Conditions for the Occurrence and Development and Utilization Potential Evaluation of Shallow Geothermal Energy in Yinchuan City, Ningxia
-
摘要:
扩大浅层地温能这种可再生绿色能源的开发利用规模,对中国的节能减排和可持续发展具有重要的意义。本次通过银川市浅层地温能资源调查,查明了宁夏银川市浅层地温能蕴藏条件。本研究利用Arcgis软件使用层次分析法对研究区进行地埋管地源热泵适宜性分区,并进行浅层地温能资源潜力评价。研究认为,研究区范围无地埋管地源热泵不适宜区,适宜区面积分布最广为1767 km2,占比为56.04 %;较适宜区面积为1386 km2,占比为43.96 %;研究区地埋管地源热泵开采潜力较大,夏季开发潜力为42.7万 m2/km2,冬季开发潜力为36.0万 m2/km2。根据研究成果提出研究区浅层地温能资源开采和规划意见,为后续制定开发利用方案提供思路与依据。
Abstract:Expanding the scale of development and utilization of shallow geothermal energy is of great significance for energy conservation, emission reduction and sustainable development in China. The investigation and evaluation of shallow geothermal energy in Yinchuan started late. In order to avoid blind exploitation of shallow geothermal energy, the occurrence conditions of shallow geothermal energy and the evaluation of development and utilization potential are important technical support. By identifying the occurrence conditions of shallow geothermal energy in Yinchuan, the suitability zoning of ground source heat pump with buried pipe in the study area was carried out by using analytic hierarchy process (AHP) and Arcgis software. Finally, the potential of shallow geothermal energy resources was evaluated. The results show that there is no unsuitable area for ground source heat pump with buried pipe in the study area, the most suitable area which is most widely distributed is 1767 km2, accounting for 56.04 %. The comparatively area is 1386 km2, accounting for 43.96 %. The development potential of ground source heat pump with buried pipes in the study area is huge, the development potential in summer is 42.7 million m2/km2, and the development potential in winter is 36.0 million m2/km2. Based on the research results, the development and utilization giving suggestions of shallow geothermal energy in the study area were given to provide ideas and basis for the subsequent development and utilization plan.
-
表 1 第四系成因类型及时代描述表
Table 1. Genesis type and era description of Quaternary
第四系 沉积类型 厚度 埋藏深度 主要岩性及分布规律 下更新统 冲湖积层 – 大于190~200 m 灰黑色、灰褐色细砂夹棕褐、灰褐、灰白色黏性土、灰褐色砂砾石及卵砾石 中更新统 冲湖积层 – 80~120 m 灰黑色、灰色及褐灰色细砂夹灰色、棕灰、灰白黏性土,并有泥砾存在与部分细砂 冲洪积层 约为60 m 130~150 m 岩性以青灰色粉细砂和灰黄色、暗灰色细砂为主,夹带黏性土,洪积平原的西侧下部细砂内有砾石 上更新统 冲湖积层 60~100 m 2~30 m 黏土质砂、砂质黏土、中细砂 冲洪积层 50~90 m 60~80 m 岩性为灰色细砂夹砂黏土,在山前洪积斜平原附近有些部分细砂中含砾石 洪积层 – – 岩性为砂质黏土、黏质砂土、砂、砂砾石、漂砾及块石,由洪积平原前缘变为细粒带,自东向西颗粒逐渐变粗,分布在贺兰山东麓洪积斜平原 全新统 冲洪积层 厚度小于20 m – 黏性土、粉细砂夹砂砾石 冲湖积层 – – 黏性土、细砂及粉细砂,主要分布在冲湖积平原的一级阶地 风积层 最大厚度为20~30 m – 粉细砂和中细砂 湖沼沉积层 厚度小于3 m – 岩性以黏性土、粉细砂为主,主要分布在河湖积平原的一、二级阶地 洪积层 – – 岩性为含砾砂、碎石、砂砾石夹黏性土,银川市新市区以西是洪积层的主要分布地带 冲积层 厚度小于10 m – 岩性为粉细砂、砂砾石夹黏性土,大都位于河漫滩和黄河河床中 表 2 浅层地温能热响应测试结果表
