Chronology, Geochemistry and Geological Significance of Volcanic Rocks of Dianzhong Formation in Konglong Township Area, Xizang
-
摘要:
笔者对冈底斯中段孔隆乡地区典中组火山岩进行了年代学与地球化学研究。西藏孔隆乡地区典中组火山岩为一套酸性、弱铝质的高钾钙碱性岩石,富集大离子亲石元素Rb、K、U等,亏损高场强元素Nb、P和Ti,具有明显的壳源岩浆的特征,可能是地壳不同程度重熔作用的产物。根据该火山岩地球化学特征,推测其形成于火山弧构造环境,并且有向同碰撞及板内环境过渡的趋势。笔者获得流纹质凝灰岩样品的LA−ICP−MS锆石U−Pb年龄为(62.70±0.83)Ma,指示其形成时代为古近纪古新世。通过对比分析,该套火山岩喷发在冈底斯中西部要早于东部,印证了印度−亚洲大陆碰撞的穿时性这一观点。
Abstract:In this paper, the chronology and geochemistry of the volcanic rocks of the Dianzhong Formation in the Konglong Township area of the central Gangdise are studied. The volcanic rocks of the Dianzhong Formation in Konglong Township Xizang are is a set of acidic, peraluminous, high-potassium, calcium-alkaline rocks, which are rich in large ion lithophile elements(e.g., Rb, K, U), and are depleted of high field strength elements (e.g., Nb, P, Ti), showing obvious characteristics of crust-derived magma, which may be the product of different degrees of remelting of the earth's crust.According to the geochemical characteristics of this volcanic rock, it is speculated that it was formed in a volcanic arc structural environment and has a tendency to transition to syn-collision and intraplate environment. The study samples are all rhyolite tuffs, and one sample obtained LA-ICP-MS zircon U-Pb age of 62.70±0.83 Ma, indicating that its formation age is the Paleogene Paleocene. Through comparative analysis, this set of volcanic rocks erupted earlier in the central and western Gangdise than in the east, confirming the view that the India-Asian collision is time-lapse.
-
Key words:
- volcanic rocks /
- Konglong Township /
- Dianzhong Formation /
- zircon U−Pb age /
- geochemistry
-
-
图 1 西藏孔隆乡地区地质简图(据朱弟成等,2006)
Figure 1.
表 1 典中组凝灰岩(P13DH6)LA–ICP–MS 锆石U–Pb定年结果统计表
Table 1. LA–ICP–MS zircon U–Pb dating Results of Dianzhong Formation tuff (P13DH6)
点号 含量 (10−6) Th/U 同位素比值 年龄 (Ma) Pb Th U 207Pb/206Pb (±1 σ) 207Pb/235U (±1 σ) 206Pb/238U (±1 σ) 207Pb/206Pb (±1 σ) 207Pb/235U (±1 σ) 206Pb/238U (±1 σ) P13DH6-01 4.6 287.2 372.7 0.77 0.0467 0.0022 0.0610 0.0028 0.0095 0.0002 31.6 111.1 60.1 2.7 61.2 1.0 P13DH6-02 5.4 307.2 429.7 0.71 0.0506 0.0022 0.0694 0.0028 0.0100 0.0001 220.4 98.1 68.1 2.7 64.2 0.9 P13DH6-03 1.9 129.9 145.8 0.89 0.0484 0.0027 0.0668 0.0042 0.0100 0.0002 116.8 125.9 65.7 4.0 63.9 1.5 P13DH6-04 4.9 241.6 426.8 0.57 0.0509 0.0018 0.0656 0.0023 0.0094 0.0002 239.0 81.5 64.5 2.2 60.3 1.1 P13DH6-06 2.7 189.8 204.0 0.93 0.0513 0.0027 0.0701 0.0035 0.0100 0.0002 