地质建造对土壤性质的制约及其生态环境效应

黄勇, 欧阳渊, 刘洪, 张腾蛟, 张景华, 李樋, 吴君毅, 邵璐, 高文龙. 2023. 地质建造对土壤性质的制约及其生态环境效应——以西昌地区红壤为例. 西北地质, 56(4): 196-212. doi: 10.12401/j.nwg.2023059
引用本文: 黄勇, 欧阳渊, 刘洪, 张腾蛟, 张景华, 李樋, 吴君毅, 邵璐, 高文龙. 2023. 地质建造对土壤性质的制约及其生态环境效应——以西昌地区红壤为例. 西北地质, 56(4): 196-212. doi: 10.12401/j.nwg.2023059
HUANG Yong, OUYANG Yuan, LIU Hong, ZHANG Tengjiao, ZHANG Jinghua, LI Tong, WU Junyi, SHAO Lu, GAO Wenlong. 2023. Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area. Northwestern Geology, 56(4): 196-212. doi: 10.12401/j.nwg.2023059
Citation: HUANG Yong, OUYANG Yuan, LIU Hong, ZHANG Tengjiao, ZHANG Jinghua, LI Tong, WU Junyi, SHAO Lu, GAO Wenlong. 2023. Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area. Northwestern Geology, 56(4): 196-212. doi: 10.12401/j.nwg.2023059

地质建造对土壤性质的制约及其生态环境效应

  • 基金项目: 中国地质调查项目(DD20230247、DD20221776、DD20190542),西南地质科技创新中心刘宝珺院士基金,国家自然科学基金(42202105),宁夏生态地质调查示范项目(NXCZ20220201),广东省地质勘查与城市地质专项([2022]-21)联合资助
详细信息
    作者简介: 黄勇(1987−),男,博士,工程师,从事矿床地球化学和生态地球化学研究。E–mail:976385971@qq.com
    通讯作者: 欧阳渊(1982−),男,博士,高级工程师,硕导,从事遥感地质和生态地质研究。E−mail:oyangyuan@mail.cgs.gov.cn
  • 中图分类号: P66;P69

Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area

More Information
  • 厘清地质建造对土壤性质制约的作用及程度有助于建立起地质背景与生态环境之间的联系,为地质工作服务生态文明建设提供理论支撑。笔者以西昌地区6种类型地质建造上发育的红壤为例,系统分析每种类型地质建造内基岩和红壤中植物营养元素和重金属元素的含量,以及红壤的质地、酸碱性等理化性质。结果显示,土壤的营养元素和重金属元素含量与下伏地质建造中相应元素的含量呈现明显的线性正相关关系(S、N、As除外),相关系数R的平方值为0.54~0.97,不同类型地质建造上形成红壤的营养元素丰缺度、重金属污染风险、质地、酸碱性等性质存在明显差异。因此,地质建造可以在多个方面有效制约其形成土壤的性质,且这种制约作用具有普遍性,据此提出了“地质建造–土壤性质–生态环境”为主线的山地丘陵区生态地质调查工作思路。

  • 加载中
  • 图 1  (a)研究区大地构造位置图和(b)研究区位置图

    Figure 1. 

    图 2  (a)西昌地区形成红壤的6类地质建造图和(b)红壤分布图(红壤分布范围据国家地球系统科学数据中心,1995

    Figure 2. 

    图 3  西昌地区6类地质建造上形成红壤的土壤剖面和生态景观图

    Figure 3. 

    图 4  基岩与红壤中各元素含量的相关性

    Figure 4. 

    图 5  地壳元素丰度与不同地质建造中形成红壤元素含量的关系

    Figure 5. 

    图 6  基岩(地质建造)与土壤各种营养元素含量的相关性

    Figure 6. 

    图 7  不同类型地质建造上形成红壤的营养元素丰缺度评价

    Figure 7. 

    图 8  基岩(地质建造)与土壤中各重金属元素含量的相关性

    Figure 8. 

    图 9  不同类型地质建造上形成红壤的重金属污染风险评价

    Figure 9. 

    图 10  不同类型基岩建造上形成红壤物理化学性质差异图

    Figure 10. 

