868.7192.05.5183.84.096%
    下载: 导出CSV

    表 2  阿城区花岗岩(H-D-3)样品锆石测年结果表

    Table 2.  Zircon dating results of Acheng granite (H-D-3) samples

    点号UThPbTh/U同位素比值年龄(Ma)谐和度
    (10–6207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ
    H-D-3-001646.04389.2523.400.600.04940.00140.19430.00580.02850.0006166.466.9180.34.9181.33.999%
    H-D-3-0021111.211061.4742.110.960.04960.00120.18630.00480.02730.0006175.357.4173.54.1173.33.7100%
    H-D-3-003928.60557.4133.190.600.04880.00130.18990.00510.02820.0006139.059.9176.64.3179.43.898%
    H-D-3-004362.17310.0813.710.860.05130.00170.19770.00670.02800.0006253.375.5183.25.7177.83.997%
    H-D-3-005550.99343.5119.960.620.04920.00150.19160.00600.02830.0006156.170.0178.05.1179.73.999%
    H-D-3-0061028.471121.3441.041.090.04970.00130.19150.00500.02800.0006180.157.8177.94.3177.73.8100%
    H-D-3-007356.46203.7712.610.570.04960.00170.19300.00670.02820.0006174.678.8179.25.7179.53.9100%
    H-D-3-008274.01207.3610.250.760.05510.00200.21430.00800.02820.0006415.180.2197.16.7179.43.991%
    H-D-3-009239.30232.469.270.970.05570.00210.21320.00820.02780.0006439.183.6196.36.9176.63.989%
    H-D-3-010891.02865.6333.060.970.04950.00130.18340.00500.02690.0006169.260.5171.04.3171.13.7100%
    H-D-3-0111172.31603.7240.810.510.04970.00130.19240.00510.02810.0006179.359.0178.74.4178.63.8100%
    H-D-3-012843.67543.1230.290.640.04900.00130.18870.00520.02790.0006148.661.7175.54.4177.53.899%
    H-D-3-013557.34511.2821.260.920.04860.00150.18720.00580.02790.0006128.169.9174.24.9177.63.898%
    H-D-3-014239.55206.649.190.860.04940.00200.19280.00780.02830.0006165.891.6179.06.6180.04.099%
    H-D-3-015282.14220.9710.090.780.05060.00200.18740.00730.02690.0006223.887.0174.46.2170.83.898%
    H-D-3-016907.67725.0533.380.800.04930.00130.18760.00500.02760.0006161.659.9174.64.3175.63.799%
    H-D-3-0171217.891012.2545.950.830.04940.00120.19110.00500.02800.0006168.057.8177.64.2178.33.8100%
    H-D-3-018397.75307.8914.570.770.04980.00170.18930.00640.02760.0006184.076.2176.05.5175.43.8100%
    H-D-3-019544.42578.2921.871.060.04880.00150.19030.00580.02830.0006136.369.0176.95.0179.93.998%
    H-D-3-020469.44305.1216.520.650.05050.00160.19040.00610.02730.0006218.071.1176.95.2173.93.898%
    H-D-3-0211057.08420.8535.810.400.04960.00130.19170.00510.02800.0006175.259.7178.04.4178.33.8100%
    H-D-3-0221015.52724.5337.340.710.04830.00130.18580.00490.02790.0006115.159.7173.14.2177.33.898%
    H-D-3-023586.65407.7421.280.700.04880.00140.18760.00560.02790.0006139.667.6174.54.8177.13.899%
    H-D-3-024249.08206.939.640.830.04720.00210.18580.00820.02860.000757.9102.5173.07.0181.54.195%
    H-D-3-025542.70423.4420.140.780.05060.00150.19460.00590.02790.0006223.167.2180.55.0177.33.898%
    H-D-3-026384.09364.2415.020.950.05130.00170.19980.00680.02820.0006255.575.6184.95.7179.43.997%
    H-D-3-027427.61348.4116.210.810.05180.00170.19920.00660.02790.0006276.572.9184.55.6177.43.896%
    H-D-3-0281109.09648.6139.080.580.04950.00130.18870.00490.02760.0006171.658.0175.54.2175.83.7100%
    H-D-3-029130.6173.884.720.570.04670.00300.18320.01150.02840.000735.4144.9170.89.9180.74.294%
    H-D-3-030707.68276.0524.240.390.05070.00140.19790.00570.02830.0006227.763.8183.34.8179.93.998%
    下载: 导出CSV