257.5 120.4 68.8 3.3 64.2 1.2 P13DH6-07 7.5 240.2 630.3 0.38 0.0470 0.0015 0.0691 0.0024 0.0107 0.0002 50.1 77.8 67.9 2.3 68.6 1.3 P13DH6-08 1.3 86.4 103.9 0.83 0.0497 0.0040 0.0672 0.0052 0.0099 0.0002 189.0 177.8 66.0 5.0 63.5 1.4 P13DH6-09 3.6 211.8 291.0 0.73 0.0481 0.0023 0.0647 0.0033 0.0098 0.0002 105.6 107.4 63.7 3.1 63.2 1.5 P13DH6-10 5.0 240.5 424.6 0.57 0.0472 0.0020 0.0631 0.0028 0.0097 0.0002 57.5 96.3 62.2 2.6 62.3 1.1 P13DH6-11 2.9 187.4 212.2 0.88 0.0517 0.0031 0.0711 0.0039 0.0101 0.0002 272.3 169.4 69.7 3.7 64.6 1.3 P13DH6-12 2.4 113.9 195.9 0.58 0.0528 0.0040 0.0738 0.0060 0.0102 0.0002 320.4 143.5 72.3 5.6 65.3 1.4 P13DH6-13 2.8 202.4 223.9 0.90 0.0525 0.0022 0.0693 0.0028 0.0097 0.0002 305.6 130.5 68.0 2.6 62.0 1.1 P13DH6-14 4.7 261.7 401.5 0.65 0.0504 0.0020 0.0649 0.0028 0.0094 0.0002 213.0 92.6 63.9 2.7 60.2 1.1 P13DH6-15 2.9 161.5 238.8 0.68 0.0515 0.0024 0.0678 0.0028 0.0097 0.0002 264.9 107.4 66.6 2.7 62.0 1.4 P13DH6-16 2.2 120.8 165.4 0.73 0.0522 0.0025 0.0707 0.0034 0.0099 0.0002 300.1 145.4 69.3 3.3 63.3 1.1 P13DH6-17 4.9 238.6 417.2 0.57 0.0510 0.0021 0.0670 0.0030 0.0095 0.0002 239.0 100.9 65.8 2.8 61.2 1.3 P13DH6-18 2.2 164.8 153.5 1.07 0.0525 0.0042 0.0715 0.0057 0.0099 0.0002 305.6 185.2 70.1 5.4 63.7 1.3 注:测试单位为南京宏创地质勘查技术服务有限公司;测试时间为2017年。 表 2 孔隆地区典中组火山岩的主量元素(%)、微量和稀土元素(10−6)分析结果表
Table 2. Whole–rock geochemical data of Dianzhong Formation volcanic rocks in Konglong area
编号 P13DH1 P13DH2 P13DH3 P13DH4 P13DH5 P13DH6 岩性 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 SiO2 76.26 75.34 75.22 75.78 74.81 78.14 TiO2 0.25 0.35 0.34 0.26 0.15 0.11 Al2O3 11.83 12.28 12.28 11.94 12.53 11.92 Fe2O3 2.10 2.29 2.35 2.09 2.65 1.52 MnO 0.04 0.03 0.02 0.05 0.07 0.03 MgO 0.14 0.16 0.15 0.20 0.12 0.17 CaO 0.32 0.40 0.39 0.35 0.32 0.16 Na2O 4.23 4.35 4.40 4.42 4.45 2.81 K2O 3.86 3.71 3.77 3.68 3.87 4.52 P2O5 0.05 0.04 0.04 0.06 0.05 0.03 LOI 0.47 0.57 0.55 0.50 0.52 1.01 Total 100.09 100.19 100.13 99.91 100.13 100.42 K+Na 8.09 8.05 8.16 8.10 8.32 7.33 K/Na 0.91 0.85 0.86 0.83 0.87 1.61 Ti 1491 2086 2027 1550 894 677 K 32057 30787 31289 30561 32124 37513 P 221 177 177 273 199 122 A/CNK 1.01 1.03 1.02 1.00 1.04 1.61 A/NK 1.06 1.10 1.09 1.06 1.09 1.21 AR 4.99 4.48 4.62 4.87 4.67 2.74 SI 1.33 1.48 1.38 1.89 1.06 1.9 δ43 1.97 2.01 2.07 2.00 2.17 1.53 La 41.00 35.20 36.50 38.00 35.60 28.93 Ce 88.40 76.60 76.30 84.80 74.90 54.68 Pr 9.37 8.64 8.63 8.50 8.51 6.64 续表2 编号 P13DH1 P13DH2 P13DH3 P13DH4 P13DH5 P13DH6 岩性 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 