    表 1  不同地质建造中基岩和土壤样品的营养元素和重金属含量表

    Table 1.  Nutrient element and heavy metal content of bedrock and soil samples from each geological formation

    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    新近纪—第四纪陆相碎屑岩建造–基岩
    D0112R11.161.322.410.220.064.990.030.04/92.700.3630.5079.0033.900.1466.6023.906.820.01
    D1210R10.392.003.380.090.086.870.020.0528.0064.900.1749.60138.0048.60<0.05114.0028.706.130.02
    D2112R10.201.133.050.070.077.870.01/47.4077.700.3860.50106.0041.200.0887.9053.109.040.01
    D3111R20.131.583.020.060.025.430.02/38.9079.900.5020.4088.4038.400.0971.2033.607.080.08
    平均值0.471.512.970.110.066.290.020.0538.1078.800.3540.25102.8540.530.1084.9334.837.270.03
    新近纪—第四纪陆相碎屑岩建造–土壤
    D0112B10.841.422.750.100.096.610.020.1058.60104.000.5443.20143.0042.400.1580.1038.3011.800.04
    D1210B10.200.662.200.080.126.410.040.0617.9092.501.7439.5091.2046.00<0.0564.3029.1010.700.02
    D2112B10.230.512.020.060.054.630.02/50.8079.600.5525.3057.8027.300.0776.5026.808.040.03
    D3111B10.121.232.120.090.045.910.02/38.3060.100.7819.2067.2043.800.08103.0024.007.380.11
    平均值0.350.962.270.080.075.890.030.0841.4084.050.9031.8089.8039.880.1080.9829.559.480.05
    三叠纪陆相碎屑岩建造–基岩
    D1204R10.070.822.810.130.046.980.020.1412.6084.401.0759.10109.0076.700.17320.0015.103.670.04
    D1306R10.040.331.390.050.012.830.030.0521.9022.100.6214.8022.3035.30<0.05123.0015.001.900.03
    D1608R10.180.521.020.050.072.880.030.0320.2046.000.3311.1050.5017.20<0.0537.6014.908.630.06
    D2101R10.341.422.860.160.085.280.01/25.0098.000.4028.60120.0031.500.1870.2024.303.920.04
    D2102R11.171.742.160.160.036.030.01/24.8086.700.4518.60105.0026.500.1952.9029.103.730.04
    D2202R13.052.774.420.150.086.640.01/21.60109.000.2431.60111.0045.700.23107.0021.9030.600.04
    D2204R10.190.180.690.020.020.820.01/28.8021.500.183.3819.104.720.0612.2011.003.050.02
    D2207R10.441.852.520.160.065.700.01/18.2077.800.1729.40111.0037.200.2276.7022.604.170.03
    D2307R13.861.472.540.210.118.470.01/41.108.700.6748.4096.5029.100.1465.6016.001.460.02
    D2308R124.054.281.590.150.134.950.01/42.70124.000.4070.6053.1035.000.14129.0010.700.830.03
    D2401R10.240.260.870.030.011.000.01/25.4029.100.184.2623.807.79<0.0514.606.782.120.02
    D2402R10.110.932.700.110.065.860.01/16.70114.000.2829.0095.8034.900.1075.5033.804.000.03
    D3112R10.130.691.790.080.032.750.01/28.4057.600.366.3839.0015.500.1128.4019.002.030.03
    D3113R10.080.432.870.070.033.130.01/20.40120.000.5622.0039.9014.100.1277.4021.3017.900.05
    D3211R10.111.474.810.100.066.440.01/16.20128.000.1628.0079.6032.000.0896.0044.3021.800.07
    D3219R10.360.742.040.070.012.990.01/25.4083.300.1716.5069.8022.70<0.0546.6015.807.040.03
    平均值2.151.242.320.110.054.550.010.0724.3475.640.3926.3671.5929.120.1583.2920.107.300.04
    三叠纪陆相碎屑岩建造–土壤
    D1204B10.211.041.920.180.149.820.080.2139.0086.004.1858.40104.0060.300.13186.0024.6016.600.18
    D1306B10.060.601.770.090.0310.860.040.0821.5048.603.7766.4072.8053.700.05203.0035.2019.400.17
    D1608B10.170.571.640.070.055.170.060.1226.0060.204.6524.0072.2033.700.13132.0025.0010.200.02
    D2101B10.110.742.180.110.056.100.02/30.8079.800.7021.80116.0033.400.1877.3031.809.480.07
    D2102B10.411.333.590.070.097.510.02/22.9070.201.1433.10143.0053.700.12122.0034.6011.600.06
    D2202B13.212.613.760.160.106.730.02/25.6082.100.4630.60108.0047.200.35112.0029.607.930.03
    D2204B10.170.401.280.060.023.490.01/36.6041.600.5714.0038.3026.60<0.0552.8018.909.890.03
