Restriction of Geological Formation on Soil Properties and Its Ecological Environmental Effects: Example from Red Soil in the Xichang Area
-
摘要:
厘清地质建造对土壤性质制约的作用及程度有助于建立起地质背景与生态环境之间的联系,为地质工作服务生态文明建设提供理论支撑。笔者以西昌地区6种类型地质建造上发育的红壤为例,系统分析每种类型地质建造内基岩和红壤中植物营养元素和重金属元素的含量,以及红壤的质地、酸碱性等理化性质。结果显示,土壤的营养元素和重金属元素含量与下伏地质建造中相应元素的含量呈现明显的线性正相关关系(S、N、As除外),相关系数R的平方值为0.54~0.97,不同类型地质建造上形成红壤的营养元素丰缺度、重金属污染风险、质地、酸碱性等性质存在明显差异。因此,地质建造可以在多个方面有效制约其形成土壤的性质,且这种制约作用具有普遍性,据此提出了“地质建造–土壤性质–生态环境”为主线的山地丘陵区生态地质调查工作思路。
Abstract:Clarifying the role and extent of geological formation affecting soil properties will help establish the relationship between geological background and ecological environment, and provide theoretical support for geological work to serve the construction of ecological civilization. Taking the red soil formed on six geological formations in the Xichang area as an example, this paper systematically analyzed the contents of plant nutrient elements and heavy metals in bedrock and red soil of each geological formation. Meanwhile, the physical and chemical properties of red soil such as texture and pH value are also analyzed. The results show that the contents of nutrient elements and heavy metals in soil are linearly and positively correlated with the contents of corresponding elements in underlying geological formations (except for S, N, As), and the correlation coefficient R squared is concentrated in 0.54~0.97. There are significant differences in the nutrient element abundance, heavy metal pollution risk, texture, acidity of the red soil formed in different geological formations, indicating that geological formations can effectively restrict the properties of the overlying soil in many aspects. Considering the universality of the restriction of geological formation on soil properties, this paper puts forward that the ecological geological survey in mountainous and hilly areas can be based on the path of "geological formation–soil properties–ecological environment". The specific working method is also discussed in this paper.
-
Key words:
- ecological geology /
- soil properties /
- geological formation /
- red soil /
- Xichang
-
-
图 2 (a)西昌地区形成红壤的6类地质建造图和(b)红壤分布图(红壤分布范围据国家地球系统科学数据中心,1995)
Figure 2.
表 1 不同地质建造中基岩和土壤样品的营养元素和重金属含量表
Table 1. Nutrient element and heavy metal content of bedrock and soil samples from each geological formation
样品号 CaO MgO K2O P2O5 MnO TFe2O3 S N Cl B Mo Cu Zn Ni Cd Cr Pb As Hg 新近纪—第四纪陆相碎屑岩建造–基岩 D0112R1 1.16 1.32 2.41 0.22 0.06 4.99 0.03 0.04 / 92.70 0.36 30.50 79.00 33.90 0.14 66.60 23.90 6.82 0.01 D1210R1 0.39 2.00 3.38 0.09 0.08 6.87 0.02 0.05 28.00 64.90 0.17 49.60 138.00 48.60 <0.05 114.00 28.70 6.13 0.02 D2112R1 0.20 1.13 3.05 0.07 0.07 7.87 0.01 / 47.40 77.70 0.38 60.50 106.00 41.20 0.08 87.90 53.10 9.04 0.01 D3111R2 0.13 1.58 3.02 0.06 0.02 5.43 0.02 / 38.90 79.90 0.50 20.40 88.40 38.40 0.09 71.20 33.60 7.08 0.08 平均值 0.47 1.51 2.97 0.11 0.06 6.29 0.02 0.05 38.10 78.80 0.35 40.25 102.85 