凝灰岩 Nd 33.40 33.80 30.30 30.60 34.90 24.04 Sm 5.60 5.88 5.61 5.57 5.91 5.29 Eu 0.92 1.01 0.90 0.97 0.94 0.52 Gd 4.68 5.32 5.24 4.90 5.26 4.90 Tb 0.57 0.71 0.75 0.66 0.70 0.84 Dy 2.75 3.90 3.95 3.37 4.03 5.01 Ho 0.46 0.75 0.78 0.61 0.79 1.06 Er 1.30 2.34 2.48 1.78 2.42 3.13 Tm 0.22 0.40 0.43 0.29 0.42 0.48 Yb 1.36 2.29 2.24 1.64 2.46 3.08 Lu 0.25 0.44 0.44 0.30 0.43 0.46 ΣREE 190 177 174 181 177 139 LREE 178 161 158 168 160 120 HREE 11.59 16.15 16.31 13.55 16.51 18.96 LREE/HREE 15.42 9.98 9.70 12.44 9.74 6.34 δEu 0.53 0.54 0.50 0.56 0.51 0.31 δCe 1.06 1.05 1.02 1.11 1.02 0.93 (La/Yb)N 21.62 11.03 11.69 16.62 10.38 6.74 Sc 5.15 5.87 5.27 5.28 6.34 3.79 V 8.42 7.33 5.38 6.66 5.71 9.94 Cr <5 <5 8.50 <5 5.90 16.21 Co 10.90 11.80 8.80 14.00 9.28 0.83 Ni 4.99 4.48 4.62 4.87 4.67 1.18 Rb 80.10 87.10 88.90 78.10 81.60 166.37 Sr 94.40 118.00 118.00 97.40 119.00 50.91 Y 13.00 21.20 22.20 18.40 21.10 29.96 Zr 198 208 197 203 200 106 Nb 6.65 8.80 9.15 7.02 8.70 9.54 Ba 871 852 888 842 922 396 Hf 1.77 2.38 2.44 1.98 2.36 3.58 Ta 0.69 0.84 0.86 0.64 0.87 0.92 Pb 11.80 12.90 11.60 22.20 13.80 23.47 Th 14.70 14.50 15.20 13.50 14.70 18.90 U 1.48 2.01 2.16 1.54 2.07 3.12 Li 16.30 20.50 21.00 15.20 20.60 20.80 Cu 2.48 2.62 3.11 2.05 3.87 1.13 Zn 31.30 21.60 19.80 104.00 20.10 39.86 W 110 120 90 134 93.8 1.44 Sb 0.34 0.42 0.44 0.17 0.38 1.03 注:测试单位为核工业二三〇研究所;测试时间为2017年。 -
[1] 鲍春辉. 西藏措勤地区林子宗群典中组火山岩地球化学特征及成因研究[D]. 成都: 成都理工大学, 2014
BAO Chunhui. Geochemical characteristics and genesis of volcanic rocks in the Dianzhong Formation of the Linzizong Group in Cuoqin, Tibet[D]. Chengdu: Chengdu University of Technology, 2014.
[2] 陈贝贝, 丁林, 许强, 等. 西藏林周盆地林子宗群火山岩的精细年代框架[J]. 第四纪研究, 2016, 36(5): 1037-1054
CHEN Beibei, DING Lin, XU Qiang, et al. Fine Chronological Framework of Volcanic Rocks in Linzizong Group, Linzhou Basin, Tibet[J]. Quaternary Research, 2016, 36(5): 1037-1054.
[3] 陈宁, 曾忠诚, 赵端昌, 等. 阿尔金造山带南缘晚奥陶世碱性辉长岩成因及其大地构造意义[J]. 西北地质, 2023, 56(4): 91−102.
CHEN Ning, ZENG Zhongcheng, ZHAO Duanchang, et al. Petrogenesis and Tectonic Implications of Late Ordovician Alkaline Gabbro in the South Altyn Orogenic Belt[J]. Northwestern Geology, 2023, 56(4): 91−102.
[4] 曹延, 康志强, 许继峰, 等. 拉萨地块西部狮泉河地区典中组火山岩年代学、地球化学特征及其构造意义[J]. 地球科学, 2020, 45(5): 1573-1592
CAO Yan, KANG Zhiqiang, XU Jifeng, et al. Chronological, geochemical characteristics and tectonic significance of volcanic rocks of the Dianzhong Formation in Shiquanhe area, western Lhasa block[J]. Earth Science, 2020, 45(5): 1573-1592.