    下载: 导出CSV
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D2207B10.161.783.130.130.067.650.01/32.6074.700.4632.70111.0054.500.17116.0027.507.510.06
    D2307B13.172.192.300.250.1812.300.02/52.006.560.6081.80119.0056.800.22169.0015.901.720.02
    D2308B13.314.572.280.190.219.870.02/31.4096.000.9196.60102.0068.800.30174.0017.202.020.02
    D2401B10.220.602.100.090.143.830.02/26.8055.400.4113.0059.0019.600.1059.2023.003.160.03
    D2402B10.220.771.740.100.084.290.02/23.2075.500.5518.6069.0029.700.0773.3021.107.440.02
    D3112B10.150.811.320.080.025.830.03/39.3047.801.1819.0093.9034.900.0589.9026.3012.700.25
    D3113B10.180.622.430.140.086.540.02/36.1080.900.9531.8075.6034.700.09100.0036.509.900.10
    D3211B10.150.791.880.120.056.140.03/35.3066.001.2123.4073.0026.700.0793.1033.1014.900.16
    D3219B10.120.591.420.090.044.420.03/31.8074.500.7224.6065.3023.40<0.0579.0021.709.300.03
    平均值0.751.252.170.120.086.910.030.1431.9365.371.4036.8688.8841.110.14114.9126.389.610.08
    三叠纪中酸性岩建造–基岩
    D1206R10.190.145.190.020.164.710.020.0135.205.630.5910.50295.003.500.269.2521.000.700.00
    D1309R10.280.163.320.030.198.660.030.0129.402.701.548.56275.0013.400.0711.4029.200.230.01
    D1312R10.270.336.090.090.1010.030.020.0128.202.481.0517.20168.0020.20<0.0566.5019.101.710.00
    D1409R10.373.002.280.150.1311.920.030.0529.8030.800.59112.00137.0089.100.12189.008.810.560.00
    D2309R10.820.405.190.070.184.660.01/73.605.640.213.96123.001.400.153.148.960.640.02
    平均值0.390.814.410.070.158.000.020.0239.249.450.8030.44199.6025.520.1555.8617.410.770.01
    三叠纪中酸性岩建造-土壤
    D1206B10.370.593.080.110.045.450.070.1941.9035.301.6712.00109.0017.700.0667.1028.407.290.13
    D1309B10.110.541.470.060.059.170.050.0636.5056.704.3337.20150.0047.00<0.05124.0034.6021.800.10
    D1312B10.130.391.750.070.115.870.030.0462.8079.105.4428.8079.9028.00<0.0576.6022.308.240.02
    D1409B10.381.242.220.240.518.860.050.2228.6037.904.47123.00155.0065.900.35174.0033.506.460.10
    D2309B10.440.394.680.060.184.720.02/63.4016.700.4713.20101.008.290.1019.3014.002.800.02
    平均值0.290.632.640.110.186.810.050.1346.6445.143.2842.84118.9833.380.1792.2026.569.320.07
    二叠纪基性岩建造–基岩
    D1205R10.071.333.660.300.0420.600.030.1522.3088.901.66206.00178.00153.000.32218.0030.2031.800.04
    D1207R10.151.891.360.360.3020.350.030.0239.8011.300.19524.00178.0060.600.1674.308.732.470.01
    D2306R17.977.210.820.250.1711.260.01/20.003.650.5892.10113.0085.800.16279.008.870.600.02
    D2409R16.558.161.060.280.1411.520.01/25.802.690.8867.80103.00205.000.13652.007.080.340.02
    平均值3.684.651.730.300.1615.930.020.0826.9826.640.83222.48143.00126.100.19305.8313.728.800.02
    二叠纪基性岩建造-土壤
    D1205B10.503.491.730.170.1713.370.060.0713.5040.003.33118.00136.00157.000.16428.0018.403.370.03
    D1207B10.080.432.050.140.2011.860.040.0628.7028.504.4424.80177.0032.30<0.0588.1025.0013.700.07
    D2306B13.002.761.390.180.1713.820.02/24.7010.900.82116.00100.0093.800.12310.0012.802.440.06
    D2409B10.361.221.040.190.1712.940.03/35.0021.401.04112.00102.00161.000.05521.0017.203.880.04
    平均值0.991.981.550.170.1813.000.030.0725.4825.202.4192.70128.75111.030.11336.7818.355.850.05
    元古代中酸性岩建造–基岩
    D1105R11.941.131.820.230.145.450.020.0067.904.330.2812.60125.003.720.185.0218.300.230.00
    D1106R12.421.402.800.100.084.950.020.0054.206.130.5317.1094.104.490.068.1315.700.000.00
    下载: 导出CSV
    续表1
