滑坡匀速变形阶段快速诊断方法研究

王朋伟, 安玉科. 2023. 滑坡匀速变形阶段快速诊断方法研究. 西北地质, 56(5): 197-203. doi: 10.12401/j.nwg.2022034
引用本文: 王朋伟, 安玉科. 2023. 滑坡匀速变形阶段快速诊断方法研究. 西北地质, 56(5): 197-203. doi: 10.12401/j.nwg.2022034
WANG Pengwei, AN Yuke. 2023. Research on Rapid Diagnosis Method of Landslide’s Uniform Deformation Stage. Northwestern Geology, 56(5): 197-203. doi: 10.12401/j.nwg.2022034
Citation: WANG Pengwei, AN Yuke. 2023. Research on Rapid Diagnosis Method of Landslide’s Uniform Deformation Stage. Northwestern Geology, 56(5): 197-203. doi: 10.12401/j.nwg.2022034

滑坡匀速变形阶段快速诊断方法研究

  • 基金项目: 甘肃省科技重大专项项目“甘肃省湿陷性黄土地区公路修筑成套技术研究”(1302GKDA009),甘肃省交通运输厅科研项目“基于钢管抗滑桩的应急抢险支挡结构体系研究”(2021-25)联合资助。
详细信息
    作者简介: 王朋伟(1985−),男,硕士,高级工程师,从事公路地质灾害识别与监测预警研究。E–mail:dzwang1604@163.com
    通讯作者: 安玉科(1983−),男,博士,正高级工程师,从事公路地质灾害防治与应急处置研究。E–mail:295419830@qq.com
  • 中图分类号: P642.22

Research on Rapid Diagnosis Method of Landslide’s Uniform Deformation Stage

More Information
  • 改进切线角预警模型是一种有效的滑坡预警方法,但改进切线角模型的机制是以准确识别匀速变形阶段及其速率为基础的,滑坡的匀速变形速率是随着孕灾环境变化和滑坡演化阶段而波动的,相同模型在不同匀速变形速率下得出的切线角存在较大差异,对滑坡预警不利。因此,笔者提出采用曲线凸凹特性与滤波技术的自适应获取滑坡匀速变形阶段和平均速率,并建立速率可靠性评价规则,从而实现对改进切线角预警模型进行实时修正,确保滑坡预警的准确性。该研究为滑坡监测预警智能化、自动化实时处理监测预警数据提供技术支持。

  • 加载中
  • 图 1  库水型滑坡时间位移曲线图 (王朋伟,2012

    Figure 1. 

    图 2  滑坡时间位移曲线图

    Figure 2. 

    图 3  滑坡三阶段演化曲线图

    Figure 3. 

    图 4  凹凸特性基本原理图

    Figure 4. 

    图 5  凹凸特性测量指标图

    Figure 5. 

    图 6  匀速变形阶段拟合曲线图

    Figure 6. 

    图 7  匀速变形阶段速率分布直方图

    Figure 7. 

    图 8  速率比图

    Figure 8. 

    图 9  时间位移曲线与切线角关系图

    Figure 9. 

  • [1]

    何朝阳. 滑坡实时监测预警系统关键技术及其应用研究[D]. 成都: 成都理工大学, 2020

    HE Chaoyang. Research on Key Technology and Application of Real-time Monitoring and Early Warning System of Landslide[D]. Chengdu: Chengdu University of Technology, 2020.

    [2]

    黄煜, 谢婉丽, 刘琦琦, 等. 基于GIS与MaxEnt模型的滑坡易发性评价——以铜川市中部城区为例[J]. 西北地质, 2023, 56(1): 266−275.

    HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide Susceptibility Assessment Based on GIS and MaxEnt Model: Example from Central Districts in Tongchuan City[J]. Northwestern Geology, 2023,56(1): 266−275.

    [3]

    李泉, 贾如磊, 李金明, 等. 基于最小二乘法位移传感器数据的曲线拟合[J]. 兰州石化职业技术学院学报, 2012, 12(1): 24-26

    LI Quan, JIA Rulei, LI Jinming, et al. Fitting Displacement Sensor Curve Based on Least Squares Method[J]. Lanzhou Petrochemical College of Vocational Technology Journal, 2012, 12(1): 24-26.

    [4]

    龙悦, 徐光黎, 高幼龙, 等. 数据预处理在滑坡位移相关分析中的应用[J]. 地质科技情报, 2012, 31(2): 122-127

    LONG Yue, XU Guangli, GAO Youlong, et al. Application of the Data Preprocessing Methods to the Correlation Analysis of Landslide Displacement[J]. Geological Science and Technology Information, 2012, 31(2): 122-127.

    [5]

    罗文强, 李飞翱, 刘小珊, 等. 多元时间序列分析的滑坡演化阶段划分[J]. 地球科学, 2016, 41(4): 711-717

    LUO Wenqiang, LI Feiao, LIU Xiaoshan, et al. Evolution Stage Division of Landslide Based on Analysis of Multivariate Time Serie[J]. Earth Science, 2016, 41(4): 711-717.