Table 2. Thermal response test results of shallow geothermal energy
编号 埋管深度(m) 埋管类型 初始温度(℃) 综合热导率
[W/(m·℃)]夏季每延米
排热量(W/m)冬季每延米
取热量(W/m)MD-01 200 双U 16.46 2.43 56.20 43.80 MD-02 200 双U 15.58 2.26 38.70 25.00 MD-03 200 双U 14.63 2.68 56.90 32.00 YR01 90 单U 13.35 1.97 46.27 25.74 YR02 200 单U 14.31 2.32 54.40 – YR03 90 双U 13.46 2.30 53.33 – YR04 200 单U 13.39 2.18 – 21.81 YR05 125 双U 16.04 2.10 56.01 – YR06 90 双U 12.96 2.32 76.95 – YR07 90 双U 13.40 2.00 65.11 25.84 YR08 90 双U 13.07 1.84 74.84 – YR09 125 双U 13.95 1.98 – 30.02 注:–表示为做相应工况测试。 表 3 评价因子权重计算结果一览表
Table 3. List of calculation results of evaluation factor weights
目标层(对象层) B1 B2 B3 B4 指标层 水文地质条件 热物理性质 水质条件 地质环境条件 组合权重 0.338 0.338 0.162 0.162 C1潜水富水性 0.417 0.141 C2承压水富水性 0.272 0.092 C3潜水位埋深 0.188 0.064 C4含水岩组厚度 0.123 0.042 C5热综合热传导系数 0.5 0.169 C6平均比热容 0.5 0.169 C7地下水水质 1.000 0.162 C8地层结构 0.333 0.054 C9地形地貌 0.333 0.054 C10砂黏土厚度比值 0.333 0.054 表 4 地埋管地源热泵换热功率
Table 4. Heat transfer power of ground source heat pump with buried
工况 单孔换热功率
(w)面积
(km2)总的孔数n
(考虑土地利用系数)总的功率
(kw)夏季(按理论计算) 9183.94 3154 10131537.22 9.30×107 夏季(按试验平均值) 10120.00 3154 10131537.22 1.03×108 冬季(按理论计算) 5268.53 3154 10131537.22 5.34×107 冬季(按试验平均值) 6720.00 3154 10131537.22 6.81×107 表 5 地源热泵可供暖面积计算
Table 5. Calculation of heating area of ground source heat pump
工况 负荷q
(w/m2)可供面积
(m2)资源潜力Qz
(m2/km2)夏季 69 1.35×109 427339 冬季 47 1.14×109 360232 -
[1] 丁宏伟,魏莉莉,尹政,等. 浅层地温能系统的国内外研究与应用现状综述[J]. 甘肃地质,2016,25(04):61–68.
Ding Hongwei, Wei Lili, Yin Zheng, et al. Overview of research and application status of shallow geothermal energy systems at home and abroad[J]. Gansu Geology, 2016, 25(04): 61-68.
[2] 董殿伟,江剑,王立发,等. 北京市平原区地源热泵系统适宜性分区评价[J]. 北京水务,2010,(02):12–14. doi: 10.3969/j.issn.1673-4637.2010.02.006
Dong Dianwei, Jiang Jian, Wang Lifa, et al. Evaluation of suitability of ground-source heat pump system in plain area of Beijing [J]. Beijing Water Affairs, 2010(02): 12-14. doi: 10.3969/j.issn.1673-4637.2010.02.006
[3] 韩再生,冉伟彦,佟红兵,等. 浅层地热能勘查评价[J]. 中国地质,2007,(06):1115–1121. doi: 10.3969/j.issn.1000-3657.2007.06.018
Han Zaisheng, Ran Weiyan, Tong Hongbing, et al. Evaluation of shallow geothermal energy exploration[J]. Chinese Geology, 2007(06): 1115-1121. doi: 10.3969/j.issn.1000-3657.2007.06.018
[4] 胡元平,刘红卫,柯立,等. 层次分析法在武汉都市发展区地埋管地源热泵适宜性分区评价中的应用[J]. 资源环境与工程,2015,29(01):59–62. doi: 10.3969/j.issn.1671-1211.2015.01.014
Hu Yuanping, Liu Hongwei, Ke Li, et al. Application of analytic hierarchy process (AHP) in zoning evaluation of ground source heat pump suitability in Wuhan urban development area [J]. Resources, Environment and Engineering, 2015, 29 (01): 59-62. doi: 10.3969/j.issn.1671-1211.2015.01.014
[5] 金婧,席文娟,陈宇飞,等. 基于AHP的浅层地热能适宜性分区评价[J]. 水资源与水工程学报,2012,23(03):91–93.