40.53 0.10 84.93 34.83 7.27 0.03 新近纪—第四纪陆相碎屑岩建造–土壤 D0112B1 0.84 1.42 2.75 0.10 0.09 6.61 0.02 0.10 58.60 104.00 0.54 43.20 143.00 42.40 0.15 80.10 38.30 11.80 0.04 D1210B1 0.20 0.66 2.20 0.08 0.12 6.41 0.04 0.06 17.90 92.50 1.74 39.50 91.20 46.00 <0.05 64.30 29.10 10.70 0.02 D2112B1 0.23 0.51 2.02 0.06 0.05 4.63 0.02 / 50.80 79.60 0.55 25.30 57.80 27.30 0.07 76.50 26.80 8.04 0.03 D3111B1 0.12 1.23 2.12 0.09 0.04 5.91 0.02 / 38.30 60.10 0.78 19.20 67.20 43.80 0.08 103.00 24.00 7.38 0.11 平均值 0.35 0.96 2.27 0.08 0.07 5.89 0.03 0.08 41.40 84.05 0.90 31.80 89.80 39.88 0.10 80.98 29.55 9.48 0.05 三叠纪陆相碎屑岩建造–基岩 D1204R1 0.07 0.82 2.81 0.13 0.04 6.98 0.02 0.14 12.60 84.40 1.07 59.10 109.00 76.70 0.17 320.00 15.10 3.67 0.04 D1306R1 0.04 0.33 1.39 0.05 0.01 2.83 0.03 0.05 21.90 22.10 0.62 14.80 22.30 35.30 <0.05 123.00 15.00 1.90 0.03 D1608R1 0.18 0.52 1.02 0.05 0.07 2.88 0.03 0.03 20.20 46.00 0.33 11.10 50.50 17.20 <0.05 37.60 14.90 8.63 0.06 D2101R1 0.34 1.42 2.86 0.16 0.08 5.28 0.01 / 25.00 98.00 0.40 28.60 120.00 31.50 0.18 70.20 24.30 3.92 0.04 D2102R1 1.17 1.74 2.16 0.16 0.03 6.03 0.01 / 24.80 86.70 0.45 18.60 105.00 26.50 0.19 52.90 29.10 3.73 0.04 D2202R1 3.05 2.77 4.42 0.15 0.08 6.64 0.01 / 21.60 109.00 0.24 31.60 111.00 45.70 0.23 107.00 21.90 30.60 0.04 D2204R1 0.19 0.18 0.69 0.02 0.02 0.82 0.01 / 28.80 21.50 0.18 3.38 19.10 4.72 0.06 12.20 11.00 3.05 0.02 D2207R1 0.44 1.85 2.52 0.16 0.06 5.70 0.01 / 18.20 77.80 0.17 29.40 111.00 37.20 0.22 76.70 22.60 4.17 0.03 D2307R1 3.86 1.47 2.54 0.21 0.11 8.47 0.01 / 41.10 8.70 0.67 48.40 96.50 29.10 0.14 65.60 16.00 1.46 0.02 D2308R1 24.05 4.28 1.59 0.15 0.13 4.95 0.01 / 42.70 124.00 0.40 70.60 53.10 35.00 0.14 129.00 10.70 0.83 0.03 D2401R1 0.24 0.26 0.87 0.03 0.01 1.00 0.01 / 25.40 29.10 0.18 4.26 23.80 7.79 <0.05 14.60 6.78 2.12 0.02 D2402R1 0.11 0.93 2.70 0.11 0.06 5.86 0.01 / 16.70 114.00 0.28 29.00 95.80 34.90 0.10 75.50 33.80 4.00 0.03 D3112R1 0.13 0.69 1.79 0.08 0.03 2.75 0.01 / 28.40 57.60 0.36 6.38 39.00 15.50 0.11 28.40 19.00 2.03 0.03 D3113R1 0.08 0.43 2.87 0.07 0.03 3.13 0.01 / 20.40 120.00 0.56 22.00 39.90 14.10 0.12 77.40 21.30 17.90 0.05 D3211R1 0.11 1.47 4.81 0.10 0.06 6.44 0.01 / 16.20 128.00 0.16 28.00 79.60 32.00 0.08 96.00 44.30 21.80 0.07 D3219R1 0.36 0.74 2.04 0.07 0.01 2.99 0.01 / 25.40 83.30 0.17 16.50 69.80 22.70 <0.05 46.60 15.80 7.04 0.03 平均值 2.15 1.24 2.32 0.11 0.05 4.55 0.01 0.07 24.34 75.64 0.39 26.36 71.59 29.12 0.15 83.29 20.10 7.30 0.04 三叠纪陆相碎屑岩建造–土壤 D1204B1 0.21 1.04 1.92 0.18 0.14 9.82 0.08 0.21 39.00 86.00 4.18 58.40 104.00 60.30 0.13 186.00 24.60 16.60 0.18 D1306B1 0.06 0.60 1.77 0.09 0.03 10.86 0.04 0.08 21.50 48.60 3.77 66.40 72.80 53.70 0.05 203.00 35.20 19.40 0.17 D1608B1 0.17 0.57 1.64 0.07 0.05 5.17 0.06 0.12 26.00 60.20 4.65 24.00 72.20 33.70 0.13 132.00 25.00 10.20 0.02 D2101B1 0.11 0.74 2.18 0.11 0.05 6.10 0.02 / 30.80 79.80 0.70 21.80 116.00 33.40 0.18 77.30 31.80 9.48 0.07 D2102B1 0.41 1.33 3.59 0.07 0.09 7.51 