    样品号CaOMgOK2OP2O5MnOTFe2O3SNClBMoCuZnNiCdCrPbAsHg
    D1107R11.650.692.790.050.083.290.020.0245.504.420.336.5473.105.450.097.2516.300.830.00
    D1108R13.921.962.260.180.126.500.030.0199.602.460.3050.0084.4012.700.0625.008.000.420.00
    D1110R12.251.602.150.140.105.060.020.0144.803.140.2525.5068.8013.500.0917.6011.700.500.00
    D2105R11.810.703.160.110.042.320.01/25.905.29<0.12.2249.903.60<0.057.9212.600.240.00
    D2209R10.740.531.760.090.042.210.01/55.507.58<0.11.5242.601.750.094.239.410.000.01
    D2210R13.331.172.330.110.073.450.01/46.505.160.2011.5060.4017.20<0.0548.0010.501.800.01
    D2211R12.720.672.680.080.062.260.01/67.505.21<0.13.6755.102.400.066.0916.900.420.01
    D2212R13.561.121.840.120.063.110.03/81.206.600.166.3173.006.16<0.0519.8012.200.600.01
    D2214R10.561.702.700.120.052.750.04/52.4023.50<0.12.5454.504.22<0.0511.702.200.550.00
    D2406R11.070.604.580.040.042.210.01/32.408.311.2390.2073.4010.000.2312.8025.000.590.04
    D2407R16.614.321.050.180.127.690.01/66.504.830.1220.7081.1039.400.1090.607.610.310.00
    D2407R20.430.472.600.040.062.100.01/26.8037.90<0.13.3238.202.080.164.0615.000.280.03
    平均值2.361.292.470.110.073.810.020.0154.768.920.3818.1269.549.050.1119.1612.960.480.01
    元古代中酸性岩建造–土壤
    D1105B12.771.831.880.870.1810.820.030.0881.904.710.5219.80112.0011.900.1210.6013.001.340.02
    D1106B10.551.251.960.060.077.270.020.0348.1011.800.5524.80108.0014.80<0.0520.7018.302.810.04
    D1107B11.150.822.620.100.095.420.040.0938.8028.209.4532.6093.8023.800.16182.0018.803.060.02
    D1108B12.801.042.200.070.106.210.030.06124.004.515.7624.5064.8012.400.1263.2013.100.910.01
    D1110B11.680.622.170.080.075.140.040.0960.3017.009.4323.8049.5012.900.14163.0017.603.390.02
    D2105B12.130.703.170.090.043.420.01/77.807.150.2114.3061.204.73<0.0511.2017.500.490.01
    D2209B10.670.663.410.060.053.570.01/88.508.770.2710.6050.507.86<0.0513.1018.501.330.02
    D2210B11.700.862.540.060.053.190.03/67.005.580.174.4650.805.540.1018.8013.100.880.02
    D2211B11.560.533.280.050.052.240.02/57.204.040.1112.9044.902.26<0.054.7115.700.230.00
    D2212B11.310.782.830.080.053.140.02/58.905.380.197.2254.106.36<0.0519.1013.300.680.02
    D2214B10.231.442.380.060.043.150.01/66.708.220.1039.6049.506.19<0.0519.8020.500.430.01
    D2406B10.533.542.170.090.168.660.02/31.9014.000.40135.00126.00384.000.13437.0021.402.770.04
    D2407B12.303.691.070.090.099.920.02/47.2014.100.4637.6093.7059.800.07150.0011.903.980.02
    D2407B20.590.792.740.060.053.290.02/51.0021.800.347.9053.709.77<0.0518.3017.403.500.02
    平均值1.431.332.460.130.085.390.020.0764.2411.092.0028.2272.3240.170.1280.8216.441.840.02
    元古代火山碎屑岩建造–基岩
    D2222R10.080.235.740.010.032.200.01/27.2019.801.064.16169.001.440.093.5410.404.390.02
    D2601R10.130.413.830.020.032.560.02/48.9015.300.273.8041.103.250.065.0120.803.990.01
    平均值0.110.324.790.010.032.380.01/38.0517.550.673.98105.052.350.074.2815.604.190.01
    元古代火山碎屑岩建造–土壤
    D2222B10.160.453.440.030.053.680.03/35.6038.301.2719.30120.0014.900.1130.4026.7012.000.04
    D2601B10.140.383.330.020.032.670.03/64.1013.600.7314.7068.807.67<0.0512.4025.3023.600.04
    平均值0.150.423.390.030.043.170.03/49.8525.951.0017.0094.4011.290.1121.4026.0017.800.04
    大陆地壳
    元素丰度
    5.393.672.580.170.096.170.070.06472.0011.001.1025.0065.0056.000.10126.0014.801.700.04
     注:CaO、MgO、K2O、P2O5、MnO、TFe2O5、S、N元素含量为%;Cl、B、Mo、Cu、Zn、Ni、Cd、Cr、Pb、As、Hg元素含量为10–6;/表示无数据;大陆地壳元素丰度引自Wedepohl(1995)
    下载: 导出CSV

