-
摘要:
在西安凹陷南缘清凉山地裂缝f12两侧钻取了两口超过400 m的全取芯井,笔者对DZ1井(420 m)和DZ2井(400.5 m)岩心作了沉积学分析,进行了古地磁、磁化率及粒度测量,分析了地裂缝沉降特征。结果表明:DZ1孔岩心包括0~93 m黄土–古土壤序列沉积L2~S11,缺失上部马兰黄土及S1,93 m以下为三门组河湖相沉积。DZ2钻孔岩心包括0~72 m黄土–古土壤S1~S9序列沉积,缺失上部黑垆土S0和马兰黄土L1,73 m以下为三门组河湖相沉积。 DZ1孔岩心和DZ2孔岩心的黄土地层层序基本一致,包括中更新世离石黄土上部及早更新世离石黄土下部,未见午城黄土。河湖相三门组与午城黄土同时异相,在两口井都持续沉积至第四纪底界,并穿时至上新世顶部。两口井岩心均记录了B/M界限,J、O、R极性亚带及M/G界限,这些界线为两口井的地层对比提供了科学依据。其标志层粉砂质黄土层L9位置高差为5 m,古地磁B/M界线位置高差为4 m,J亚带位置高差为8~17 m,O亚带位置高差为31~22 m,R亚带位置高差为56~47 m,M/G界线位置高差为54 m。总体看来,DZ1孔地层界线和古地磁界线高程都较DZ2孔低,并且越靠下层差距越大。根据地层高差及古地磁界线高差判断,地裂缝f12上盘相对下降4~54 m。在DZ1孔373.6 m处发现次裂缝面,经计算裂缝面倾向南东,倾角为77°。研究成果为进一步认识西安凹陷沉积环境,地裂缝特征及对西安地区防控地裂缝地质灾害具有重要意义。
Abstract:Two fully coring wells over 400 m for each have been drilled respectively on both sides of the Qingliangshan ground fissure (f12) situated at the southern margin of the Xi’an depression. Sedimentological analysis and paleomagnetic dating, magnetic susceptibility and grain size measurements on DZ1 (420 m) and DZ2 (400.5 m) are made. The ground fissure subsidence characteristics are further analyzed. The results show that the DZ1 exposes loess–paleosol sequences of 93m, corresponding to L2~S11, without the upper Malan loess and S1. There are Sanmen Formation of river–lake phase below 93 m. DZ2 exposes 72m loess–paleosol sequences of S1~S9, missing the upper black loessial soil S0 and Malan loess L1. There is Sanmen Formation of river–lake phase below 73 m. The sequences of loess stratigraphy in both of DZ1 and DZ2 are basically identical. They both include the upper part and lower part of the Lishi loess, corresponding to Middle and Early Pleistocene, respectively. And the Wucheng loess has not been exposed. Sanmen Formation deposited until the bottom of Quaternary and upon the upper Pliocene. Both two cores successively recorded B/M boundaries, J, O and R polarity sub-bands and M/G boundaries, which provide a reliable evidence for stratigraphic comparison between the two cores. The elevation differences of several key layers is 5 m for the L9 layer, 4 m for the B/M boundary, 8~17 m for the J subband, 31~22 m for the O subband, 56~47 m for the R subband, and 54 m for the M/G boundary. In all, the elevation of the stratigraphic boundary and paleomagnetic boundary in DZ1 are generally lower than those in DZ2. The deeper the horizon is located, the higher the differences are. Based on the relative elevation difference of the stratigraphic and paleomagnetic boundaries between two cores, it is supposed that the upper plate of fault f12 is relatively lower by about 4~54 m. The sub-fracture plane was exposed at 373.6 m, with SE dip direction and 77˚ of dip angle. This study is important for further understanding the depositional environment of Xi’an depression, the characteristics of ground fissures and the prevention and control of the geological hazard related to ground fissures s in Xi’an area.
-
Key words:
- ground fissures /
- loess /
- Sanmen Formation /
- paleomagnetic dating /
- Xi’an depression
-
图 1 清凉山f12地裂缝钻孔位置图(a)和西安地区地裂缝分布示意图(b)(据王璐,2010)
Figure 1.