0.02 / 22.90 70.20 1.14 33.10 143.00 53.70 0.12 122.00 34.60 11.60 0.06 D2202B1 3.21 2.61 3.76 0.16 0.10 6.73 0.02 / 25.60 82.10 0.46 30.60 108.00 47.20 0.35 112.00 29.60 7.93 0.03 D2204B1 0.17 0.40 1.28 0.06 0.02 3.49 0.01 / 36.60 41.60 0.57 14.00 38.30 26.60 <0.05 52.80 18.90 9.89 0.03 续表1 样品号 CaO MgO K2O P2O5 MnO TFe2O3 S N Cl B Mo Cu Zn Ni Cd Cr Pb As Hg D2207B1 0.16 1.78 3.13 0.13 0.06 7.65 0.01 / 32.60 74.70 0.46 32.70 111.00 54.50 0.17 116.00 27.50 7.51 0.06 D2307B1 3.17 2.19 2.30 0.25 0.18 12.30 0.02 / 52.00 6.56 0.60 81.80 119.00 56.80 0.22 169.00 15.90 1.72 0.02 D2308B1 3.31 4.57 2.28 0.19 0.21 9.87 0.02 / 31.40 96.00 0.91 96.60 102.00 68.80 0.30 174.00 17.20 2.02 0.02 D2401B1 0.22 0.60 2.10 0.09 0.14 3.83 0.02 / 26.80 55.40 0.41 13.00 59.00 19.60 0.10 59.20 23.00 3.16 0.03 D2402B1 0.22 0.77 1.74 0.10 0.08 4.29 0.02 / 23.20 75.50 0.55 18.60 69.00 29.70 0.07 73.30 21.10 7.44 0.02 D3112B1 0.15 0.81 1.32 0.08 0.02 5.83 0.03 / 39.30 47.80 1.18 19.00 93.90 34.90 0.05 89.90 26.30 12.70 0.25 D3113B1 0.18 0.62 2.43 0.14 0.08 6.54 0.02 / 36.10 80.90 0.95 31.80 75.60 34.70 0.09 100.00 36.50 9.90 0.10 D3211B1 0.15 0.79 1.88 0.12 0.05 6.14 0.03 / 35.30 66.00 1.21 23.40 73.00 26.70 0.07 93.10 33.10 14.90 0.16 D3219B1 0.12 0.59 1.42 0.09 0.04 4.42 0.03 / 31.80 74.50 0.72 24.60 65.30 23.40 <0.05 79.00 21.70 9.30 0.03 平均值 0.75 1.25 2.17 0.12 0.08 6.91 0.03 0.14 31.93 65.37 1.40 36.86 88.88 41.11 0.14 114.91 26.38 9.61 0.08 三叠纪中酸性岩建造–基岩 D1206R1 0.19 0.14 5.19 0.02 0.16 4.71 0.02 0.01 35.20 5.63 0.59 10.50 295.00 3.50 0.26 9.25 21.00 0.70 0.00 D1309R1 0.28 0.16 3.32 0.03 0.19 8.66 0.03 0.01 29.40 2.70 1.54 8.56 275.00 13.40 0.07 11.40 29.20 0.23 0.01 D1312R1 0.27 0.33 6.09 0.09 0.10 10.03 0.02 0.01 28.20 2.48 1.05 17.20 168.00 20.20 <0.05 66.50 19.10 1.71 0.00 D1409R1 0.37 3.00 2.28 0.15 0.13 11.92 0.03 0.05 29.80 30.80 0.59 112.00 137.00 89.10 0.12 189.00 8.81 0.56 0.00 D2309R1 0.82 0.40 5.19 0.07 0.18 4.66 0.01 / 73.60 5.64 0.21 3.96 123.00 1.40 0.15 3.14 8.96 0.64 0.02 平均值 0.39 0.81 4.41 0.07 0.15 8.00 0.02 0.02 39.24 9.45 0.80 30.44 199.60 25.52 0.15 55.86 17.41 0.77 0.01 三叠纪中酸性岩建造-土壤 D1206B1 0.37 0.59 3.08 0.11 0.04 5.45 0.07 0.19 41.90 35.30 1.67 12.00 109.00 17.70 0.06 67.10 28.40 7.29 0.13 D1309B1 0.11 0.54 1.47 0.06 0.05 9.17 0.05 0.06 36.50 56.70 4.33 37.20 150.00 47.00 <0.05 124.00 34.60 21.80 0.10 D1312B1 0.13 0.39 1.75 0.07 0.11 5.87 0.03 0.04 62.80 79.10 5.44 28.80 79.90 28.00 <0.05 76.60 22.30 8.24 0.02 D1409B1 0.38 1.24 2.22 0.24 0.51 8.86 0.05 0.22 28.60 37.90 4.47 123.00 155.00 65.90 0.35 174.00 33.50 6.46 0.10 D2309B1 0.44 0.39 4.68 0.06 0.18 4.72 0.02 / 63.40 16.70 0.47 13.20 101.00 8.29 0.10 19.30 14.00 2.80 0.02 平均值 0.29 0.63 2.64 0.11 0.18 6.81 0.05 0.13 46.64 45.14 3.28 42.84 118.98 33.38 0.17 92.20 26.56 9.32 0.07 二叠纪基性岩建造–基岩 D1205R1 0.07 1.33 3.66 0.30 0.04 20.60 0.03 0.15 22.30 88.90 1.66 206.00 178.00 153.00 0.32 218.00 30.20 31.80 0.04 D1207R1 0.15 1.89 1.36 0.36 0.30 20.35 0.03 