    表 3  绥化村花岗岩(S-SH-1)与阿城区花岗岩(H-D-3)花岗岩微量与稀土元素(10–6

    Table 3.  Trace and rare earth elements of Suihuacun granite (S-SH-1) and Acheng granite (H-D-3) (10–6)

    元素 SH1SH2SH3SH4SH5SH平H1H2H3H4H5H平
    Ti2.523.232.785.151.753.099.945.852.955.529.926.84
    Fe10.1713.5841.8417.7217.5620.173.654.122.122.692.292.97
    Zr4898.004898.004898.004898.004898.004898.004898.004898.004898.004898.004898.004898.00
    Nb4.314.524.194.284.854.431.164.295.891.002.492.97
    Hf139.88146.23142.79143.53147.32143.95109.15129.19142.22116.40118.78123.15
    Ta1.911.941.701.992.241.960.441.371.930.350.901.00
    Pb21.3924.1019.6621.3226.9322.689.2733.0630.299.6416.2119.70
    Th332.24366.37289.23324.97448.71352.30232.46865.63543.12206.93348.41439.31
    U610.16693.84565.66622.87739.51646.41239.30891.02843.67249.08427.61530.14
    Y9.419.649.009.6410.379.6110.6818.0019.4310.9713.5814.53
    La13.8711.9627.799.5517.3916.115.8011.1215.822.322.187.45
    Ce77.3559.2495.8858.6082.0974.6328.4358.0866.5127.3630.6242.20
    Pr4.073.289.022.945.114.881.783.372.280.810.731.79
    Nd15.5814.3734.5513.1720.0319.549.7417.128.046.115.239.25
    Sm4.754.757.834.706.335.676.189.715.535.825.826.61
    Eu0.410.340.550.480.610.481.671.821.071.531.461.51
    Gd0.160.160.170.150.180.160.260.400.320.280.280.31
    Tb0.050.050.050.050.060.050.080.130.120.080.090.10
    Dy0.710.730.690.720.780.730.941.521.520.951.131.21
    Ho0.280.300.280.290.320.290.350.560.600.350.430.46
    Er1.541.561.471.561.691.561.692.713.011.732.122.25
    Tm0.360.350.340.360.390.360.360.570.650.370.470.48
    Yb3.553.453.303.583.893.563.565.216.213.604.534.62
    Lu0.740.730.700.760.830.750.771.081.290.760.940.97
    ∑REE123.42101.28182.6396.92139.70128.7961.59113.38112.9552.0856.0279.21
    LREE116.0393.94175.6289.44131.56121.3253.60101.2299.2543.9546.0468.81
    HREE7.397.347.017.488.147.477.9912.1613.708.139.9910.40
    LREE/HREE15.7012.8025.0711.9616.1616.346.718.327.245.414.616.46
    δEu1.461.181.461.751.761.524.032.842.453.643.493.29
    δCe2.522.321.482.712.142.232.172.332.724.905.973.62
    La/Yb2.802.486.031.913.213.291.171.531.830.460.351.07
    La/Sm1.891.632.291.311.771.780.610.741.850.260.240.74
    Gd/Yb0.040.040.040.030.040.040.060.060.040.070.050.06
    下载: 导出CSV
  • [1]

    曹怀仁, 胡建芳, 彭平安, 等. 松辽盆地青山口组二段下部湖泊水体环境变化[J]. 地学前缘, 2017, 24(01): 205-215

    CAO Huairen, HU Jianfang, PENG Ping’an, et al. Environmental change of lake water in the lower part of Qingshankou Formation II in Songliao Basin [J]. Geoscience Front, 2017, 24 (01): 205-215.