表 1 地裂缝两侧古地磁界线高程对比表
Table 1. Correlations of boundary elevation at two sides of f12
钻孔 S5底位置(m) B/M(L8)界线(m) L9顶位置(m) 黄土底界(m) J亚带界线(m) O亚带界线(m) R亚带界线(m) M/G界线(m) DZ1孔(上盘) 414 399 393 365 358~338 293~247 179~155 54 DZ2孔(下盘) 413 403 398 381 366~355 324~269 235-202 108 高差 1 −4 −5 −16 −8~−17 −31~−22 −56~−47 −54 注:DZ1井口高程为458.44 m,DZ2井口高程为453.49 m。 -
[1] 安芷生, 王苏民, 吴锡浩, 等. 中国黄土高原的风积证据: 晚新生代北半球大冰期开始及青藏高原的隆升驱动[J]. 中国科学(D辑: 地球科学), 1998,28(06): 481-490
AN Zhisheng, WANG Sumin, WU Xihao, et al. Aeolian evidence from the Loess Plateau in China: The onset of the Northern Hemisphere Glaciation in the Late Cenozoic and the uplift of the Tibetan Plateau [J]. Science in China (Series D: Earth Sciences), 1998,28(06): 481-490.
[2] 董英, 张茂省, 刘洁, 等. 西安市地下水与地面沉降地裂缝耦合关系及风险防控技术[J]. 西北地质, 2019, 52(02): 95-102
DONG Ying, ZHANG Maosheng, LIU Jie, et al. Coupling Relationship between Groundwater and Ground Fissures of Land Subsidence in Xi’an City and Risk Prevention and Control Technology[J]. Northwestern Geology, 2019, 52(02): 95-102.
[3] 冯旻譞, 齐琦, 董英, 等. 利用Sentinel-1A数据监测大西安2019~2022年大西安地表形变[J]. 西北地质, 2023, 56(3): 178−185.
FENG Minxuan, QI Qi, DONG Ying, et al. Monitoring Surface Deformation in Xi’an City from 2019 to 2022 Based on Sentinel-1A Data[J]. Northwestern Geology, 2023, 56(3): 178-185.
[4] 冯希杰, 李晓妮, 任隽, 等. 渭河断裂深、中、浅和近地表显示[J]. 地震地质, 2008,30(01): 264-272
FENG Xijie, LI Xiaoni, REN J, et al. Manifestations of Weihe fault at deep, middle, shallow and near surface depth[J]. Seismology and Geology, 2008,30(01): 264-272.
[5] 李智超, 李文厚, 李永项, 等. 渭河盆地新生代沉积相研究[J]. 古地理学报, 2015, 17(04): 529-540 doi: 10.7605/gdlxb.2015.04.043
LI Zhichao, LI Wenhou, LI Yongxiang, et al. Sedimentary facies of the Cenozoic in Weihe Basin[J]. Journal of Palaeogeography, 2015, 17(04): 529-540. doi: 10.7605/gdlxb.2015.04.043
[6] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985
LIU Dongsheng. Loess and Environment[M]. Beijing: Science Press, 1985.
[7] 刘护军, 薛祥煦. 对渭河盆地新生界及其年代的讨论[J]. 地球科学与环境学报, 2004,26(04): 1-5
LIU Hujun, XUE Xiangxu. Discussion on the Cenozoic and its chronology in Weihe River Basin[J]. Journal of Earth Sciences and Environment, 2004,26(04): 1-5.
[8] 鹿化煜, 张瀚之, 王逸超, 等. 渭河盆地新生代沉积序列与亚洲季风气候起源演化[J]. 第四纪研究, 2018, 38(5): 1057-1067 doi: 10.11928/j.issn.1001-7410.2018.05.01
LU Huayu, ZHANG Hanzhi, WANG Yichao, et al. Cenozoic depositional sequence in the Weihe Basin(Central China): A long-term record of Asian monsoon precipitation from the greenhouse to icehouse Earth[J]. Quaternary Sciences, 2018, 38(5): 1057-1067. doi: 10.11928/j.issn.1001-7410.2018.05.01
[9] 卢全中, 彭建兵, 陈志新, 李喜安. 黄土高原地区黄土裂隙发育特征及其规律研究[J]. 水土保持学报, 2005, 19(05): 193-196
LU Quanzhong, PENG Jianbing, CHEN Zhixin, et al. Research on Characteristics of Cracks and Fissures of Loess and Their Distribution in Loess Plateau of China[J]. Journal of Soil and Water Conservation, 2005, 19(05): 193-196.