[5] 董国臣, 莫宣学, 赵志丹, 等. 拉萨北部林周盆地林子宗火山岩层序新议[J]. 地质通报, 2005, 24(6): 549-557
DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou Basin, northern Lhasa, China[J]. Geological Bulletin of China, 2005, 24(6): 549-557.
[6] 付文春, 康志强, 潘会彬. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征_锆石U-Pb年龄及地质意义[J]. 地质通报, 2014, 33(6): 850-859
FU Wenchun, KANG Zhiqiang, PAN Huibin. Geochemical, zircon U-Pb age and implications of the Linzizong Group volcanic rocks in the Shiquan River area, western Gangdise belt, Tibet [J]. Geological Bulletin of China, 2014, 33(6): 850-859.
[7] 黄映聪, 杨德明, 郑常青, 等. 西藏林周县扎雪地区林子宗群帕那组火山岩的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2005, 35(5): 576-580
HUANG Yingcong, YANG Deming, ZHENG Changqing, et al. Geochemical characteristics and geological significance of volcanic rocks in the Pana Formation of Linzizong Group, Zhaxue District, Linzhou County, Tibet[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(5): 576-580.
[8] 侯增谦, 赵志丹, 高永丰, 等. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 2006, 22 (04): 761-774
HOU Zengqian, ZHAO Zhidan, GAO Yongfeng, et al. Tearing and segmented subduction of the Indian continental slab front: evidence from the Gangdese Cenozoic volcano-magmatism[J]. Acta Petrologica Sinica, 2006, 22 (04): 761-774.
[9] 胡新伟, 马润则, 陶晓风, 等. 西藏措勤地区典中组火山岩地球化学特征及构造背景[J]. 成都理工大学学报(自然科学版), 2007 (01): 15-22
HU Xinwei, MA Runze, TAO Xiaofeng, et al. Geochemical characteristics and tectonic setting of the volcanic rocks of the Dianzhong Formation in the Cuoqin area, Tibet[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2007 (01): 15-22.
[10] 李俊, 刘函, 黄金元, 等. 西藏昂仁县孔隆地区下拉组时代修订及其对冈底斯中晚二叠世沉积演化的制约[J]. 地质通报, 2023, 42(2−3): 252−259.
LI Jun, LIU Han, HUANG Jinyuan, et al. Age revision of the Xiala Formation in Konglong area, Nangren County, Tibet, and its constraints on the sedimentary evolution of the Gangdese belt in the Middle and Late Permian[J]. Geological Bulletin of China, 2023, 42(2−3): 252−259.
[11] 李璞. 西藏东部地质的初步认识[J]. 科学通报, 1955, (7): 62-71
LI Pu. A preliminary understanding of the geology of eastern Tibet[J]. Chinese Science Bulletin, 1955, (7): 62-71.
[12] 李皓扬, 钟孙霖, 王彦斌, 等. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 493-500
LI Haoyang, ZHONG Sunlin, WANG Yanbin, et al. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou Basin, southern Tibet: Evidence from zircon U-Pb dates and Hf Isotopes[J]. Acta Petrologica Sinica, 2007, 23 (2): 493-500
[13] 李洪梁, 李光明, 丁俊, 等. 冈底斯西段达若地区林子宗群典中组火山岩锆石U-Pb定年与Hf同位素[J]. 矿物学报, 2019(3): 334-344
LI Hongliang, LI Guangming, DING Jun, et al. U-Pb dating and Hf isotopes of volcanic rocks from the Dianzhong Formation of Linzizong Group in the Daluo area, western Gangdise[J]. Acta Mineralogy, 2019(3): 334-344.
[14] 梁银平, 朱杰, 次邛, 等. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J]. 地球科学(中国地质大学学报), 2010(02): 211-223
LIANG Yinping, ZHU Jie, CI Qiong, et al. Zircon U-Pb Ages and Geochemistry of Volcanic Rocks from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau[J]. Earth Science (Journal of China University of Geosciences), 2010(02): 211-223.
[15] 刘安琳, 朱弟成, 王青, 等. 藏南米拉山地区林子宗火山岩LA-ICP-MS锆石U-Pb年龄和起源[J]. 地质通报, 2015, 34(5): 826-833
LIU Anlin, ZHU Dicheng, WANG Qing, et al. LA-ICP-MS zircon U-Pb age and origin of the Linzizong volcanic rock in the Mila Mountain area, southern Tibet[J]. Geological Bulletin of China, 2015, 34(5): 826-833.