    [2]

    程顺波, 付建明, 徐德明, 等. 湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析[J]. 大地构造与成矿学, 2009, 33(04): 588-597 doi: 10.3969/j.issn.1001-1552.2009.04.013

    CHENG Shunbo, FU Jianming, XU Deming, et al. Geological and geochemical characteristics and genetic analysis of Xuehuading granite and its xenoliths in Hunan [J]. Geotectonics and Metallogeny, 2009, 33 (04): 588-597. doi: 10.3969/j.issn.1001-1552.2009.04.013

    [3]

    冯光英, 牛晓露, 刘飞, 等. 张广才岭地块早侏罗世晚期花岗闪长岩及其闪长质包体的岩石成因及构造意义[J]. 地质学报, 2019, 93(10): 2598-2616 doi: 10.3969/j.issn.0001-5717.2019.10.014

    FENG Guangying, NIU Xiaolu, LIU Fei, et al. Petrogenesis and tectonic significance of late Early Jurassic granodiorites and dioritic inclusions in the Zhangguangcailing block [J]. Journal of Geology, 2019, 93 (10): 2598-2616. doi: 10.3969/j.issn.0001-5717.2019.10.014

    [4]

    付秀丽, 蒙启安, 文政, 等. 松辽盆地白云岩沉积环境及成因机理[J]. 沉积学报, 2024, 42(1): 113−129.

    FU Xiuli, MENG Qi’an, WEN Zheng, et al. Sedimentary environment and genetic mechanism of dolomite in Songliao Basin [J]. Acta Sedimentologica Sinica, 2024, 42(1):113−129

    [5]

    句高, 梁一鸿, 孙晓, 等. 张广才岭南段两个侏罗纪花岗岩体的地球化学特征及其地质意义[J]. 世界地质, 2018, 37(02): 374-384

    GU Gao, LIANG Yihong, SUN Xiao, et al. Geochemical characteristics and geological significance of two Jurassic granites in the southern section of the Zhangguangcai Ridge [J]. World Geology, 2018, 37 (02): 374-384

    [6]

    李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005.

    [7]

    李蓉, 孙德有, 苟军, 等. 张广才岭北部苇河花岗岩基的地球化学特征与岩石成因[J]. 世界地质, 2012, 31(03): 462-470

    LI Rong, SUN Deyou, GOU Jun, et al. Geochemical characteristics and petrogenesis of the Weihe granite batholith in the north of Zhang Guangcai Ling [J]. World Geology, 2012, 31 (03): 462-470

    [8]

    李宗怀, 韩宝福, 李辛子, 等. 新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩浆起源和演化[J]. 岩石矿物学杂志, 2004,24(3): 214-226 doi: 10.3969/j.issn.1000-6524.2004.03.003

    LI Zonghuai, HAN Baofu, LI Xinzi, et al. Characteristics of micro-diorite xenoliths and origin and evolution of post-collisional granitic magma in granites in Junggar, Xinjiang [J]. Journal of Rock Mineralogy, 2004,23 (3): 214-226 doi: 10.3969/j.issn.1000-6524.2004.03.003

    [9]

    刘大明, 肖渊甫, 李宁, 等. 松潘—甘孜造山带北部达日泽龙花岗岩体地球化学、年代学及构造意义[J]. 矿物学报, 2022, 42(03): 270-284.

    LIU Daming, XIAO Yuanfu, LI Ning, et al. Geochemistry, chronology and tectonic significance of the Darizelong granite body in the northern Songpan-Ganzi orogenic belt [J]. Journal of Minerals, 2022, 42 (03): 270-284.