0.02 39.80 11.30 0.19 524.00 178.00 60.60 0.16 74.30 8.73 2.47 0.01 D2306R1 7.97 7.21 0.82 0.25 0.17 11.26 0.01 / 20.00 3.65 0.58 92.10 113.00 85.80 0.16 279.00 8.87 0.60 0.02 D2409R1 6.55 8.16 1.06 0.28 0.14 11.52 0.01 / 25.80 2.69 0.88 67.80 103.00 205.00 0.13 652.00 7.08 0.34 0.02 平均值 3.68 4.65 1.73 0.30 0.16 15.93 0.02 0.08 26.98 26.64 0.83 222.48 143.00 126.10 0.19 305.83 13.72 8.80 0.02 二叠纪基性岩建造-土壤 D1205B1 0.50 3.49 1.73 0.17 0.17 13.37 0.06 0.07 13.50 40.00 3.33 118.00 136.00 157.00 0.16 428.00 18.40 3.37 0.03 D1207B1 0.08 0.43 2.05 0.14 0.20 11.86 0.04 0.06 28.70 28.50 4.44 24.80 177.00 32.30 <0.05 88.10 25.00 13.70 0.07 D2306B1 3.00 2.76 1.39 0.18 0.17 13.82 0.02 / 24.70 10.90 0.82 116.00 100.00 93.80 0.12 310.00 12.80 2.44 0.06 D2409B1 0.36 1.22 1.04 0.19 0.17 12.94 0.03 / 35.00 21.40 1.04 112.00 102.00 161.00 0.05 521.00 17.20 3.88 0.04 平均值 0.99 1.98 1.55 0.17 0.18 13.00 0.03 0.07 25.48 25.20 2.41 92.70 128.75 111.03 0.11 336.78 18.35 5.85 0.05 元古代中酸性岩建造–基岩 D1105R1 1.94 1.13 1.82 0.23 0.14 5.45 0.02 0.00 67.90 4.33 0.28 12.60 125.00 3.72 0.18 5.02 18.30 0.23 0.00 D1106R1 2.42 1.40 2.80 0.10 0.08 4.95 0.02 0.00 54.20 6.13 0.53 17.10 94.10 4.49 0.06 8.13 15.70 0.00 0.00 续表1 样品号 CaO MgO K2O P2O5 MnO TFe2O3 S N Cl B Mo Cu Zn Ni Cd Cr Pb As Hg D1107R1 1.65 0.69 2.79 0.05 0.08 3.29 0.02 0.02 45.50 4.42 0.33 6.54 73.10 5.45 0.09 7.25 16.30 0.83 0.00 D1108R1 3.92 1.96 2.26 0.18 0.12 6.50 0.03 0.01 99.60 2.46 0.30 50.00 84.40 12.70 0.06 25.00 8.00 0.42 0.00 D1110R1 2.25 1.60 2.15 0.14 0.10 5.06 0.02 0.01 44.80 3.14 0.25 25.50 68.80 13.50 0.09 17.60 11.70 0.50 0.00 D2105R1 1.81 0.70 3.16 0.11 0.04 2.32 0.01 / 25.90 5.29 <0.1 2.22 49.90 3.60 <0.05 7.92 12.60 0.24 0.00 D2209R1 0.74 0.53 1.76 0.09 0.04 2.21 0.01 / 55.50 7.58 <0.1 1.52 42.60 1.75 0.09 4.23 9.41 0.00 0.01 D2210R1 3.33 1.17 2.33 0.11 0.07 3.45 0.01 / 46.50 5.16 0.20 11.50 60.40 17.20 <0.05 48.00 10.50 1.80 0.01 D2211R1 2.72 0.67 2.68 0.08 0.06 2.26 0.01 / 67.50 5.21 <0.1 3.67 55.10 2.40 0.06 6.09 16.90 0.42 0.01 D2212R1 3.56 1.12 1.84 0.12 0.06 3.11 0.03 / 81.20 6.60 0.16 6.31 73.00 6.16 <0.05 19.80 12.20 0.60 0.01 D2214R1 0.56 1.70 2.70 0.12 0.05 2.75 0.04 / 52.40 23.50 <0.1 2.54 54.50 4.22 <0.05 11.70 2.20 0.55 0.00 D2406R1 1.07 0.60 4.58 0.04 0.04 2.21 0.01 / 32.40 8.31 1.23 90.20 73.40 10.00 0.23 12.80 25.00 0.59 0.04 D2407R1 6.61 4.32 1.05 0.18 0.12 7.69 0.01 / 66.50 4.83 0.12 20.70 81.10 39.40 0.10 90.60 7.61 0.31 0.00 D2407R2 0.43 0.47 2.60 0.04 0.06 2.10 0.01 / 26.80 37.90 <0.1 3.32 38.20 2.08 0.16 4.06 15.00 0.28 0.03 平均值 2.36 1.29 2.47 0.11 0.07 3.81 0.02 0.01 54.76 8.92 0.38 18.12 69.54 9.05 0.11 19.16 12.96 0.48 0.01 元古代中酸性岩建造–土壤 D1105B1 2.77 1.83 1.88 0.87 0.18 10.82 0.03 0.08 81.90 4.71 0.52 19.80 112.00 11.90 0.12 10.60 13.00 1.34 0.02 D1106B1 0.55 1.25 1.96 0.06 0.07 7.27 0.02 0.03 48.10 11.80 0.55 24.80 108.00 14.80 <0.05 20.70 18.30 2.81 0.04 D1107B1 1.15 0.82 2.62 0.10 0.09 5.42 0.04 0.09 38.80 28.20 9.45 32.60 93.80 23.80 