[16] 柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60.
LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.
[17] 李强, 冉孟兰, 康志强, 等. 拉萨地块西部亚热区则弄群火山岩锆石U-Pb年龄及其地质意义[J]. 桂林理工大学学报, 2017, 37(4): 561-569
LI Qiang, RAN Menglan, KANG Zhiqiang, et al. Zircon U-Pb ages of the volcanic rocks of the Zenong Group in the sub-hot area of the western Lhasa block and their geological significance[J]. Journal of Guilin University of Technology, 2017, 37(4): 561-569.
[18] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
[19] 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 7
LIU Yin, LIU Haicheng, LI Xianhua. Accurate determination of more than 40 trace elements in rock samples by ICP-MS[J]. Geochemistry, 1996, 25(6): 7.
[20] 李勇, 张士贞, 李奋其, 等. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义[J]. 地球科学, 2018 (08): 2755-2766
LI Yong, ZHANG Shizhen, LI Fenqi, et al. Zircon U-Pb ages and geological significance of the volcanic rocks of the Dianzhong Formation in the Chazi area of the central Lhasa block[J]. Earth Science, 2018 (08): 2755-2766.
[21] 莫宣学, 赵志丹, 邓晋福, 等. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, (3): 135-148
MO Xuanxue, ZHAO Zhidan, Deng Jinfu, et al. response of volcanism to the india-asia collision[J]. Frontiers of Earth Science, 2003, (3): 135-148.
[22] 莫宣学. 青藏高原岩浆岩成因研究: 成果与展望[J]. 地质通报, 2009, 28(12): 1693-1703
MO Xuanxue. A review of genesis study on magmatic rocks of the Qinghai-Tibet Plateau: Achievements and remaining problems[J]. Geological Bulletin of china, 2009, 28(12): 1693-1703.
[23] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51
MO Xuanxue, PAN Guitang. From Tethys to the formation of the Qinghai-Tibet Plateau: Constraints of tectonic-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 43-51.
[24] 莫宣学, 赵志丹, Depaolo Don-J, 等. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据[J]. 岩石学报, 2006, 22(04): 795-803
MO Xuanxue, ZHAO Zhidan, Depaolo Don-J, et al. Three types of collision-post-collision magmatism in the Lhasa block of the Qinghai-Tibet Plateau and their implications for continental subduction and mineralization: Sr-Nd isotope evidence[J]. Acta Petrologica Sinica, 2006, 22(04): 795-803.
[25] 潘亮, 周斌, 鲁麟, 等. 冈底斯带东段日多地区航木多岩体地球化学、锆石U-Pb年代学、Lu-Hf同位素特征及其地质意义[J]. 西北地质, 2021, 54(4): 59-81
PAN Liang, ZHOU Bin, LU Lin, et al. Geochemistry, Zircon U-Pb Chronology, Lu-Hf Isotopic Compositions and Geological Significance of the Hangmuduo Granite in Riduo Area of Eastern Gangdise Belt[J]. Northwestern Geology, 2021, 54(4): 59-81.
[26] 唐攀, 唐菊兴, 郑文宝, 等. 西藏新嘎果地区典中组火山岩年代学、Hf同位素及地球化学特征[J]. 岩石矿物学杂志, 2018, 37(1): 47-60
TANG Pan, TANG Juxing, ZHENG Wenbao, et al. Chronology, Hf isotope and geochemical characteristics of volcanic rocks of Dianzhong Formation in Xingaguo area, Tibet[J]. Journal of Rock and Mineralogy, 2018, 37(1): 47-60.
[27] 王天武, 李才, 杨德明. 西藏冈底斯地区早第三纪林子宗群火山岩地球化学特征及成因[J]. 地质论评, 1999, 45(7): 966-971
WANG Tianwu, LI Cai, YANG Deming. Geochemical features and genesis of the Linzizong Group volcanic rocks of the Early Tertiary in the Gangdise, Tibet[J]. Geological Review, 1999, 45(7): 966-971.
[28] 王乔林. 冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究[D]. 北京: 中国地质大学(北京), 2011
WANG Qiaolin. Geochemical characteristics and zircon dating of the volcanic rocks of the Linzizong Group in the western section of Gangdise[D]. Beijing: China University of Geosciences (Beijing), 2011.
[29] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.
WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 586−600.