    [10]

    刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996(06): 552-558 doi: 10.3321/j.issn:0379-1726.1996.06.004

    LIU Ying, LIU Haichen, LI Xianhua. Accurate determination of more than 40 trace elements in rock samples by ICP-MS [J]. Geochemistry, 1996 (06): 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004

    [11]

    骆念岗, 高莲凤, 张璟, 等. 大兴安岭北段宜里地区早侏罗世二长花岗岩U-Pb年龄、地球化学特征及其构造意义[J]. 地质论评, 2021, 67(06): 1649-1669

    LUO Niangang, GAO Lianfeng, ZHANG Jing, et al. U-Pb age, geochemical characteristics and tectonic significance of the early Jurassic monzogranite in the Yili area of the northern section of the Great Hinggan Mountains [J]. Geological Review, 2021, 67 (06): 1649-1669.

    [12]

    孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(04): 1209-1226

    MENG En, XU Wenliang, YANG Debin, et al. Zircon U-Pb chronology, geochemistry and geological significance of the Mesozoic volcanic rocks in the Lingquan Basin in the Manzhouli region [J]. Acta Petrologica Sinica, 2011, 27 (04): 1209-1226

    [13]

    钱烨, 赵昌吉, 张涛, 等. 吉林中部早侏罗世A型花岗岩的地球化学特征及地质意义[J]. 黑龙江科技大学学报, 2021, 31(05): 562-568+577 doi: 10.3969/j.issn.2095-7262.2021.05.005

    QIAN Ye, ZHAO Changji, ZHANG Tao, et al. Geochemical characteristics and geological significance of the early Jurassic A-type granite in central Jilin [J]. Journal of Heilongjiang University of Science and Technology, 2021, 31 (05): 562-568+577 doi: 10.3969/j.issn.2095-7262.2021.05.005

    [14]

    任永健, 程烁, 张明明, 等. 黑龙江张家湾地区中侏罗世A型花岗岩地球化学特征及构造环境分析[J]. 现代地质, 2020, 34(05): 1067-1076

    REN Yongjian, CHENG Shuo, ZHANG Mingming, et al. Geochemical characteristics and tectonic environment analysis of the Middle Jurassic A-type granite in Zhangjiawan area, Heilongjiang Province [J]. Modern Geology, 2020, 34 (05): 1067-1076.

    [15]

    任永健. 张广才岭南部早—中侏罗世花岗质岩浆作用及构造演化[J]. 地质学报, 2019, 93(11): 2813-2831

    REN Yongjian. Early to Middle Jurassic granitic magmatism and tectonic evolution in the south of Zhang Guangcai Ling [J]. Journal of Geology, 2019, 93 (11): 2813-2831.

    [16]

    邵济安, 刘福田, 陈辉, 等. 大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 2001(01): 56-63

    SHAO Ji'an, LIU Futian, CHEN Hui, et al. The relationship between late Mesozoic magmatism and subduction in the Greater Khingan-Yanshan Mountains [J]. Journal of Geology, 2001 (01): 56-63

    [17]

    舒良树. 普通地质学(第三版)[M]. 北京: 地质出版社, 2010.

    [18]

    隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报, 2007(02): 461-480

    SUI Zhenmin, GE Wenchun, WU Fuyuan, et al. Zircon U-Pb age, geochemical characteristics and genesis of Jurassic granitic rocks in the northeast of the Great Hinggan Mountains [J]. Acta Petrologica Sinica, 2007 (02): 461-480

    [19]

    孙德有, 吴福元, 高山, 等. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘, 2005(02): 263-275

    SUN Deyou, WU Fuyuan, GAO Shan, et al. Determination of the late Triassic and early Jurassic aluminous A-type granites in central Jilin and their constraints on the tectonic framework in the eastern part of Jilin and Heihe [J]. Geologic Front, 2005 (02): 263-275

    [20]

    唐杰, 许文良, 王枫, 等. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录[J]. 中国科学: 地球科学, 2018, 48(05): 549-583

    TANG Jie, XU Wenliang, WANG Feng, et al. The subduction history of the ancient Pacific plate under the Eurasian continent: the Mesozoic-Paleogene magmatic record of the northeastern Asian continental margin [J]. Chinese Science: Earth Science, 2018, 48 (05): 549-583

    [21]

    王得权, 王建国, 杨帅, 等. 陕西秋树坪金矿似斑状奥长花岗岩脉锆石U-Pb年龄、地球化学特征及地质意义[J]. 矿物岩石, 2022, 42(01): 90-97

    WANG Dequan, WANG Jianguo, YANG Shuai, et al. Zircon U-Pb age, geochemical characteristics and geological significance of porphyry anorthite vein in Qiushuping gold deposit, Shaanxi [J]. Mineral and Rock, 2022, 42 (01): 90-97.