    表 2  不同类型地质建造上形成红壤的粒级分布和pH值

    Table 2.  Particle size distribution and pH value of red soil formed on different geological formations

    红壤的下伏地质建造类型砂粒含量
    (0.075~1 mm)
    粉粒含量
    (0.075~0.005 mm)
    黏粒含量
    (< 0.005 mm)
    pH
    新近纪-第四纪陆相碎屑岩建造42.65%48.06%9.30%6.26
    三叠纪陆相碎屑岩建造45.57%45.40%9.03%5.91
    三叠纪中酸性岩建造40.55%50.29%9.17%5.53
    二叠纪基性岩建造39.77%47.44%12.80%5.68
    元古代中酸性岩建造53.86%39.84%6.30%5.63
    元古代火山碎屑岩建造46.82%40.05%13.14%4.92
    下载: 导出CSV
  • [1]

    安礼航, 刘敏超, 张建强等. 2020. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 52(02): 234-246

    An L H, Liu M H, Zhang J Q, Huan L, Chen Z L. 2020. Sources of Arsenic in Soil and Affecting Factors of Migration and Release: A Review. Soils, 52(2): 234–246

    [2]

    曾琴琴, 王永华, 刘才泽, 等. 四川省南部县土壤地球化学元素分布特征研究[J]. 沉积与特提斯地质, 2021, 41(4): 656-662.

    ZENG Qinqin, WANG Yonghua, LIU Caize, et al. A study on distribution of elements of soil in Nanbu County, Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4): 656-662.

    [3]

    董玲玲, 何腾兵, 刘元生, 舒英格, 罗海波, 刘方. 2008. 喀斯特山区不同母质(岩)发育的土壤主要理化性质差异性分析[J]. 土壤通报, 39(03): 471-474

    Dong L L, He T B, Liu Y S, Shu Y G, Luo H B, Liu F. 2008. Changes of soil physical-chemical properties derived from different parent materials/rocks in karst mountain. Chinese Journal of Soil Science, 38(03): 471-474

    [4]

    耿增超, 贾宏涛. 土壤学[M]. 北京: 科学出版社, 2020.

    GENG Zengchao, JIA Hongtao. Soil Science[M]. Beijing: Science Press, 2020.

    [5]

    国家地球系统科学数据中心. 四川省500 m土壤类型数据 (CSTR: 17099.11). G67438555732237.20151231. v1.[DB], 1995.

    [6]

    贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 2022, 55(04): 140-157

    Jia Lei, Liu Hong, Ouyang Yuan. Division Scheme of Surface Substrate Mapping Units of Mountainous-Hilly Area in South China Based on Geological Formations Research: Example from Xinhui-Taishan Area in Pearl River Delta [J]. Northwestern Geology, 2022, 55(04): 140-157.

    [7]

    李金发. 2014. 为生态文明服务的地质调查工作. 资源环境与工程, 28(1): 1-4

    Li J F. The geological survey for ecological civilization. Resources Environment & Engineering, 2014, 28(1): 1-4 (in Chinese).

    [8]

    李天杰, 赵烨, 张科利, 等. 土壤地理学[M]. 北京: 高等教育出版社, 2004.

    LI Tianjie, ZHAO Ye, ZHANG Keli, et al. Soil Geography[M]. Beijing: Higher Education Press, 2004.

    [9]

    李樋, 刘小念, 刘洪, 张腾蛟, 李佑国, 欧阳渊, 李随民, 王永华, 黄瀚霄, 张景华, 李嘉, 李富. 2021a. 基于地质建造的土壤营养元素空间分布特征研究—以大凉山区为例. 安全与环境工程, 28(6): 127-137

    Li T, Liu X N, Liu H, Zhang T J, Li Y G, Li S M, Wang X, Ouyang Y, Zhang J H. 2021b. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang. Sedimentary Geology and Tethyan Geology, 28(6): 127-137 (in Chinese with English abstract).