0.16 182.00 18.80 3.06 0.02 D1108B1 2.80 1.04 2.20 0.07 0.10 6.21 0.03 0.06 124.00 4.51 5.76 24.50 64.80 12.40 0.12 63.20 13.10 0.91 0.01 D1110B1 1.68 0.62 2.17 0.08 0.07 5.14 0.04 0.09 60.30 17.00 9.43 23.80 49.50 12.90 0.14 163.00 17.60 3.39 0.02 D2105B1 2.13 0.70 3.17 0.09 0.04 3.42 0.01 / 77.80 7.15 0.21 14.30 61.20 4.73 <0.05 11.20 17.50 0.49 0.01 D2209B1 0.67 0.66 3.41 0.06 0.05 3.57 0.01 / 88.50 8.77 0.27 10.60 50.50 7.86 <0.05 13.10 18.50 1.33 0.02 D2210B1 1.70 0.86 2.54 0.06 0.05 3.19 0.03 / 67.00 5.58 0.17 4.46 50.80 5.54 0.10 18.80 13.10 0.88 0.02 D2211B1 1.56 0.53 3.28 0.05 0.05 2.24 0.02 / 57.20 4.04 0.11 12.90 44.90 2.26 <0.05 4.71 15.70 0.23 0.00 D2212B1 1.31 0.78 2.83 0.08 0.05 3.14 0.02 / 58.90 5.38 0.19 7.22 54.10 6.36 <0.05 19.10 13.30 0.68 0.02 D2214B1 0.23 1.44 2.38 0.06 0.04 3.15 0.01 / 66.70 8.22 0.10 39.60 49.50 6.19 <0.05 19.80 20.50 0.43 0.01 D2406B1 0.53 3.54 2.17 0.09 0.16 8.66 0.02 / 31.90 14.00 0.40 135.00 126.00 384.00 0.13 437.00 21.40 2.77 0.04 D2407B1 2.30 3.69 1.07 0.09 0.09 9.92 0.02 / 47.20 14.10 0.46 37.60 93.70 59.80 0.07 150.00 11.90 3.98 0.02 D2407B2 0.59 0.79 2.74 0.06 0.05 3.29 0.02 / 51.00 21.80 0.34 7.90 53.70 9.77 <0.05 18.30 17.40 3.50 0.02 平均值 1.43 1.33 2.46 0.13 0.08 5.39 0.02 0.07 64.24 11.09 2.00 28.22 72.32 40.17 0.12 80.82 16.44 1.84 0.02 元古代火山碎屑岩建造–基岩 D2222R1 0.08 0.23 5.74 0.01 0.03 2.20 0.01 / 27.20 19.80 1.06 4.16 169.00 1.44 0.09 3.54 10.40 4.39 0.02 D2601R1 0.13 0.41 3.83 0.02 0.03 2.56 0.02 / 48.90 15.30 0.27 3.80 41.10 3.25 0.06 5.01 20.80 3.99 0.01 平均值 0.11 0.32 4.79 0.01 0.03 2.38 0.01 / 38.05 17.55 0.67 3.98 105.05 2.35 0.07 4.28 15.60 4.19 0.01 元古代火山碎屑岩建造–土壤 D2222B1 0.16 0.45 3.44 0.03 0.05 3.68 0.03 / 35.60 38.30 1.27 19.30 120.00 14.90 0.11 30.40 26.70 12.00 0.04 D2601B1 0.14 0.38 3.33 0.02 0.03 2.67 0.03 / 64.10 13.60 0.73 14.70 68.80 7.67 <0.05 12.40 25.30 23.60 0.04 平均值 0.15 0.42 3.39 0.03 0.04 3.17 0.03 / 49.85 25.95 1.00 17.00 94.40 11.29 0.11 21.40 26.00 17.80 0.04 大陆地壳
元素丰度5.39 3.67 2.58 0.17 0.09 6.17 0.07 0.06 472.00 11.00 1.10 25.00 65.00 56.00 0.10 126.00 14.80 1.70 0.04 注:CaO、MgO、K2O、P2O5、MnO、TFe2O5、S、N元素含量为%;Cl、B、Mo、Cu、Zn、Ni、Cd、Cr、Pb、As、Hg元素含量为10–6;/表示无数据;大陆地壳元素丰度引自Wedepohl(1995)。 表 2 不同类型地质建造上形成红壤的粒级分布和pH值
Table 2. Particle size distribution and pH value of red soil formed on different geological formations
红壤的下伏地质建造类型 砂粒含量
(0.075~1 mm)粉粒含量
(0.075~0.005 mm)黏粒含量
(< 0.005 mm)pH 新近纪-第四纪陆相碎屑岩建造 42.65% 48.06% 9.30% 6.26 三叠纪陆相碎屑岩建造 45.57% 45.40% 9.03% 5.91 三叠纪中酸性岩建造 40.55% 50.29% 9.17% 5.53 二叠纪基性岩建造 39.77% 47.44% 12.80% 5.68 元古代中酸性岩建造 53.86% 39.84% 6.30% 5.63 元古代火山碎屑岩建造 46.82% 40.05% 13.14% 4.92 -
[1] 安礼航, 刘敏超, 张建强等. 2020. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 52(02): 234-246
An L H, Liu M H, Zhang J Q, Huan L, Chen Z L. 2020. Sources of Arsenic in Soil and Affecting Factors of Migration and Release: A Review. Soils, 52(2): 234–246
[2] 曾琴琴, 王永华, 刘才泽, 等. 四川省南部县土壤地球化学元素分布特征研究[J]. 沉积与特提斯地质, 2021, 41(4): 656-662.