    [22]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589-1604 doi: 10.1360/csb2004-49-16-1589

    WU Yuanbao, ZHENG Yongfei. Zircon genetic mineralogy and its constraints on U-Pb age interpretation [J]. Science Bulletin, 2004 (16): 1589-1604 doi: 10.1360/csb2004-49-16-1589

    [23]

    肖庆辉, 邱瑞照, 邢作云, 等. 花岗岩成因研究前沿的认识[J]. 地质论评, 2007(S1): 17-27

    XIAO Qinghui, QIU Ruizhao, XING Zuoyun, et al. Understanding of the frontier of granite genesis research [J]. Geological Review, 2007 (S1): 17-27.

    [24]

    杨雅军, 杨晓平, 江斌, 等. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 2022, 29(02): 115-131

    YANG Yajun, YANG Xiaoping, JIANG Bin, et al. The spatial and temporal distribution of Mesozoic volcanic rock strata in the Great Khingan Mountains and the response to the subduction of the Mongolia-Okhotsk Ocean and the Paleo-Pacific Plate [J]. Geologic Front, 2022, 29 (02): 115-131.

    [25]

    杨长江, 王亚春. 小兴安岭东南部伊春中生代花岗岩的锆石U-Pb测年及其地质意义[J]. 吉林地质, 2010, 29(04): 1-5+31 doi: 10.3969/j.issn.1001-2427.2010.04.001

    YANG Changjiang, WANG Yachun. Zircon U-Pb dating of the Yichun Mesozoic granite in the southeast of the Xiaoxing'an Mountains and its geological significance [J]. Jilin Geology, 2010, 29 (04): 1-5+31 doi: 10.3969/j.issn.1001-2427.2010.04.001

    [26]

    俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245−261.

    YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245−261.

    [27]

    袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003(14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

    YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon laser probe U-Pb dating and rare earth element composition analysis of Cenozoic intrusions in Northeast China [J]. Science Bulletin, 2003 (14): 1511-1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

    [28]

    张健, 张海华, 贺君玲, 等. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 56(1): 117−128.

    ZHANG Jian, ZHANG Haihua, HE Junling, et al. Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology, 2023, 56(1): 117−128.

    [29]

    张旗, 金惟俊, 王元龙, 等. 大洋岩石圈拆沉与大陆下地壳拆沉: 不同的机制及意义——兼评“下地壳+岩石圈地幔拆沉模式”[J]. 岩石学报, 2006(11): 2631-2638 doi: 10.3321/j.issn:1000-0569.2006.11.002

    ZHANG Qi, JIN Weijun, WANG Yuanlong, et al. Ocean lithospheric delamination and continental lower crust delamination: different mechanisms and significance-also comment on "lower crust+lithospheric mantle delamination model" [J]. Journal of Rock, 2006 (11): 2631-2638 doi: 10.3321/j.issn:1000-0569.2006.11.002

    [30]

    赵越, 刘敬党, 张国宾, 等. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(04): 1098-1118

    ZHAO Yue, LIU Jingdang, ZHANG Guobin, et al. Chronology, geochemical characteristics and tectonic significance of the monzogranite of the Maoershan pluton in the southern part of Zhang Guangcai Ling [J]. Journal of Jilin University (Earth Science Edition), 2021, 51 (04): 1098-1118.