Jin Jing, Xi Wenjuan, Chen Yufei, et al. Evaluation of the suitability of shallow geothermal energy based on AHP[J]. Journal of Water Resources and Water Engineering, 2012, 23(03): 91-93.
[6] 兰善治. 利用层次分析法评价德州市浅层地热能适宜性[J]. 科技视界,2016,(19):214–215. doi: 10.3969/j.issn.2095-2457.2016.19.166
Lan Shanzhi. Using Analytic Hierarchy Process to Evaluate the Suitability of Shallow Geothermal Energy in Dezhou City[J]. Science and Technology Vision, 2016(19): 214-215. doi: 10.3969/j.issn.2095-2457.2016.19.166
[7] 蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(01):312–321. doi: 10.3969/j.issn.1000-3657.2013.01.021
Lin Wenjing, Liu Zhiming, Wang Wanli, et al. China's geothermal resources and their potential evaluation[J]. Chinese Geology, 2013, 40(01): 312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021
[8] 刘建霞,原晓军,索立涛. 基于层次分析法的鲁东地区浅层地热能适宜性评价[J]. 海洋地质前沿,2012,28(10):65–70. doi: 10.16028/j.1009-2722.2012.10.010
Liu Jianxia, Yuan Xiaojun, Suo Litao. Appraisal of shallow geothermal energy suitability in eastern Shandong based on analytic hierarchy process[J]. Frontiers of Marine Geology, 2012, 28(10): 65-70. doi: 10.16028/j.1009-2722.2012.10.010
[9] 刘文辉, 董英, 张新社, 等. 西北省会城市地热中深层地埋管供热系统发展潜力及环境效益分析[J]. 西北地质, 2023, 56(3): 186−195.
LIU Wenhui, DONG Ying, ZHANG Xinshe, et al. Development Potential and Environmental Benefit Analysis of Geothermal Medium–Deep Buried Pipe Heating System in Capital Cities in Northwest China[J]. Northwestern Geology, 2023, 56(3): 186−195.
[10] 栾英波,郑桂森,卫万顺. 浅层地温能资源开发利用发展综述[J]. 地质与勘探,2013,49(02):379–383.
Luan Yingbo, Zheng Guisen, Wei Wanshun. Summary of the development and utilization of shallow geothermal energy resources[J]. Geology and Prospecting, 2013, 49(02): 379-383.
[11] 彭佳,田小林,刘杰,等. 贵州省浅层地热能开发利用现状浅析[J]. 广西节能,2021,(02):42–43.
[12] 冉伟彦,李宁波,杨俊伟,等. 城市浅层地温能勘查评价工作的几点启示[J]. 城市地质,2014,9(S1):1–3.
Ran Weiyan, Li Ningbo, Yang Junwei, et al. Some enlightenments on the exploration and evaluation of urban shallow geothermal energy[J]. Urban Geology, 2014, 9(S1): 1-3.
[13] 沈军,刘徽,余国飞,等. 浅议中国浅层地热能开发利用现状及对策建议[J]. 资源环境与工程,2021,35(01):116–119. doi: 10.16536/j.cnki.issn.1671-1211.2021.01.024
Shen Jun, Liu Hui, Yu Guofei, et al. Discussion on the current situation and countermeasures of shallow geothermal energy development and utilization in China[J]. Resources Environment and Engineering, 2021, 35(01): 116-119. doi: 10.16536/j.cnki.issn.1671-1211.2021.01.024
[14] 孙明远,杨霞,邵琦. 章丘区浅层地温能资源研究与评价——以地埋管换热方式为例[J]. 山东国土资源,2021,37(04):48–53.
Sun Mingyuan, Yang Xia, Shao Qi. Research and Evaluation of Shallow Geothermal Energy Resources in Zhangqiu District: Taking the Underground Pipe Heat Exchange Method as an Example [J]. Shandong Land and Resources, 2021, 37(04): 48- 53.