ZENG Qinqin, WANG Yonghua, LIU Caize, et al. A study on distribution of elements of soil in Nanbu County, Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4): 656-662.
[3] 董玲玲, 何腾兵, 刘元生, 舒英格, 罗海波, 刘方. 2008. 喀斯特山区不同母质(岩)发育的土壤主要理化性质差异性分析[J]. 土壤通报, 39(03): 471-474
Dong L L, He T B, Liu Y S, Shu Y G, Luo H B, Liu F. 2008. Changes of soil physical-chemical properties derived from different parent materials/rocks in karst mountain. Chinese Journal of Soil Science, 38(03): 471-474
[4] 耿增超, 贾宏涛. 土壤学[M]. 北京: 科学出版社, 2020.
GENG Zengchao, JIA Hongtao. Soil Science[M]. Beijing: Science Press, 2020.
[5] 国家地球系统科学数据中心. 四川省500 m土壤类型数据 (CSTR: 17099.11). G67438555732237.20151231. v1.[DB], 1995.
[6] 贾磊, 刘洪, 欧阳渊, 等. 基于地质建造的南方山地-丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 2022, 55(04): 140-157
Jia Lei, Liu Hong, Ouyang Yuan. Division Scheme of Surface Substrate Mapping Units of Mountainous-Hilly Area in South China Based on Geological Formations Research: Example from Xinhui-Taishan Area in Pearl River Delta [J]. Northwestern Geology, 2022, 55(04): 140-157.
[7] 李金发. 2014. 为生态文明服务的地质调查工作. 资源环境与工程, 28(1): 1-4
Li J F. The geological survey for ecological civilization. Resources Environment & Engineering, 2014, 28(1): 1-4 (in Chinese).
[8] 李天杰, 赵烨, 张科利, 等. 土壤地理学[M]. 北京: 高等教育出版社, 2004.
LI Tianjie, ZHAO Ye, ZHANG Keli, et al. Soil Geography[M]. Beijing: Higher Education Press, 2004.
[9] 李樋, 刘小念, 刘洪, 张腾蛟, 李佑国, 欧阳渊, 李随民, 王永华, 黄瀚霄, 张景华, 李嘉, 李富. 2021a. 基于地质建造的土壤营养元素空间分布特征研究—以大凉山区为例. 安全与环境工程, 28(6): 127-137
Li T, Liu X N, Liu H, Zhang T J, Li Y G, Li S M, Wang X, Ouyang Y, Zhang J H. 2021b. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang. Sedimentary Geology and Tethyan Geology, 28(6): 127-137 (in Chinese with English abstract).
[10] 李樋, 刘小念, 刘洪, 等. 西昌普诗地区中-下白垩统小坝组岩石-紫色土剖面稀土元素地球化学特征分析[J/OL]. 沉积与特提斯地质, 2021b. https://doi.org/10.19826/j.cnki.1009-3850.2021.06002
LI Tong, LIU Xiaonian, LIU Hong, et al. Geochemistry of rare earth elements of purple soil layers in the middle-lower cretaceous Xiaoba Formation, Pushi area, Xichang[J/OL]. Sedimentary Geology and Tethyan Geology, 2021b.
[11] 李文明, 李健强, 徐永, 等. 西北生态地质调查研究进展与展望[J]. 西北地质, 2022, 55(03): 108-119
Li Wenming, Li Jianqiang, Xu Yong, et al. , Progress and Prospects of Ecological Geological Survey in Northwest China [J]. Northwestern Geology, 2022, 55(03): 108-119.
[12] 刘洪, 黄瀚霄, 欧阳渊, 李文昌, 张景华, 张腾蛟. 2021. 新构造活动的生态地质环境效应讨论——以扬子西缘西昌市为例. 中国地质调查, 8(6): 63-77
Liu H, Huang H X, Ouyang Y, Li W C, Zhang J H, Zhang T J. 2021. Discussion on the eco-geo-environment effects of Neotectonic activities: A case study of Xichang City in western Yangtze block. Geological Survey of China, 8(6): 63-77. (in Chinese with English abstract).
[13] 刘洪, 黄瀚霄, 欧阳渊, 张景华, 张腾蛟, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020. 基于地质建造的土壤地质调查及应用前景分析—以大凉山区西昌市为例. 沉积与特提斯地质, 40(1): 91-105
Liu H, Huang H X, Ouyang Y, Zhang J H, Li F, Xiao Q L, Zeng J, Hou Q, Wen D K, Duan S Y. 2020. Soil's geologic investigation in Daliangshan, Xichang, Sichuan. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105 (in Chinese with English abstract).
[14] 刘洪, 李文昌, 欧阳渊, 等. 基于地质建造的西南山区生态地质编图探索与实践——以邛海-泸山地区为例[J/OL]. 地质学报, 2022 https://doi.org/10.19762/j.cnki.dizhixuebao.2022014
LIU Hong, LI Wenchang, OUYANG Yuan, et al. Exploration and ractice of the compilation of ecological geology series maps based on Geological Formations research, mountainous region in Southwest China: exemplified by Qionghai-Lushan area, western margin of Yangtze Block[J/OL]. Acta Geologica Sinica, 2022 https://doi.org/10.19762/j.cnki.dizhixuebao.2022014
[15] 吕贻忠, 李保国. 土壤学[M]. 北京: 中国农业出版社, 2006.