    [31]

    Allègre C. J., Minster J. F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1). doi: 10.1016/0012-821X(78)90123-1

    [32]

    Champion D C, Chappell B W. Petrogenesis of felsic I-ype granites: An example from northern Queensland[J]. Transactions of the Royal Society of Edinburgh Earth Science, 1992, 83: 115- 126. doi: 10.1017/S026359330000780X

    [33]

    Defant M J, Drummond M S. Derivation of some morden arc magmas by of young subducted lithosphere[J]. Nature, 1990, 47: 62-665

    [34]

    Dong Yu, Ge Wenchun, Yang Hao. Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Formation in the central Great Xing’an Range, NE China, and its tectonic implications[J]. Lithos, 2014, 205: 168-184. doi: 10.1016/j.lithos.2014.07.004

    [35]

    Fan Weiming, Guo Feng, Wang Yuejun, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Rsearch, 2003, 121(1): 115-135.

    [36]

    Feng Zhiqiang, Jia Jie, Liu Yongjiang, et al. Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing’an Rang, NE China: Constraints on the timing of amalgamation of Xing’an and Songnen blocks[J]. Journal of Asian Earth Sciences, 2015, 113: 411-426. doi: 10.1016/j.jseaes.2014.12.017

    [37]

    Kravchinsky V A, Cogne J P, Harbert W P. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1): 34-57. doi: 10.1046/j.1365-246x.2002.01557.x

    [38]

    Meng Qingren. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174.

    [39]

    Möller A, O’Brien P J, Kennedy A, et al. Linking growth epi‐sodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland(SW Norway) [J]. Geological Society, London, SpecialPublications, 2003, 220: 65-82. doi: 10.1144/GSL.SP.2003.220.01.04

    [40]

    Paterno R, Castillo. An Overview Of Adakite Petrogenesis[J]. Chinese Science Bulletin, 2006(03): 258-268.

    [41]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [42]

    Richards J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26. doi: 10.1016/j.oregeorev.2011.05.006

    [43]

    Daniela Rubatto, Dieter Gebauer. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: some Examples from the Western Alps[J]. Cathodoluminescence in Geosciences, 2000, 373-400

    [44]

    Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 33: 1-64.

    [45]

    Rudnick R L. Making continental crust[J]. Nature, 1995, 378(6557): 571-578. doi: 10.1038/378571a0

    [46]

    Sengor A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364( 6435): 299-307. doi: 10.1038/364299a0

    [47]

    Shi Lu, Zheng Changqing, Yao Wengui, et al. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe-Moguqi region, central Great Xing’an Range, China[J]. Journal of Asian Earth Sciences, 2015, 113: 443-453. doi: 10.1016/j.jseaes.2014.12.013

    [48]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D and Norry M J(eds). Magmatism in ocean basins[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [49]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[D]. Oxford: Blackwell Scientific Publications, 1985, 1−312.

    [50]

    Tomurtogoo O, Windley B F, Kroner A. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1): 125-134. doi: 10.1144/0016-764903-146

    [51]

    Valley J W, Lackey J S, Cavosie A J. Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatie Zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580. doi: 10.1007/s00410-005-0025-8

    [52]

    Wang Fei, Zhou Xinhua, Zhang Lianchang, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1): 179-198.

    [53]

    Wu Fu Y, Sun De Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41: 1-30. doi: 10.1016/j.jseaes.2010.11.014

    [54]

    Wu Fuyuan, Yang Jinhui, Lo Chinghua. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J]. Island Arc, 2010, 16 (1): 156-172.

    [55]

    Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353.

    [56]

    Ying Jiheng, Zhou Xinhua, Zhang Lianchang, et al. Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 2010, 39(6): 786-793. doi: 10.1016/j.jseaes.2010.04.035

    [57]

    Zhang Jiheng, Ge Wenchun, Wu Fuyuan, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China[J]. Lithos, 2008, 102(1-2): 138-157. doi: 10.1016/j.lithos.2007.08.011

    [58]

    Zhou Jianbo, Wilde S A, Zhang Xingzhou. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang highpressure metamorphic belt[J]. Tectonophysics, 2009, 478 (3): 230-246.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  909
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2022-10-08
修回日期:  2023-02-20
录用日期:  2023-02-28
刊出日期:  2024-04-20

目录