    [6]

    马海涛, 张亦海, 于正兴. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究[J]. 岩石力学与工程学报. 2021, 40(2): 355-364

    MA Haitao, ZHANG Yihai, YU Zhengxing. Research on the identification of acceleration starting point in inverse velocity method and the prediction of sliding time[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 355-364.

    [7]

    马娟, 赵文炜, 齐干, 等. 基于普适型监测的多参数预警研究-以三峡库区卡门子湾滑坡为例[J]. 西北地质, 2021, 54(3): 259-269

    MA Juan, ZHAO Wenyi, QI Gan, et al. Study on the Multi-parameter Early Warning Based on Universal Equipment: A Case of Kamenziwan Landslide in the Three Gorges Reservoir[J]. Northwestern Geology, 2021, 54(3): 259-269.

    [8]

    孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1: 5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1: 50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology, 2022, 55(2): 249-259.

    [9]

    亓星, 朱星, 许强等. 基于斋藤模型的滑坡临滑时间预报方法改进及应用[J]. 工程地质学报, 2020, 28(4): 832-839

    QI Xing, ZHU Xing, XU Qiang, et al. Improvement And Application Of Landslide Proximity Time Prediction Method Based On Saito Model [J]. Journal of Engineering Geology, 2020, 28(4): 832-839.

    [10]

    王朋伟. 库水作用下滑坡变形演化规律研究[D]. 武汉: 中国地质大学, 2012

    WANG Pengwei. Study on Deformation Regularity of Landslide Under The Influence of Reservoir Water[D]. Wuhan: China University of Geosciences, 2012.

    [11]

    许强, 曾裕平, 钱江澎, 等. 一种改进的切线角及对应的滑坡预警判[J]. 地质通报, 2009, 28(4): 501-505.

    XU Qiang, ZENG Yuping, QIAN Jiangpeng, et al.Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J].Geological bulletin of china, 2009, 28(4): 501-505.

    [12]

    许强, 彭大雷, 何朝阳, 等.突发型黄土滑坡监测预警理论方法研究: 以甘肃黑方台为例[J].工程地质学报, 2020, 28(1): 111-121.

    XU Qiang, PENG Dalei, HE Chaoyang, et al.Theory And Method Of Monitoring And Early Warning For Sudden Loess Landslide—a Case Study At Heifangtai Terrace[J].Journal of Engineering Geology, 2020, 28(1): 111-121.

    [13]

    许强, 汤明高, 黄润秋, 等.大型滑坡监测预警与应急处置[M].北京: 科学出版社, 2020b.

    XU Qiang, TANG Minggao, HUANG Runqiu, et al. Large-scale Landslide Monitoring and Early Warning and Emergency Response [M]. Beijing: Science Press, 2020b.

    [14]

    许强,汤明高,徐开祥, 等.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 2008, 27(6):1104-1112.

    XU Qiang, TANG Minggao, XU Kaixiang, et al.Research On Space-time Evolution Laws And Early Warning-prediction Of Landslides[J].Chinese Journal Of Rock Mechanics And Engineering, 2008, 27(6): 1104-1112.

    [15]

    薛强, 张茂省. 延安淹土安滑坡监测预警及变形特征[J]. 西北地质, 2018, 51(2): 220-226

    XUE Qiang, ZHANG Maosheng. Monitoring Early Warning and Deformation Characteristics of Yantu'an Landslide in Yan'an[J]. Northwestern Geology, 2018, 51(2): 220-226.

    [16]

    易庆林, 胡大儒, 代天凡, 等. 基于小波分析的滑坡变形规律研究[J]. 南水北调与水利科技. 2013, 11(5): 91-94, 102

    YI Qinglin, HU Daru, DAI Tianfan, et al. Deformation Law for a Landslide in the Three Gorges Reservoir Area Based on Wavelet Analysis[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(5): 91-94, 102.

    [17]

    张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(2): 260−270.

    ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network[J]. Northwestern Geology, 2022, 55(2): 260−270.

    [18]

    张林梵.基于时序InSAR的黄土滑坡隐患早期识别——以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257.

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan[J]. Northwestern Geology, 2023, 56(3): 250−257.

    [19]

    Xuanmei Fan, Qiang Xu, Andres Alonso-Rodriguez, et al. Successive landsliding and damming of the Jinsha Riverin eastern Tibet, China: prime investigation, early warning, and emergencyresponse [J]. Landslides, 2019, 16( 5): 1003-1020. doi: 10.1007/s10346-019-01159-x

    [20]

    Chaoyang He, Nengpan Ju, Qiang Xu, et al. Automated Data Processing and Integration of Large Multiple Data Sources in Geohazards Monitoring[J]. International Journal of Georesources and Environment, 2017, 3(1): 9-21. DOI: 10.15273/ijge.2017.01.003

  • 加载中

(9)

计量
  • 文章访问数:  816
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2022-03-25
修回日期:  2022-08-22
录用日期:  2022-10-24
刊出日期:  2023-10-20

目录