[16] 聂洪峰, 肖春蕾, 戴蒙, 刘建宇, 尚博譞, 郭兆成, 贺鹏, 欧阳渊, 雷天赐, 李文明, 周传芳, 姜琦刚. 2021. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 8(01): 1-12. DOI:10.19388/j.zgdzdc.2021.01.01.
Nie H F, Xiao C L, Dai M, Liu J Y, Shang B X, Guo Z C, He P, Ouyang Y, Lei T C, Li W M, Zhou C F, Jiang Q G. 2021. Progresses and main achievements of ecogeological survey project. Geological Survey of China, 8(1): 1-12 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2021.01.01
[17] 聂洪峰, 肖春蕾, 郭兆成. 2019. 探寻生态系统运行与演化的秘密——生态地质调查思路及方法解读[J]. 国土资源科普与文化, (04): 4-13
Nie H F, Xiao C L, Guo Z C. 2019. Exploring the secret of ecosystem operation and evolution -- an interpretation of the ideas and methods of Eco-geological survey. Popular science and culture of land and resources, 6(4): 4-13 (in Chinese).
[18] 欧阳渊, 张景华, 刘洪, 黄瀚霄, 张腾蛟, 黄勇. 2021. 基于地质建造的西南山区成土母质分类方案——以大凉山区为例. 中国地质调查, 8(6): 50-62
uyang Yuan, Zhang Jinghua, Liu Hong, Huang Hanxiao, Zhang Tengjiao, Huang Yong. 2021. Classification of soil parent materials in mountain areas of Southwest China based on geological formations: A case study of Daliangshan region. Geological Survey of China, 2021, 8(6): 50-62 (in Chinese with English abstract).
[19] 施俊法. 2020. 21世纪前20年世界地质工作重大事件、重大成果与未来30年中国地质工作发展的思考[J]. 地质通报, 39(12): 2044-2057
SHI Junfa. 2020. The major accomplishments and geological events during the past two decades in the world and their implications for geological work in China in the next thirty years[J]. Geological Bulletin of China, 39(12): 2044-2057
[20] 田海芬, 刘华民, 王炜, 等. 大青山山地植物区系及生物多样性研究[J].干旱区资源与环境, 2014, 28(08): 172-177.
TIAN Haifen, LIU Huamin, WANG Wei, et al. The distribution patterns of biodiversity and environmental interpretation inDaqingshan Mountain[J]. Journal of Arid Land Resources and Environment, 2014, 28(08): 172-177.
[21] 王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611-1624
Wang J B, Wei X F, Zhang H Q, Gan F W. 2020. The eco - geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province. Geology in China, 47(6): 1611-1624 (in Chinese with English abstract).
[22] 卫晓锋, 樊刘洋, 孙紫坚, 何泽新, 孙厚云, 魏浩. 2020. 河北承德柴白河流域地质建造对植物群落组成的影响[J]. 中国地质, 47(06): 1869-1880
Wei X F, Fan L Y, Sun Z J, He Z X, Sun H Y, Wei H. 2020. The influence of geological formation on plant community composition in Chaibai river basin, Chengde, Hebei Province. Geology in China, 47(6): 1869~1880 (in Chinese with English abstract).
[23] 夏学齐, 季峻峰, 杨忠芳, 卢新哲, 黄春雷, 魏迎春, 徐常艳, 梁卓颖. 2022. 母岩类型对土壤和沉积物镉背景的控制: 以贵州为例[J]. 地学前缘, 29(04): 438-447
Xia X Q, Ji J F, Yang Z F, Lu X Z, Huang C L, Wei Y C, Xu C Y, Liang Z Y. Controlling of parent rock type on cadmium background in soil and sediment: anexample from Guizhou Province. Geology in China, 29(04): 438-447 (in Chinese with English abstract).
[24] 严明书, 黄剑, 何忠庠, 鲍丽然, 罗宇洁. 2018. 地质背景对土壤微量元素的影响——以渝北地区为例. 物探与化探, 42(1): 199-205
Yan M S, Huang J, He Z X, Bao L R, Luo Y H. 2018. The influence of geological background on trace elements of soil, a case study of Yubei area. Geophysical and Geochemical Exploration, 42(1): 199~205 (in Chinese with English abstract).
[25] 杨乐, 王春森, 夏建国. 2020. 成乐高速两侧农田土壤重金属污染及潜在生态危害评价. 四川农业大学学报, 38(02): 168-175+182
Yang L, Wang C S, Xia J G. 2020. Assessment of Heavy Metal Pollution and the Potential Ecological Hazard of Farmland Soils alongside Chengle Highway. Journal of Sichuan Agricultural University, 38(02): 168-175+182 (in Chinese with English abstract).
[26] 袁国礼, 侯红星, 刘建宇, 等. 服务生态文明的生态地质调查工作方法浅析以地表基质调查为例[J]. 西北地质, 2023, 56(3): 30−38.
YUAN Guoli, HOU Hongxing, LIU Jianyu, et al. Introduction to the Methods of Ecology: Geological Survey for Servicing Ecological Civilization: Example from Ecology−Supporting Sphere Survey[J]. Northwestern Geology, 2023, 56(3): 30−38.