    [10]

    李樋, 刘小念, 刘洪, 等. 西昌普诗地区中-下白垩统小坝组岩石-紫色土剖面稀土元素地球化学特征分析[J/OL]. 沉积与特提斯地质, 2021b. https://doi.org/10.19826/j.cnki.1009-3850.2021.06002

    LI Tong, LIU Xiaonian, LIU Hong, et al. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang[J/OL]. Sedimentary Geology and Tethyan Geology, 2021b.

    [11]

    李文明, 李健强, 徐永, 等. 西北生态地质调查研究进展与展望[J]. 西北地质, 2022, 55(03): 108-119

    Li Wenming, Li Jianqiang, Xu Yong, et al. , Progress and Prospects of Ecological Geological Survey in Northwest China [J]. Northwestern Geology, 2022, 55(03): 108-119.

    [12]

    刘洪, 黄瀚霄, 欧阳渊, 李文昌, 张景华, 张腾蛟. 2021. 新构造活动的生态地质环境效应讨论——以扬子西缘西昌市为例. 中国地质调查, 8(6): 63-77

    Liu H, Huang H X, Ouyang Y, Li W C, Zhang J H, Zhang T J. 2021. Discussion on the eco-geo-environment effects of Neotectonic activities: A case study of Xichang City in western Yangtze block. Geological Survey of China, 8(6): 63-77. (in Chinese with English abstract).

    [13]

    刘洪, 黄瀚霄, 欧阳渊, 张景华, 张腾蛟, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020. 基于地质建造的土壤地质调查及应用前景分析—以大凉山区西昌市为例. 沉积与特提斯地质, 40(1): 91-105

    Liu H, Huang H X, Ouyang Y, Zhang J H, Li F, Xiao Q L, Zeng J, Hou Q, Wen D K, Duan S Y. 2020. Soil's geologic investigation in Daliangshan, Xichang, Sichuan. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105 (in Chinese with English abstract).

    [14]

    刘洪, 李文昌, 欧阳渊, 等. 基于地质建造的西南山区生态地质编图探索与实践——以邛海-泸山地区为例[J/OL]. 地质学报, 2022 https://doi.org/10.19762/j.cnki.dizhixuebao.2022014

    LIU Hong, LI Wenchang, OUYANG Yuan, et al. Exploration and ractice of the compilation of ecological geology series maps based on Geological Formations research, mountainous region in Southwest China: exemplified by Qionghai-Lushan area, western margin of Yangtze Block[J/OL]. Acta Geologica Sinica, 2022 https://doi.org/10.19762/j.cnki.dizhixuebao.2022014

    [15]

    吕贻忠, 李保国. 土壤学[M]. 北京: 中国农业出版社, 2006.

    [16]

    聂洪峰, 肖春蕾, 戴蒙, 刘建宇, 尚博譞, 郭兆成, 贺鹏, 欧阳渊, 雷天赐, 李文明, 周传芳, 姜琦刚. 2021. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 8(01): 1-12. DOI:10.19388/j.zgdzdc.2021.01.01.

    Nie H F, Xiao C L, Dai M, Liu J Y, Shang B X, Guo Z C, He P, Ouyang Y, Lei T C, Li W M, Zhou C F, Jiang Q G. 2021. Progresses and main achievements of ecogeological survey project. Geological Survey of China, 8(1): 1-12 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2021.01.01

    [17]

    聂洪峰, 肖春蕾, 郭兆成. 2019. 探寻生态系统运行与演化的秘密——生态地质调查思路及方法解读[J]. 国土资源科普与文化, (04): 4-13

    Nie H F, Xiao C L, Guo Z C. 2019. Exploring the secret of ecosystem operation and evolution -- an interpretation of the ideas and methods of Eco-geological survey. Popular science and culture of land and resources, 6(4): 4-13 (in Chinese).

    [18]

    欧阳渊, 张景华, 刘洪, 黄瀚霄, 张腾蛟, 黄勇. 2021. 基于地质建造的西南山区成土母质分类方案——以大凉山区为例. 中国地质调查, 8(6): 50-62

    uyang Yuan, Zhang Jinghua, Liu Hong, Huang Hanxiao, Zhang Tengjiao, Huang Yong. 2021. Classification of soil parent materials in mountain areas of Southwest China based on geological formations: A case study of Daliangshan region. Geological Survey of China, 2021, 8(6): 50-62 (in Chinese with English abstract).