[10] 卢全中, 李聪, 刘聪, 等. 地裂缝分类及地面沉降区构造地裂缝防治对策[J]. 地球科学与环境学报, 2021, 43(02): 366-375
LU Quanzhong, LI Cong, LIU Cong, et al, Classification of Ground Fissures and Prevention Measures of Tectonic Ground Fissures in Land Subsidence Areas [J]. Journal of Earth Sciences and Environment, 2021, 43(2): 366-375.
[11] 贾兰坡, 张玉萍, 黄万波, 等. 陕西蓝田新生界现场会议论文集[M]. 北京: 科学出版社, 1966
JIA Lanpo, ZHANG Yuping, HUANG Wanbo, et al. , Proceedings of the Lantian Field Conference in Shaanxi Province[M]. Beijing: Science Press, 1966.
[12] 彭建兵, 张俊, 苏生瑞, 等. 渭河盆地活动断裂与地质灾害[M]. 西安: 西北大学出版社, 1992
PENG Jianbing, ZHANG Jun, SU Shengrui, et al. Active faults and geological hazards in Weihe Basin[M]. Xi’an: Northwest University Press, 1992.
[13] 彭建兵, 范文, 李喜安, 等. 汾渭盆地地裂缝成因研究中的若干关键问题[J]. 工程地质学报, 2007, 15(04): 433-440
PENG Jianbing, FAN Wen, LI Xi’an, et al. Some Key Questions in The Formation Of Ground Fissures in The Fen-wei Basin[J]. Joumal of Engineering Geology, 2007,15 (04): 433-440.
[14] 彭建兵. 西安地裂缝发育特征与活动性[M]. 北京: 科学出版社, 2012
PENG Jianbing. Development characteristics and activity of ground fissures in Xi’an[M]. Beijing: Science Press, 2012
[15] 乔建伟, 卢全中, 郑建国, 等. 渭河盆地安仁镇图幅(1∶5万)的浅部地质结构特征[J]. 西北地质, 2020, 53(03): 93-105
QIAO Jianwei, LU Quanzhong, ZHENG Jianguo, et al. Shallow Structural Model of Anren Town Geological Map(1: 50000)in Wei River Basin[J]. Northwestern Geology, 2020, 53(03): 93-105.
[16] 宋友桂, 兰敏文, 刘慧芳, 等. 关中盆地新生界地层划分对比与第四纪下限[J]. 地质科技通报, 2021, 40(02): 24-35
SONG Yougui, Lan Minwen, Liu huifang, et al. Cenozoic stratigraphic correlation and the lower limit of Quaternary in Guanzhong Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 24-35.
[17] 孙建中. 关于“黄三门”与“绿三门”[J]. 长安大学学报(地球科学版), 1986,8 (04): 42-45
SUN Jianzhong. Yellow Sanmen Fm and Green Sanmen Fm [J]. Journal of Chang’an University (Natural Science Edition), 1986, 8(04): 42-45.
[18] 王斌, 郑洪波, 王平, 等. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135 doi: 10.11867/j.issn.1001-8166.2013.10.1126
WANG Bin, ZHENG Hongbo, WANG Ping, et al. The cenozoic strata and depositional evolution of Weihe Basin: Progresses and problems[J]. Advances in Earth Science, 2013, 28(10): 1126-1135. doi: 10.11867/j.issn.1001-8166.2013.10.1126
[19] 王璐. 西安地裂缝带岩土物理力学性质统计分析[D]. 西安: 长安大学硕士论文, 2010
WANG Lu. Statistical Analysis of physical and mechanical properties of of geotechnical on band of Xi’an ground fissures[D]. Xi’an: Chang’an University, 2010.
[20] 王书兵, 蒋复初, 吴锡浩, 等. 三门组的内涵及其意义[J]. 第四纪研究, 2004, (01): 116-123 doi: 10.3321/j.issn:1001-7410.2004.01.016
WANG Shubing, JIANG Fuchu, WU Xihao, et al. The Connotation and Significance of Sanmen Formation[J]. Quaternary Sciences, 2004, (01): 116-123. doi: 10.3321/j.issn:1001-7410.2004.01.016
[21] 吴锡浩, 安芷生. 黄土高原黄土-古土壤序列与青藏高原隆升[J]. 中国科学(D辑: 地球科学), 1996, 26(02): 103-110
WU Xihao, AN Zhisheng. Loess paleosol sequence of the Loess Plateau and uplift of the Qinghai Tibet Plateau [J]. Science in China (Series D: Earth Sciences), 1996, 26(02): 103-110.