[27] 张景华, 欧阳渊, 刘洪, 等. 西昌市生态地质特征与脆弱性评价[M]. 武汉: 中国地质大学出版社, 2020.
ZHANG Jinghua, OUYANG Yuan, LIU Hong, et al. Ecological geological characteristics and vulnerability assessment of Xichang City[M]. Wuhan: China University of Geosciences Press, 2020.
[28] 张景华, 欧阳渊, 刘洪, 黄瀚霄, 张腾蛟, 李富, 李樋. 2021. 基于主控要素的生态地质脆弱性评价——以四川省西昌市为例. 自然资源遥感, 33(4): 181-191
Zhang J H, Ouyang Y, Liu H, Huang H X, Zhang T J, Li F, Li T. 2021. Eco-geological vulnerability assessment based on major controlling factors: A case study of Xichang City, Sichuan Province. Remote Sensing for Natural Resources, 33(4): 181-191. (in Chinese with English abstract).
[29] 张腾蛟, 刘洪, 欧阳渊, 黄瀚霄, 张景华, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例. 沉积与特提斯地质, 40(1): 106-114
Zhang T J, Liu H, Ouyang Y, Huang H X, Zhang J H, Li F, Xiao Q L, Zeng J, Hou Q, Wen D K, Duan S Y. 2020. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area——take Xichang as an example. Sedimentary Geology and Tethyan Geology, 40(1): 106-114 (in Chinese with English abstract).
[30] 张腾蛟, 刘洪, 欧阳渊, 张景华, 张振杰, 李樋. 2021. 不同地质建造类型的生态环境功能特征——以西昌地区为例. 中国地质调查, 8(6): 35-49
Zhang T J, Liu H, Ouyang Y, Zhang J H, Zhang Z J, Li T. 2021. Ecological environment function of different geological formations: A case study of Xichang area. Geological Survey of China, 8(6): 35-49 (in Chinese with English abstract).
[31] 张鑫. 2019. 土壤重金属污染的危害及修复技术研究[J]. 中国资源综合利用, 37(11): 89-90+93
Zhang X. 2019. Research on harm and remediation technology of heavy metal pollution in soil. China Resources Comprehensive Utilization, 37 (11): 89-90+93 (in Chinese with English abstract).
[32] 赵凯丽, 王伯仁, 徐明岗, 蔡泽江, 石伟琦, 马海洋. 2019. 我国南方不同母质土壤pH剖面特征及酸化因素分析[J]. 植物营养与肥料学报, 25(08): 1308-1315
Zhao K L, Wang B R, Xu M G, Cai Z J, Shi W Q, Ma H Y. 2019. Analysis of pH profile characteristics and acidification factors of different parent materials in southern China. Journal of Plant Nutrition and Fertilizer, 25(08): 1308-1315 (in Chinese with English abstract).
[33] 赵银兵, 倪忠云, 欧阳渊, 等. 生态地质环境承载力研究进展[J/OL]. 沉积与特提斯地质, 2022.https://doi.org/10.19826/j.cnki.10093850.2022.04021
ZHAO Yinbing, NI Zhongyun, OUYANG Yuan, et al. Research progress of eco-geological environment carrying capacity[J/OL]. Sedimentary Geology and Tethyan Geology, 2022.https://doi.org/10.19826/j.cnki.10093850.2022.04021.
[34] 周爱国, 孙自永, 徐恒力, 等. 地质环境生态适宜性评价指标体系研究[J]. 地质科技情报, 2001, (02): 71−74
ZHOU Aiguo, SUN Ziyong, XU Hengli, et al. Study on the evaluation index system of geological environmental ecological suitability[J]. Geological Science and Technology Information, 2001, (02): 71−74
[35] 中国地质调查局.固体矿产地质调查技术要求(1∶50 000)(DD 2019-02)[Z]. 中国地质调查局, 2019
[36] Dynarski K A, Morford S L, Mitchell S A, et al. Bedrock nitrogen weathering stimulates biological nitrogen fixation. Ecology, 2019,100(8).
[37] Hahm W J, Rempe D M, Dralle D N, et al. Lithologically controlled subsurface crtical zone thickness and water sorage capacity determine regional plant community composition. Water Resources Research, 2018,55, 3028–3055.
[38] Hahm W J, Riebe C S, Lukens C E, et al. Bedrock composition regulates mountain ecosystems andlandscape evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(9): 3338-3343.
[39] Jiang Z, Liu H, Wang H, Peng J,et al. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nature Communications, 2020,11(1): 1-9.
[40] Juilleret J, Dondeyne S, Vancampenhout K, et al. Mind the gap: a classification system for integrating the subsolum into soil surveys. Geoderma,2016, 264: 332–339.
[41] Morford S L , Houlton B Z , Dahlgren R A . Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature,2011, 477(7 362): 78-81.
[42] Vithanage M, Kumarathilaka P, Oze C, et al. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: a critical review. Environment International, 2019,131.
[43] Wedepohl K H. The composition of the continental crust. Geochim et Cosmochim Acta, 1995,59, 1217-1232.
[44] Wilson M J. The importance of parent material in soil classification: a review in a historical context. Catena, 2019,182, 104131.
-