    [19]

    施俊法. 2020. 21世纪前20年世界地质工作重大事件、重大成果与未来30年中国地质工作发展的思考[J]. 地质通报, 39(12): 2044-2057

    SHI Junfa. 2020. The major accomplishments and geological events during the past two decades in the world and their implications for geological work in China in the next thirty years[J]. Geological Bulletin of China, 39(12): 2044-2057

    [20]

    田海芬, 刘华民, 王炜, 等. 大青山山地植物区系及生物多样性研究[J].干旱区资源与环境, 2014, 28(08): 172-177.

    TIAN Haifen, LIU Huamin, WANG Wei, et al. The distribution patterns of biodiversity and environmental interpretation inDaqingshan Mountain[J]. Journal of Arid Land Resources and Environment, 2014, 28(08): 172-177.

    [21]

    王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611-1624

    Wang J B, Wei X F, Zhang H Q, Gan F W. 2020. The eco - geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province. Geology in China, 47(6): 1611-1624 (in Chinese with English abstract).

    [22]

    卫晓锋, 樊刘洋, 孙紫坚, 何泽新, 孙厚云, 魏浩. 2020. 河北承德柴白河流域地质建造对植物群落组成的影响[J]. 中国地质, 47(06): 1869-1880

    Wei X F, Fan L Y, Sun Z J, He Z X, Sun H Y, Wei H. 2020. The influence of geological formation on plant community composition in Chaibai river basin, Chengde, Hebei Province. Geology in China, 47(6): 1869~1880 (in Chinese with English abstract).

    [23]

    夏学齐, 季峻峰, 杨忠芳, 卢新哲, 黄春雷, 魏迎春, 徐常艳, 梁卓颖. 2022. 母岩类型对土壤和沉积物镉背景的控制: 以贵州为例[J]. 地学前缘, 29(04): 438-447

    Xia X Q, Ji J F, Yang Z F, Lu X Z, Huang C L, Wei Y C, Xu C Y, Liang Z Y. Controlling of parent rock type on cadmium background in soil and sediment: anexample from Guizhou Province. Geology in China, 29(04): 438-447 (in Chinese with English abstract).

    [24]

    严明书, 黄剑, 何忠庠, 鲍丽然, 罗宇洁. 2018. 地质背景对土壤微量元素的影响——以渝北地区为例. 物探与化探, 42(1): 199-205

    Yan M S, Huang J, He Z X, Bao L R, Luo Y H. 2018. The influence of geological background on trace elements of soil, a case study of Yubei area. Geophysical and Geochemical Exploration, 42(1): 199~205 (in Chinese with English abstract).

    [25]

    杨乐, 王春森, 夏建国. 2020. 成乐高速两侧农田土壤重金属污染及潜在生态危害评价. 四川农业大学学报, 38(02): 168-175+182

    Yang L, Wang C S, Xia J G. 2020. Assessment of Heavy Metal Pollution and the Potential Ecological Hazard of Farmland Soils alongside Chengle Highway. Journal of Sichuan Agricultural University, 38(02): 168-175+182 (in Chinese with English abstract).

    [26]

    袁国礼, 侯红星, 刘建宇, 等. 服务生态文明的生态地质调查工作方法浅析以地表基质调查为例[J]. 西北地质, 2023, 56(3): 30−38.

    YUAN Guoli, HOU Hongxing, LIU Jianyu, et al. Introduction to the Methods of Ecology: Geological Survey for Servicing Ecological Civilization: Example from Ecology−Supporting Sphere Survey[J]. Northwestern Geology, 2023, 56(3): 30−38.

    [27]

    张景华, 欧阳渊, 刘洪, 等. 西昌市生态地质特征与脆弱性评价[M]. 武汉: 中国地质大学出版社, 2020.

    ZHANG Jinghua, OUYANG Yuan, LIU Hong, et al. Ecological geological characteristics and vulnerability assessment of Xichang City[M]. Wuhan: China University of Geosciences Press, 2020.

    [28]

    张景华, 欧阳渊, 刘洪, 黄瀚霄, 张腾蛟, 李富, 李樋. 2021. 基于主控要素的生态地质脆弱性评价——以四川省西昌市为例. 自然资源遥感, 33(4): 181-191

    Zhang J H, Ouyang Y, Liu H, Huang H X, Zhang T J, Li F, Li T. 2021. Eco-geological vulnerability assessment based on major controlling factors: A case study of Xichang City, Sichuan Province. Remote Sensing for Natural Resources, 33(4): 181-191. (in Chinese with English abstract).