[22] 薛祥煦. 陕西渭南一早更新世哺乳动物群及其层位[J]. 古脊椎动物与古人类, 1981,19(01): 35-44
XUE Xiangxu. An early Pleistocene Mammalian fauna and its stratigraphy of the River YOU, Weinan, Shensi[J]. Vertebrata Palasiatioa, 1981, 19(01): 35-44.
[23] 岳乐平. 兰田段家坡黄土剖面磁性地层学研究[J]. 地质论评, 1989,35(05): 479-488. doi: 10.3321/j.issn:0371-5736.1989.05.012
YUE Leping. Magnetostratigraphical study of the loess seciton at Duanjiapo, Lantian, Shaanxi[J]. Geological Review, 1989,35(05): 479-488. doi: 10.3321/j.issn:0371-5736.1989.05.012
[24] 岳乐平. 黄土高原黄土、红色粘土与古湖盆沉积物关系[J]. 沉积学报, 1996,14(04): 149-154 doi: 10.14027/j.cnki.cjxb.1996.04.020
YUE Leping. Depositional Ralation between the Loess, Red Clay and Sedimentation of the Lake basin in the Loess Plateau[J]. Acta Sedimentologica Sinica, 1996,14(04): 149-154. doi: 10.14027/j.cnki.cjxb.1996.04.020
[25] 张勤, 黄观文, 王利, 等. GPS在西安市地面沉降与地裂缝监测中的应用研究[J]. 工程地质学报, 2007,15(06): 828-833 doi: 10.3969/j.issn.1004-9665.2007.06.019
ZHANG Qin, HUANG Guanwen, WANG Li, et al. GPS Monitoring and Surveying on Land Subsidence and Land Fissure in Xi'an City[J]. Joumal of Engineering Geology, 2007,15(06): 828-833. doi: 10.3969/j.issn.1004-9665.2007.06.019
[26] 周慕林. 中国地层典[M]. 北京: 地质出版社, 2000
ZHOU Mulin. Stratigraphic Code of China [M]. Beijing: Geology Press, 2000.
[27] 朱立峰, 李益朝, 刘方, 等. 西安地裂缝活动特征及勘查思路探讨[J]. 西北地质, 2005, (04): 102-107 doi: 10.3969/j.issn.1009-6248.2005.04.015
ZHU Lifeng, LI Yizhao, LIU Fang, et al. Features on ground fractures and exploration train of thought in Xi’an[J]. Northwestern Geology, 2005, (04): 102-107. doi: 10.3969/j.issn.1009-6248.2005.04.015
[28] Fu C, An Z, Qiang X, et al. Magnetostratigraphic determination of the age of ancient Lake Qinghai and record of the East Asian monsoon since 4.63 Ma[J]. Geology, 2013, 41(8): 875-878. doi: 10.1130/G34418.1
[29] Fu C, Bloemendal J, Qiang X, et al. Occurrence of greigite in the Pliocene sediments of Lake Qinghai, China, and its paleoenvironmental and paleomagnetic implications[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1293-1306. doi: 10.1002/2014GC005677
[30] Liu J, Zhang P, Lease R O, et al. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 2013, 584: 281-296. doi: 10.1016/j.tecto.2012.01.025
[31] Lu Q, Qiao J, Peng J, et al. A typical Earth fissure resulting from loess collapse on the loess plateau in the Weihe Basin, China[J]. Engineering Geology, 2019, 259: 105189. doi: 10.1016/j.enggeo.2019.105189
[32] Lu Q, Yang L, Peng J. Immersion test of loess in ground fissures in Shuanghuaishu, Shaanxi Province, China[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2299-2312. doi: 10.1007/s10064-019-01718-5
[33] Rits D S, Beets C J, Prins M A, et al. Geochemical characterization of the middle and late Pleistocene alluvial fan-dominated infill of the northern part of the Weihe Basin, Central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017: S0031018216307659.
[34] Rits D S, Prins M A, Troelstra S R, et al. Facies analysis of the Middle and Late Quaternary sediment infill of the northern Weihe Basin, Central China[J]. Journal of Quaternary Science, 2016, 31(2): 152-165.23. doi: 10.1002/jqs.2853
[35] Wang Y, Lu H, Wang K, et al. Combined high- and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period[J]. Science Advances, 2020, 6(46): eabc2414. doi: 10.1126/sciadv.abc2414