[15] 王贵玲,蔺文静,张薇. 我国主要城市浅层地温能利用潜力评价[J]. 建筑科学,2012,28(10):1–3+8. doi: 10.3969/j.issn.1002-8528.2012.10.001
Wang Guiling, Lin Wenjing, Zhang Wei. Evaluation of shallow ground temperature energy utilization potential in major cities in my country[J]. Architecture Science, 2012, 28(10): 1-3+8. doi: 10.3969/j.issn.1002-8528.2012.10.001
[16] 王贵玲,刘彦广,朱喜. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(01):1–9. doi: 10.13745/j.esf.2020.1.1
Wang Guiling, Liu Yanguang, Zhu Xi, et al. Current status and development trend of geothermal resources in China[J]. Frontier of Earth Science, 2020, 27(01): 1-9. doi: 10.13745/j.esf.2020.1.1
[17] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(04):449-450+134+451–459.
Wang Guiling, Zhang Wei, Liang Jiyun, et al. Evaluation of China's Geothermal Resource Potential[J]. Acta Geosciences, 2017, 38(04): 449-450+134+451-459.
[18] 王婉丽,王贵玲,朱喜,等. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质,2017,44(06):1062–1073.
Wang Wanli, Wang Guiling, Zhu Xi, et al. Development and utilization conditions and potential evaluation of shallow geothermal energy in provincial capitals of China[J]. Chinese Geology, 2017, 44(06): 1062-1073.
[19] 闫福贵. 呼和浩特市浅层地温能开发利用适宜性评价研究[D]. 北京: 中国地质大学(北京), 2013
YAN Fugui. Suitability evaluation of shallow geothermal energy development and utilization in Hohhot [D]. Beijing: China University of Geosciences (Beijing), 2013.
[20] 杨如辉,邹声华,刘彩霞. 浅层地热能的开发利用[J]. 徐州工程学院学报(自然科学版),2011,26(02):69–72. doi: 10.15873/j.cnki.jxit.2011.02.018
Yang Ruhui, Zou Shenghua, Liu Caixia. Development and Utilization of Shallow Geothermal Energy[J]. Journal of Xuzhou Institute of Technology (Natural Science Edition), 2011, 26(02): 69-72. doi: 10.15873/j.cnki.jxit.2011.02.018
[21] 苑雷,陈刚. 改进层次分析法下的浅层地温能适宜性评价[J]. 可再生能源,2013,31(07):112–115. doi: 10.13941/j.cnki.21-1469/tk.2013.07.016
[22] 张甫仁,彭清元,朱方圆,等. 重庆主城区浅层地温能资源量评价研究[J]. 中国地质,2013,40(03):974–980. doi: 10.3969/j.issn.1000-3657.2013.03.027
Zhang Fu-ren, Peng Qingyuan, Zhu Fang-yuan, et al. Evaluation of Shallow Geothermal Energy Resources in Chongqing Urban Area [J]. China Geology, 2013, 40(03): 974-980. doi: 10.3969/j.issn.1000-3657.2013.03.027
[23] 张茂省, 董英, 孙萍萍, 等.城乡融合与地上地下空间协同探测评价的理论与方法以关中平原城市地质调查评价为例[J]. 西北地质, 2023, 56(3): 153−168.
ZHANG Maosheng, DONG Ying, SUN Pingping, et al. Theory and Method for Urban–Rural Integration, Evaluation and Cooperative Detection of Ground and Underground Space: Example from the Urban Geological Survey of Guanzhong Plain[J]. Northwestern Geology, 2023, 56(3): 153-168.
[24] 张鹏川,褚小东,曾建平,等. 传统资源量估算方法在第三类矿产中的应用与对比研究: 以宁夏某建筑用石灰岩矿山为例[J]. 中国矿业,2017,26(09):33–37+41.
Zhang Pengchuan, Chu Xiaodong, Zeng Jianping, et al. Application and comparative study of traditional resource estimation methods in the third kind of minerals: taking a limestone mine for construction in Ningxia as an example [J]. China Mining, 2017, 26(09): 33-37+41.
[25] 张新. 贵安新区浅层地温能资源开发利用适宜性分区及潜力评价[J]. 地下水,2021,43(03):83–85.
Zhang Xin. Suitability zoning and potential evaluation of shallow geothermal energy resources development and utilization in Gui'an New Area[J]. Groundwater, 2021, 43(03): 83-85.