[30] 谢克家, 曾令森, 刘静, 等. 藏南昂仁县桑桑地区林子宗群火山岩的形成时代和地球化学特征[J]. 地质通报, 2011, 30(9): 1339-1352
XIE Kejia, ZENG Lingsen, LIU Jing, et al. Formation age and geochemical characteristics of volcanic rocks of Linzizong Group in Sangsang area, Angren County, southern Tibet[J]. Geological Bulletin of China, 2011, 30(9): 1339-1352.
[31] 谢冰晶, 周肃, 谢国刚, 等. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比[J]. 岩石学报, 2013 (11): 3803-3814.
XIE Bingjing, ZHOU Su, XIE Guogang, et al. Regional comparison of zircon SHRIMP ages and geochemical characteristics of volcanic rocks from the Linzizong Group in the Konglong to Dingrenle area of the central Gangdise, Tibet[J]. Acta Petrologica Sinica, 2013(11): 3803- 3814.
[32] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.
XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.
[33] 于枫, 李志国, 赵志丹, 等. 西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义[J]. 岩石学报, 2010, 26(7): 2217-2225
YU Feng, Li Zhiguo, ZHAO Zhidan, et al. Geochemistry and implication of the Linzizong volcanic succession in Cuomai area, central and western Gangdise Tibet[J]. Acta Petrologica Sinica, 2010, 26(7): 2217-2225.
[34] 岳相元. 西藏措勤地区典中组火山岩地球化学特征及其地质意义[D]. 成都: 成都理工大学, 2012
YUE Xiangyuan. Geochemical characteristics and geological significance of volcanic rocks of Dianzhong Formation in Cuoqin area, Tibet[D]. Chengdu: Chengdu University of Technology, 2012.
[35] 周肃, 莫宣学, 董国臣, 等. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J]. 科学通报, 2004, 49(20): 2095-2103 doi: 10.1360/csb2004-49-20-2095
ZHOU Su, MO Xuanxue, DONG Guochen, et al. The 40Ar/39Ar age framework of the Linzizong volcanic rocks in the Linzhou Basin, Tibet[J]. Chinese Science Bulletin, 2004, 49(20): 2095-2103. doi: 10.1360/csb2004-49-20-2095
[36] 朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 2006, 22(03): 534-546
ZHU Dicheng, PAN Guitang, MO Xuanxue, et al. Late Jurassic-Early Cretaceous geodynamic environment in the north-central Gangdise: volcanic rock constraints[J]. Acta Petrologica Sinica, 2006, 22 (03): 534-546.
[37] 钟玉芳, 马昌前, 佘振兵. 锆石地球化学特征及地质应用研究综述[J]. 地质科技情报, 2006, 25(1): 27-34
ZHONG Yufang, MA Changqian, SHE Zhenbing. A review of zircon geochemical characteristics and geological applications[J]. Geological Science and Technology Information, 2006, 25(1): 27-34.
[38] Barth M G, Mcdonough W F, Rudnick R L. Tracking the Budget of Nb and Ta in the Continental Crust[J]. Chemical Geology, 2000, 165(3): 197-213.
[39] Bruno K, Nicholas A, Henriette L, et al. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. [J]. Journal of Petrology, 2004(4): 793-834.
[40] Green D H. Experimental testing of 'equilibrium' partial melting of peidotite under water-saturated, high pressure conditions[J]. The Canadian Mineralogist, 1976, 14(3): 255-268.
[41] He S, Kapp P, Decelles PG, et al. Cretaceous–tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet[J]. Tectonophysics, 2007, 433(1): 15-37.
[42] Huang W, Dupont Nivet, Guillaume, et al. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou Basin, Tibet)[J]. Tectonics, 2015, 34(3): 594-622. doi: 10.1002/2014TC003787
[43] Lee HY, Chung SL, Lo CH, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477(1-2): 20-35. doi: 10.1016/j.tecto.2009.02.031
[44] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-pb Isotope and Trace Element Analyses By La-icp-ms[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
[45] Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1-2): 225-242. doi: 10.1016/j.lithos.2006.10.005
[46] Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1): 49-67.
[47] Mcdonough W F, Sun S S. The Composition of the Earth [J]. Chemical Geology, 1995, 120(3): 223-253.
[48] Zhou S, Mo X X, Dong G C, et al. 40Ar/39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications[J]. Chinese Science Bulletin, 2004, 49(18): 1970-1979. doi: 10.1007/BF03184291
-