    [29]

    张腾蛟, 刘洪, 欧阳渊, 黄瀚霄, 张景华, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例. 沉积与特提斯地质, 40(1): 106-114

    Zhang T J, Liu H, Ouyang Y, Huang H X, Zhang J H, Li F, Xiao Q L, Zeng J, Hou Q, Wen D K, Duan S Y. 2020. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——take Xichang as an example. Sedimentary Geology and Tethyan Geology, 40(1): 106-114 (in Chinese with English abstract).

    [30]

    张腾蛟, 刘洪, 欧阳渊, 张景华, 张振杰, 李樋. 2021. 不同地质建造类型的生态环境功能特征——以西昌地区为例. 中国地质调查, 8(6): 35-49

    Zhang T J, Liu H, Ouyang Y, Zhang J H, Zhang Z J, Li T. 2021. Ecological environment function of different geological formations: A case study of Xichang area. Geological Survey of China, 8(6): 35-49 (in Chinese with English abstract).

    [31]

    张鑫. 2019. 土壤重金属污染的危害及修复技术研究[J]. 中国资源综合利用, 37(11): 89-90+93

    Zhang X. 2019. Research on harm and remediation technology of heavy metal pollution in soil. China Resources Comprehensive Utilization, 37 (11): 89-90+93 (in Chinese with English abstract).

    [32]

    赵凯丽, 王伯仁, 徐明岗, 蔡泽江, 石伟琦, 马海洋. 2019. 我国南方不同母质土壤pH剖面特征及酸化因素分析[J]. 植物营养与肥料学报, 25(08): 1308-1315

    Zhao K L, Wang B R, Xu M G, Cai Z J, Shi W Q, Ma H Y. 2019. Analysis of pH profile characteristics and acidification factors of different parent materials in southern China. Journal of Plant Nutrition and Fertilizer, 25(08): 1308-1315 (in Chinese with English abstract).

    [33]

    赵银兵, 倪忠云, 欧阳渊, 等. 生态地质环境承载力研究进展[J/OL]. 沉积与特提斯地质, 2022.https://doi.org/10.19826/j.cnki.10093850.2022.04021

    ZHAO Yinbing, NI Zhongyun, OUYANG Yuan, et al. Research progress of eco-geological environment carrying capacity[J/OL]. Sedimentary Geology and Tethyan Geology, 2022.https://doi.org/10.19826/j.cnki.10093850.2022.04021.

    [34]

    周爱国, 孙自永, 徐恒力, 等. 地质环境生态适宜性评价指标体系研究[J]. 地质科技情报, 2001, (02): 71−74

    ZHOU Aiguo, SUN Ziyong, XU Hengli, et al. Study on the evaluation index system of geological environmental ecological suitability[J]. Geological Science and Technology Information, 2001, (02): 71−74

    [35]

    中国地质调查局.固体矿产地质调查技术要求(1∶50 000)(DD 2019-02)[Z]. 中国地质调查局, 2019

    [36]

    Dynarski K A, Morford S L, Mitchell S A, et al. Bedrock nitrogen weathering stimulates biological nitrogen fixation. Ecology, 2019,100(8).

    [37]

    Hahm W J, Rempe D M, Dralle D N, et al. Lithologically controlled subsurface crtical zone thickness and water sorage capacity determine regional plant community composition. Water Resources Research, 2018,55, 3028–3055.

    [38]

    Hahm W J, Riebe C S, Lukens C E, et al. Bedrock composition regulates mountain ecosystems andlandscape evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(9): 3338-3343.

    [39]

    Jiang Z, Liu H, Wang H, Peng J,et al. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nature Communications, 2020,11(1): 1-9.

    [40]

    Juilleret J, Dondeyne S, Vancampenhout K, et al. Mind the gap: a classification system for integrating the subsolum into soil surveys. Geoderma,2016, 264: 332–339.

    [41]

    Morford S L , Houlton B Z , Dahlgren R A . Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature,2011, 477(7 362): 78-81.

    [42]

    Vithanage M, Kumarathilaka P, Oze C, et al. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: a critical review. Environment International, 2019,131.

    [43]

    Wedepohl K H. The composition of the continental crust. Geochim et Cosmochim Acta, 1995,59, 1217-1232.

    [44]

    Wilson M J. The importance of parent material in soil classification: a review in a historical context. Catena, 2019,182, 104131.

  • 加载中

(10)

(4)

计量
  • 文章访问数:  1533
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2023-02-14
修回日期:  2023-04-06
录用日期:  2023-04-11
刊出日期:  2023-08-20

目录